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Disturbance Observer-based Adaptive Fault-tolerant Dynamic Surface
Control of Nonlinear System with Asymmetric Input Saturation
Li Wang*, Hua-Jun Gong, and Chun-Sheng Liu

Abstract: In this paper, a composite fault-tolerant control problem is studied for a class of uncertain nonlinear sys-
tem with asymmetric input constraint, actuator fault and external unmatched disturbance. The radial basis function
neural network (RBFNN) is employed to approximate the unknown uncertainty and asymmetric input saturation.
The approximation error, external unmatched disturbance and actuator faults are integrated as the compounded dis-
turbance. A nonlinear disturbance observer is designed to tackle the effect of the compounded disturbance which
can be separated from the controller design. To handle the effect of asymmetric input saturation, a smooth con-
tinuous differentiable saturation model is explored. Adaptive NN fault-tolerant control scheme is developed to
guarantee that all the signals in the closed-loop systems are semiglobally uniformly ultimately bounded (SGUUB)
and the tracking errors converge to a small neighborhood of origin by choosing the appropriate design parameters.
The effectiveness of the proposed control scheme is demonstrated in the simulation study.
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1. INTRODUCTION

The stability analysis problems of nonlinear systems
have received significantly increased attention [1–6]. Ac-
tuators are always subjected to limits in practical applica-
tions, which may limit the system performance severely
and even lead to the system instability. In order to com-
pensate the effect caused by actuator saturation, many re-
search results have been carried out on this problem [5,6].
In [5], a dynamic surface control scheme was designed
for an uncertain nonlinear system in the presence of input
saturation. Neural adaptive control method was presented
for a class of nonlinear systems with actuator saturation
[6]. Adaptive control algorithm was presented for non-
linear system with input nonlinearity in [7]. It should be
noted that the most of the above researches were devel-
oped for the input symmetric saturation. To a large de-
gree, the control of a system with symmetric saturation
input is easier than that of a system with asymmetric sat-
uration input. Relatively, a fewer results are given on the
control of nonlinear system with asymmetric input. Thus,
the adaptive antiwidup control scheme should be further
investigated for the problem of asymmetric input satura-
tion. Adaptive neural network control was investigated
for an uncertain nonlinear system with asymmetric satura-

Manuscript received February 21, 2018; revised October 6, 2018; accepted October 23, 2018. Recommended by Associate Editor Ho Jae Lee
under the direction of Editor Jessie (Ju H.) Park. This work was supported by the National Natural Science Foundation of China (61074063,
61473147).

Li Wang, Hua-Jun Gong, and Chun-Sheng Liu are with the College of Automation Engineering, Nanjing University of Aeronautics and
Astronautics, Jiangsu Nanjing 210016, China (e-mails: Li-wang1116@163.com, ghj301@nuaa.edu.cn, liuchsh@nuaa.edu.cn). Li Wang is
also with Nanhang Jincheng College, Jiangsu Nanjing 211156, China.
* Corresponding author.

tion actuators [8]. In [9], an adaptive backstepping method
was proposed to deal with the asymmetric input nonlinear-
ity and constrained states. Adaptive tracking control was
proposed for uncertain MIMO systems with asymmetric
input constraint in [10].

On the other hand, during to the widespread existence
of disturbance, the problem of anti-disturbance control has
been an important topic in the control theory [11]. Neu-
ral network and fuzzy logical systems as the universal ap-
proximators have been widely employed to tackle the sys-
tem uncertainty [12–14]. An adaptive tracking control was
employed handle the unknown disturbances for a class of
MIMO strict-feedback nonlinear systems [13]. Both input
saturation and external disturbance have been further in-
vestigated in developing control scheme [15,16]. In [16], a
fuzzy control scheme was presented for uncertain nonlin-
ear systems with input saturation and external disturbance.
However, the previous works only handle the problem of
input nonlinearity or external disturbance in the consid-
ered system. In practical control systems, the nonlinear
system may suffer the integrated effects of actuator faults,
asymmetric input saturation and unknown external distur-
bance.

Actuators may encounter abrupt failures during opera-
tion. For the sake of safety and reliability, accommodating
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such failures/faults is important to ensure the safety of
the systems, especially for life-critical systems such as
aircrafts, automatic navigation, spacecrafts and nuclear
power plants and so on. Many fault-tolerant control
schemes have been developed various approaches: both
of sliding mode observer [17], effective active adaptive
control and sliding mode techniques [18], control allo-
cation [19], and so on. Adaptive fault-tolerant control
is more flexible to design, it has been extensively used
as an efficient control approach for actuator failure com-
pensation of nonlinear system [18, 20, 21]. An adaptive
fault-tolerant control is presented for a class of uncertain
multi-agent systems [20]. In [21] a decentralized output-
feedback adaptive backstepping control is proposed for a
class of interconnected nonlinear systems with unknown
actuator failures.

Motivated by the above-mentioned observations, this
paper developed an adaptive NN control scheme focus-
ing on a class of nonlinear systems with asymmetric input
saturation, actuator faults and unknown time-varying dis-
turbances. Compared with the existing results, the main
contributions of this brief lie in the follows:

1) Exploring a smooth hyperbolic tangent function, this
is used to propose the input saturation model. It deals
with the problem of input saturation, which is more
meaningful in practical application compared with
[6].

2) Based on the proposed smooth saturation model, the
control approach presented in this paper constitutes
fault-tolerant with dynamic surface control (DSC) for
general uncertain nonlinear system with simultaneous
unknown asymmetric saturations, actuator faults and
unmatched external disturbances. It also precludes
the complexity and dimension curse problems.

3) A general nonlinear system with multiple input sig-
nals is considered. There exists the asymmetric satu-
ration and actuator failure in each input. In fact, pio-
neering asymmetric input saturation was handled for
SISO system without considering the actuator faults
[8].

The organization of this paper is as follows: The prob-
lem formulation is given in Section 2. The adaptive fault-
tolerant control scheme based on disturbance observer
is developed using DSC combined with backstepping
method in Section 3. Stability analysis is presented in
Section 4. Simulation results are provided in Section 5.
Finally, Section 6 contains the conclusion.

Throughout the paper, the notations are defined as fol-
lows: for a given matrix A, AT denotes its transpose. When
A is square matrix, trace(A) , A > 0 and A < 0 denote its
trace, positive-definiteness and negative-definiteness, re-
spectively. ∥·∥ represents the Frobenius norm of matrix
(·) or Euclidean norm of vector (·). λmax(·) and λmin(·)

denotes the maximum and minimum eigenvalues of ma-
trix (·), respectively.

2. PROBLEM FORMULATION AND
PRELIMINARIES

To begin with, the MISO strict-feedback nonlinear sys-
tem with actuator faults, asymmetric input saturation and
external disturbance is considered in this paper:

ẋi = fi(x̄i)+gi(x̄i)xi+1 +di(t), i = 1,2, ...,n−1,

ẋn = fn(x̄n)+bT u(v)+dn(t),

y = x1, (1)

where xi = [x1,x2, ...,xi] ∈ Ri, i = 1,2, ...,n stands for
the state vector and y ∈ R denotes the output vector.
fi(xi) is an unknown smooth nonlinear function and is
a known smooth nonlinear function of the system. b =
[b1,b2, ...,bm]

T ∈ Rm, b j(xi) is a known constant gain.
u(v) = [u1,u2, ...,um]

T ∈ Rm are the actual input signals of
system and the output of saturation nonlinearity. di(t) rep-
resents the unknown time-varying external disturbance.

However, in practical engineering, the components (ac-
tuators) of input may become faulty during operation. Ac-
tuators may undergo total loss of effectiveness (TLOE)
failures or partial loss of effectiveness (PLOE) faults dur-
ing operation. The two kinds of actuator faults are com-
monly occurring in the practice. These failures may cause
instability and even catastrophic accidents if they are not
well handled.

When a TLOE actuator failure occurs, the output u j(t)
of the faulty actuator jth becomes as:

u j(t) = ū j(t), t ≥ t j f , j ∈ {1,2, ...,m} , (2)

where u j is unknown piecewise continuous bounded sig-
nal which denotes the TLOE, i.e., the case of Lock-in
place, t j f is the occurrence time of the fault.

When a PLOE fault occurs, the faulty model of actuator
jth can be described as

u j(t) = ρ juc, j(t), t ≥ t j f , j ∈ {1,2, ...,m} , (3)

where 0 < ρ j ≤ 1 is the healthy proportion of the jth actu-
ator after losing some effectiveness at the unknown failure
time instant t j f .

Adapted from [21], the actuator failures which cover
both PLOE type of faults and TLOE failures considered
in this paper can be modeled as:

u j(t) = ρ juc, j(t)+σ j(ū j(t)−ρ juc, j(t)), (4)

where uc, j(t) is the applied designed control signal. σ =
diag(σ1,σ2, ...,σλ ), σi is defined as

σ j =

{
1, if TLOE occurs in the jth actuator,

0, otherwise.
(5)
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Define uc(t) = b j(xn)uc, j(t) and u =
m
∑
j=1

b j(xn)σ ju j(t),

thus

uc, j(t) =
uc

b j(x̄n)
. (6)

Let ρ =
m
∑
j=1

ρ j(1−σ j) , from (4), (5) and (6) the system

(1) can be rewritten as

ẋi = fi(x̄i)+gi(x̄i)xi+1 +di(t), i = 1,2, ...,n−1,

ẋn = fn(x̄n)+ρuc(v)+ ū+dn(t),

y = x1. (7)

On the other hand, there exists the actuator saturation non-
linearity in the uncertain nonlinear system (7). uc(v) is
represented as

uc(v) = sat(v(t)) =


uU , v ≥ uU ,

v, −uL ≤ v < uU ,

−uL, v ≤−uL,

(8)

where uL and uU are the known lower/upper limit bounds
of u(v). Form [22], we know the relationship between the
applied control uc(t) and the control input v(t) which has
a sharp corner when v(t) = uU or v(t) = −uL. Backstep-
ping technique cannot be directly applied to this case. The
smooth function is a real-valued and continuous differen-
tiable function and its Taylor expansion always converges.
Thus, a novel asymmetric saturation nonlinearity model
can be obtained as

h(v) = uM × tanh(
√

π
2uM

v), (9)

where uM = (uU +uL)/2+sign(v) ·(uU −uL)/2, sign(·) is
the standard sign function.

Fig. 1 shows that saturation function (8) can be guaran-
teed by the novel saturation nonlinearity function (9) with
smooth saturation limitation, where uL =−2, uU = 5 and
the input signal v(t) = 15sin(t). Then sat(v(t)) in (8) can
be expressed as

sat(v(t)) = uM × tanh
(√

π
2uM

v
)
+∆(v). (10)
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Fig. 1. Saturation function model.

Remark 1: Between the applied control uc(t) and the
control input v(t) has a sharp corner, when v(t) = uU or
v(t) = −uL. The smooth function (10) can not only ob-
tain the asymmetric saturation nonlinearity model but also
make the backstepping technique directly applied to this
model.

It is straightforward to verify that

|∆(v)|= |sat(v)−h(v)|

≤ max

uU

(
1− tanh(

√
π

2
)

)
,

uL

(
1− tanh(

√
π

2
)

)
= ∆̄. (11)

From (11), it can be seen that ∆(v) is a bounded func-
tion. When v changes from −uL to uU , the value of ∆(v)
increase from 0 to ∆̄, when the value of v outside this area,
the value of ∆(v) decreases from ∆̄ to 0. According to
mean-value theorem [23], h(v) in (9) can be expressed as
h(v) = h(v∗)+ ∂h(·)

∂v

∣∣∣
v=vµ

(v−v∗)vµ = µv+(1−µ)v∗ with
0 < µ < 1.

Let v∗ = 0, then h(v∗) = 0, therefore h(v) can be rewrit-
ten as h(v) = ∂h(·)

∂v

∣∣∣
v=vµ

v(t) = hv(t).

Remark 2: From the definition of h(v) in (9), tanh(·)
is an elementary function of sigmoid shape, h(v) is non-
decreasing. There exist positive constants h̄ and ¯̄h such
that 0 < h̄ ≤ h(v)≤ ¯̄h for every v ∈ R.

The actuator saturation nonlinearity model in (8) is
rewritten as

uc (t) = sat (v(t)) = hv(t)+∆(v). (12)

Then, the uncertain nonlinear system (7) can be rewritten
as

ẋi = fi(x̄i)+gi(x̄)xi+1 +di(t), i = 1,2, ...,n−1,

ẋn = fn(x̄n)+ρhv+ρ∆(v)+ ū+dn(t),

y = x1, (13)

where ρh = ρ ·h is an unknown bounded constant.
The main control objective of this paper is to design an

adaptive control scheme for system (1) with the actuator
faults (i.e., (2) and (3)) and actuator saturation nonlinear-
ity (8) to obtain that the bounded properties of all signals
involved in the resulting closed-loop system and output
y(t) can track the given reference signal yd(t) as closely
as possible. To achieve the control objective, the proposed
control-design needs the following assumptions.

Assumption 1: The system considered in (1) is input-
to-state stable (ISS).

Assumption 2 [24]: The time-varying external distur-
bance di(t) satisfies ∥di(t)∥ ≤ di

∗, where di
∗, i = 1,2, ...,n

are unknown constants.
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Assumption 3 [5, 25]: For a time-varying external dis-
turbance di(t), there exists an unknown positive constant
d̄i such that

∥∥ḋi(t)
∥∥≤ d̄i, i = 1,2, ...,n.

Assumption 4 [8,11,26]: The control coefficient func-
tion of the uncertain system (1) is bounded, i.e., there must
exist positive constants ¯̄gi such that with 0 < gi(x̄i) ≤ ¯̄gi

and gi(x̄i) ̸= 0, i = 1,2, ...,n−1.
Assumption 5: The smooth function bi(x̄i) of the un-

certain system (1) is not zero, i.e., bi(x̄i) ̸= 0.
Assumption 6: The plant (1) is so constructed that for

any up to m − 1 actuators undergoing complete failures
simultaneously, the remaining actuators can still achieve
the desired control objectives.

Remark 3: Assumption 3 is reasonable when the avail-
able energy of external disturbance di(t) is considered fi-
nite. Assumption 4 is sufficient for controllability of sys-
tem (1) and there are many practical systems, such as air-
craft longitudinal model [11] and brush dc (BDC) motor
[26], that satisfy this Assumption. Assumption 5 implies
that smooth function bi(x̄i) is strictly either positive or
negative. On the other hand, as similar as discussed in the
existing adaptive compensation schemes, Assumption 6 is
a basic assumption for the adaptive failure compensation
problem.

3. DISTURBANCE OBSERVER-BASED
ADAPTIVE NN CONTROL

In this section, a robust fault-tolerant dynamic surface
control (DSC) is developed for the strict-feedback non-
linear system (1). A backstepping control technique and
disturbance observer will be used. The process of the con-
trol is divided into n steps, at the ith step (i = 1, ...,n−1),
a virtual control law and the parameter updated laws are
explored, respectively. To handle the problem of "explo-
sion of complexity" inherent, DSC is combined with the
conventional backstepping method.

Define the following error variables: z1 = x1 − yd , zi =
xi −ωi, ςi = ωi −αi−1, i = 1,2, ...,n, where ωi is the out-
put of a first-order filter with αi−1 as the input. At each
step of recursion, the quantity α̇i−1 which is replaced by
ωi determined the virtual control law α̇i, where αi−1 is an
intermediate control. As to say, the operation of differ-
entiation can be replaced by simpler algebraic operation.
To get the main results, the control scheme comprises the
following steps.

Step 1: Let ω1 = yd , the error variables is defined as
following:

z1 = x1 −ω1,z2 = x2 −ω2. (14)

Considering the tracking error (14) and system (13), we
have

ż1 = f1(x1)+g1(x1)x2 +d1(t)− ẏd . (15)

Define F1(X1) = f1(x1)− ẏd . Due to the prominent advan-
tage of RBFNN in approximating any smooth nonlinear
approximation with arbitrary precision [27], we employ
the following RBFNN to estimate the unknown nonlinear
function F1(X1) as follows:

F1(X1) =W1
T φ1(X1)+ζ1

∗, (16)

where X1 = [x1, ω̇1] ∈ R2 is the input vector, W1 ∈ Rhm1 is
the ideal constant weight matrix between the hidden layer
and the output layer, hm1 is the number of the hidden layer
neurons. φ1(·) ∈ Rhm1 is monotonically increasing activa-
tion function. ζ1

∗ ∈R is the unknown smallest approxima-
tion error of RBFNN which satisfies that ζ̇ ∗

1 is bounded.
Assumption 7: The ideal weight matrix Wi, i =

1,2, ...,n and the activation function φi(Xi), i = 1,2, ...,n
of the NN are both bounded, i.e., ∥φi(Xi)∥ ≤ µi with
µi ≥ 0 and ∥Wi∥ ≤ W̄i with W̄i > 0.

Define the compounded disturbance D1(t) = d1(t) +
ζ1

∗, which combined RBFNN approximation error with
external time-varying disturbance. From Assumption 3
and the approximation ability of RBFNN, it can be ob-
tained the time derivative of the compound disturbance D1

is bounded, i.e.,
∥∥Ḋ1

∥∥≤ θ1, θ1 is a unknown positive con-
stant.

Substituting (16) into (15) yields

ż1 =W1
T φ1(X1)+g1(x1)x2 +D1(t). (17)

Design the intermediate virtual control signal α1 and then
let it pass through an first-order filter with time constant
τ2 to generate variable ω2 which holds a same initial value
as α1(0).

α1 =
1
g1

(
−k1z1 −Ŵ T

1 φ1(X1)− D̂1
)
, (18)

τ2ω̇2 +ω2 = α1, ω2(0) = α1(0), (19)

where τ2 is a small constant, k1 > 0 is a designed parame-
ter. Ŵ1 and D̂1 are the estimate of ideal weight matrix W1

and compounded disturbance D1, respectively.
Define an error variable ς2 = ω2 −α1, from (17), (18) and
(19) we can obtain

ς̇2 = ω̇2 − α̇1 =−ς2

τ2
+λ̄1(z1,Ŵ1,φ1, D̂1, ẏd)

≤−ς2

τ2
+ ¯̄λ 1, (20)

where λ̄ 1(·) is a continuous function with bounded. ¯̄λ 1 is
a positive bounded constant of the functionλ̄1(·).
Lyapunov candidate function can be constructed as

V1 =
1
2

z1
2 +

1
2

W̃ T
1 Γ1

−1W̃1 +
1
2

D̃2
1 +

1
2

ς2
2, (21)

where Γ1 = Γ1
T > 0 is an adaptation gain matrix. W̃1 =

Ŵ1 −W1 and D̃1 = D1 − D̂1.
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Using the time derivative of V1, then

V̇1 =z1ż1 +W̃ T
1 Γ−1 ˙̃W 1 + D̃1

˙̃D1 + ς2ς̇2

=− k1z1
2 − z1W̃ T

1 φ(X1)+g1(x1)z1z2 + z1D̃1

+g1(x1)z1ς2 +W̃ T
1 Γ−1 ˙̂W 1 + D̃1

˙̃D1 + ς2ς̇2. (22)

The adaptive parameter updated law of Ŵ1 are developed
as

˙̂W1 = Γ1
[
φ1(X1)z1 −δW1Ŵ1

]
, (23)

where δW1 > 0 is a designed parameter.
Substituting (23) into (22) yields

V̇1 =− k1z1
2 +g1(x1)z1z2 +g1(x1)z1ς2

+ z1D̃1 −W̃ T
1 δW1Ŵ1 + D̃1

˙̃D1 + ς2ς̇2. (24)

We designed a nonlinear disturbance observer (NDO) to
estimate the unknown compounded disturbance D1(t) and
to avoid repeatedly computing the time derivative of vir-
tual control laws.

ϕ̇1 = g1(x1)x2 +Ŵ T
1 φ1(X1)+ D̂1,

D̂1 = γ1 (z1 −ϕ1) , (25)

where ϕ1 represents the auxiliary variable of the nonlinear
disturbance observer. γ1 is a parameter to be designed.

Based on (25), we can have ˙̂D1 = γ1 (z1 −ϕ1) =
γ1
(
D̃1(t)−W̃ T

1 φ1(X1)
)
.

Considering the following Young’s inequality

D̃1Ḋ1 ≤ 0.5D̃2
1 +0.5θ1

2, , (26)

D̃1W̃ T
1 φ1(X1) ≤

1
2

a1µ1
2D̃2

1 +
1

2a1

∥∥W̃1
∥∥2
, (27)

−δW1W̃ T
1 Ŵ1 ≤−1

2
δW1

∥∥W̃1
∥∥2

+
1
2

δW1∥W1∥2, (28)

where
∥∥Ḋ1

∥∥≤ θ1, a1 > 0 and δw1 > 0 are designed param-
eters, ∥φ1(X1)∥ ≤ µ1. Then from (25), (26) and (27), we
can obtain

D̃1
˙̃D1 =D̃1Ḋ1 − D̃1̇̂D1

=D̃1Ḋ1 + γ1D̃1W̃ T
1 ϕ(X1)− γ1D̃2

≤1
2
(
γ1a1µ1

2 −2γ1 +1
)

D̃2
1

+0.5θ1 +
γ1

2a1

∥∥W̃1
∥∥2
. (29)

From (20), we can obtain

ς2ς̇2 = ς2

(
ς̇2 +

ς2

τ2

)
− ς2

2

τ2

≤ |ς2| ¯̄λ 1 −
ς2

2

τ2

≤ ς2
2
(

1− 1
τ2

)
+

1
4

¯̄λ 2
1. (30)

Substituting (28), (29) and (30) into (24), we can obtain
the following inequality

V̇1 ≤− k1z1
2 +g1(x1)z1z2 +g1(x1)z1ς2+z1D̃1

− 1
2

δW1
∥∥W̃1

∥∥2
+

1
2

δW1∥W1∥2 +0.5θ1

+
1
2
(
γ1a1µ1

2 −2γ1 +1
)

D̃2
1+

γ1

2a1

∥∥W̃1
∥∥2

+ ς2
2
(

1− 1
τ2

)
+

1
4

¯̄λ 2
1

≤−
(

k1 − ¯̄g1 −
1
2

)
z1

2 −
(

1
τ2

−
¯̄g1

4
−1

)
ς2

2

− 1
2
(
2γ1 − γ1a1µ1

2 −2
)

D̃1+g1(x1)z1z2

− 1
2

(
δW1 −

γ1

a1

)∥∥W̃1
∥∥2

+
1
2

δW1∥W1∥2

+0.5θ1 +
1
4

¯̄λ 2
1. (31)

The coupling term g1(x1)z1z2 in (31) will be canceled
in the next step.

Step iii (i = 2, . . . ,n−1): The differentiation of zi can be
obtained as

żi = ẋi − ω̇i = fi(x̄i)+gi(x̄i)xi+1 +di(t)− ω̇i. (32)

Let Fi(Xi) = fi(x̄i)− ω̇i. Like Step1, using RBFNN to
approximate the unknown term Fi(Xi), we have

Fi(Xi) =Wi
T φi(Xi)+ζi

∗, (33)

where Xi = [x̄i, ωi] ∈ Ri+1 is input vector, Wi ∈ Rhmi is the
ideal weight vector of the NN. φi(·) ∈ Rhmi is monotoni-
cally increasing activation function vector. ζi

∗ ∈ R is the
unknown smallest approximation error of RBFNN which
satisfies that ζ̇ ∗

i is bounded. From Assumption 7, φi(Xi) is
bounded with ∥φi(Xi)∥ ≤ µi, µi ≥ 0.

Define the compounded disturbance Di = di(t) + ζi
∗.

From Assumption 3 and the approximation ability of
RBFNN, it can be obtained the time derivative of Di is
bounded, i.e.,

∥∥Ḋi
∥∥≤ θi, θi is a positive constant. Substi-

tuting (33) into (32), we have

żi =Wi
T φi(Xi)+gi(x̄i)xi+1 +Di(t). (34)

Design the virtual control law αi, and then let it pass
through an first-order filter with time constant τi to gener-
ate variable ωi+1.

αi =
1

gi(x̄i)

(
−kizi −Ŵ T

i φi(Xi)− D̂i −gi−1(x̄i−1)zi−1
)
,

(35)

τi+1ω̇i+1 +ωi+1 = αi, ωi+1(0) = αi(0), (36)

where τi+1 is a small constant, ki > 0 is a designed param-
eter. Ŵi and D̂i are the estimate of Wi and Di, respectively.
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Define the error variable ςi+1 =ωi+1−αi, i= 1,2, ...,n−1
from (34),(35) and (36) we can obtain

ς̇i+1 = ω̇i+1 − α̇i =−ςi+1

τi+1
+ ¯̄λ i(zi,Ŵi,φi, D̂i, ω̇i)

≤−ςi+1

τi+1
+ ¯̄λ i, (37)

where ¯̄λ i(·) is a continuous function.¯̄λ i is the positive
bounded constant of the function ¯̄λ i(·).

Consider the following Lyapunov function candidate:

Vi =
1
2

zi
2 +

1
2

W̃ T
i Γi

−1W̃i +
1
2

D̃2
i +

1
2

ςi+1
2, (38)

where Γi = Γi
T > 0 is an adaptation gain matrix. W̃i =

Ŵi −Wi and D̃i = Di − D̂i. Then the time derivative of Vi

is written as

V̇i =ziWi
T φi(Xi)+ zigi(x̄i)xi+1 + ziDi

+W̃ T
i Γi

−1 ˙̃W i + D̃i
˙̃Di + ςi+1ς̇i+1

=− kizi
2 −gi−1(x̄i)zi−1zi +gi(x̄i)zizi+1

+ zigi(x̄i)ςi+1 − ziW̃ T
i φi(Xi)+ ziD̃i

+W̃ T
i Γi

−1 ˙̂W i + D̃i
˙̃Di + ςi+1ς̇i+1. (39)

Considering (37) yields

ςi+1ς̇i+1 = ςi+1

(
ς̇i+1 +

ςi+1

τi+1

)
− ςi+1

2

τi+1

≤ |ςi+1| ¯̄λ i −
ςi+1

2

τi+1

≤ ςi+1
2
(

1− 1
τi+1

)
+

1
4

¯̄λ 2
i . (40)

The adaptive parameter updated law of Ŵi is designed as

˙̂Wi = Γi
[
φi(Xi)zi −δWiŴi

]
, (41)

where δWi > 0 is a designed parameter. Substituting (40)
and (41) into (39), we obtain

V̇i =− kizi
2 −gi−1(x̄i)zi−1zi +gi(x̄i)zizi+1 + ziD̃i

+ zigi(x̄i)ςi+1 −δWiW̃
T
i Ŵi + D̃i

˙̃Di + ςi+1ς̇i+1.
(42)

Then, we can obtain

V̇i ≤− kizi
2 −gi−1(x̄i−1)zi−1zi +gi(x̄i)zizi+1

+gi(x̄i)ziςi+1 + ziD̃i −δWiW̃
T
i Ŵi

+ D̃i
˙̃Di + ςi+1

2 (1−1/τi+1)+ ¯̄λ 2
i /4. (43)

To estimate the unknown compounded disturbance Di(t),
the NDO is developed as

D̂i = γi (zi −ϕi) ,

ϕ̇i = gi(x̄i)xi+1 +Ŵ T
i φi(Xi)+ D̂i, (44)

where ϕi is an auxiliary variable, γi is a positive de-
signed parameter. From (44), we can obtain ˙̂Di =
γi
(
D̃i(t)−W̃ T

i φi(Xi)
)
.

Considering the following facts

D̃iḊi ≤ 0.5D̃2
i +0.5θi

2, (45)

γiD̃iW̃ T
i ϕi(Xi)≤

1
2

γiaiµi
2D̃2

i +
1

2ai
γi
∥∥W̃i

∥∥2
, (46)

−δWiW̃ T
i Ŵi ≤−1

2
δWi

∥∥W̃i
∥∥2

+
1
2

δWi∥Wi∥2, (47)

ziD̃i ≤ 0.5D̃2
i +0.5zi

2. (48)

Then, from (44), (45) and (46), we have

D̃i
˙̃Di =D̃iḊi − D̃iγi(−W̃ T

i ϕi(Xi)

+gi(x̄i)xi+1 + D̃i(t)−gi(x̄i)xi+1)

=D̃iḊi + γiD̃iW̃ T
i ϕi(Xi)− γiD̃2

i

≤−
(

γi −
1
2
− 1

2
γiaiµi

2
)

D̃2
i

+
1

2ai
γi
∥∥W̃i

∥∥2
+

1
2

θi
2. (49)

Substituting (47), (48) and (49) into (43) yields

V̇i ≤−
(

ki − ¯̄gi −
1
2

)
zi

2 −
(

1
2

δWi −
1

2ai
γi

)∥∥W̃i
∥∥2

−
(

γi −1− 1
2

γiaiµi
2
)

D̃2
i −gi−1(x̄i−1)zi−1zi

−
(

1
τi+1

−1−
¯̄gi

4

)
ςi+1

2 +gi(x̄i)zizi+1

+
1
2

δWi∥Wi∥2 +
1
2

θi
2 +

1
4

¯̄λ 2
i . (50)

The coupling terms gi−1(x̄i−1)zi−1zi and gi(x̄i)zizi+1 can
be canceled in the last and next step, respectively.

Step n: In this final step, from (13), we can obtain the
derivative of zn = xn −ωn with time

żn = fn(x̄n)+ρhv(t)+ρ∆(v)+ ū+dn(t)− ω̇n. (51)

Our control objective is to design the control input sig-
nal v(t) to compensate the input saturation and actuator
faults.

Let Fn (Xn) = ρh
−1 ( fn(x̄n)− ω̇n), then using RBFNN to

proximate the unknown function Fn (Xn), we have

Fn (Xn) =Wn
T φn (Xn)+ζn

∗, (52)

where Xn = [x̄n, ω̇n] ∈ Rn+1 is input vector, φn (Xn) is the
basis function vector of NN. The smallest approximation
error of RBFNN ζn

∗ satisfies ζ̇ ∗
n is bounded.

From Assumption 7, Wn and φn (Xn) are both bounded,
∥φn(Xn)∥ ≤ µn.
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Define the compounded disturbance

Dn = ρh
−1 (dn(t)+ρ∆(v)+ ū)+ζn

∗. (53)

From Assumption 2 and assumption 3, it can obtained that
∥Dn∥ ≤ ηn and

∥∥Ḋn
∥∥ ≤ θn, ηn and θn are positive con-

stants.
Substituting (52), (53) into (51) yields

żn = ρhWn
T φn(Xn)+ρhDn(t)+ρhv. (54)

Design the adaptive tolerant-fault control law v(t) as fol-
lowing

v(t) =−knzn −Ŵ T
n φn(Xn)− D̂n −gn−1zn−1, (55)

where Ŵn, D̂n is the estimation of Wn and Dn, respectively.
W̃n = Ŵn −Wn, D̃n = Dn − D̂n.
Substituting (55) into (54), we obtain

żn =−ρhW̃ T
n φn(Xn)+ρhD̃n(t)−ρhknzn

−ρhgn−1zn−1 +ρhζn
∗. (56)

The parameter update law of Ŵn is designed as

˙̂Wn = Γn
[
φn(Xn)zn −δWnŴn

]
, (57)

where Γn = Γn
T ≥ 0 is an adaptation gain matrix, δWn ≥ 0

is a designed constant. Thus we can obtain

W̃ T
n Γn

−1 ˙̃W n = W̃ T
n Γ−1 ˙̂W n

= W̃ T
n φn(Xn)zn −δWnW̃ T

n Ŵn. (58)

To design the disturbance observer, another RBFNN is
employed to approximate the unknown term FD(XD) =
fn(x̄n)+ρhv− ω̇n of (51), we have

FD(XD) =WD
T φD(XD)+ξD

∗, (59)

where XD = [x̄n, ω̇n,v] ∈ Rn+2 is input vector, φD (XD) is
the basis function vector of RBFNN. The smallest approx-
imation error ξD

∗ satisfies ξ̇D
∗

is bounded,i.e.,
∥∥∥ξ̇ ∗

D

∥∥∥≤ ξ̄D.
Assumption 8: The ideal weight matrix and the ba-

sis function φD(XD) of the NN are both bounded, i.e.,
∥φD(XD)∥ ≤ µD with µD ≥ 0 and ∥WD∥ ≤ W̄D with W̄D ≥
0.

The (50) can be also rewritten as

żn =WD
T φD(XD)+ρhDn(t)+ξD

∗. (60)

The parameter update law of ŴD is designed as

˙̂WD =−ΓDδWDŴD, (61)

where ΓD =ΓD
T ≥ 0 is an adaptation gain matrix, δWD ≥ 0

is a designed constant. Thus we can obtain

W̃ T
D ΓD

−1 ˙̃WD = W̃ T
D ΓD

−1 ˙̂WD =−δWDW̃ T
D WD. (62)

To estimate the unknown compounded disturbance Dn(t)
in (54), a NDO is designed as

D̂n = γn (zn −ϕn) ,

ϕ̇n = Ŵ T
D φD(XD)+ D̂n, (63)

where ϕn is an auxiliary variable, γn is a positive designed
parameter, then we can obtain

D̃n
˙̃Dn =D̃nḊn − D̃nγn(WD

T ϕD(XD)

+ρhDn +ξD
∗−Ŵ T

D ϕD(XD)− D̂n)

=D̃nḊn + γnD̃nW̃ T
D ϕD(XD) − γnD̃2

n

+ γnDnD̃n (1−ρh)− γnD̃nξD
∗. (64)

Consider the following Lyapunov function candidate:

Vn =
1

2ρh
zn

2 +
1
2

W̃ T
n Γn

−1W̃n +
1
2

D̃2
n +

1
2

W̃ T
D ΓD

−1W̃D.

(65)

From (55), (58), (62) and (64), the time derivative of Vn is

V̇n =znżn/ρh +W̃ T
n Γn

−1 ˙̃W n + D̃n
˙̃Dn +W̃ T

D ΓD
−1 ˙̃W D

=znD̃n − knzn
2 −gn−1znzn−1 −δWnW̃ T

n Ŵn

+ D̃nḊn + γnD̃nW̃ T
D φD(XD)

+ γnDnD̃n (1−ρh)− γnD̃nξD
∗

− γnD̃2
n −δWDW̃ T

D ŴD. (66)

Considering the following facts

D̃nḊn ≤ 0.5D̃2
n +0.5θn

2, (67)

γnD̃nW̃ T
D ϕD(XD) ≤

1
2

γnanµD
2D̃2

n +
1

2an
γn
∥∥W̃D

∥∥2
,

(68)

−δWnW̃ T
n Ŵn ≤−1

2
δWn

∥∥W̃n
∥∥2

+
1
2

δWn∥Wn∥2, (69)

znD̃n ≤ 0.5D̃2
n +0.5zn

2, (70)

− γnD̃nξD
∗ ≤ γn

∣∣D̃n
∣∣ ∣∣ξD

∗∣∣
≤ 1

4
γnD̃2

n + γnξ̄ 2
D. (71)

Then, we have

V̇n ≤− knzn
2 −gn−1znzn−1 +0.5D̃2

n +0.5zn
2

− 1
2

δWn
∥∥W̃n

∥∥2
+

1
2

δWn∥Wn∥2 +0.5D̃2
n

+0.5θn
2 +

1
2

γnanµD
2D̃2

n +
1

2an
γn
∥∥W̃D

∥∥2

+ γnDnD̃n (1−ρh)+
1
4

γnD̃2
n + γnξ̄ 2

D

− γnD̃2
n −

1
2

δW D

∥∥W̃D
∥∥2

+
1
2

δWD∥WD∥2

≤−
(

kn −
1
2

)
zn

2 −gn−1znzn−1
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−
(

1
2

γn −
1
2

γnanµD
2 −1.5

)
D̃2

n +0.5zn
2

− 1
2

δWn
∥∥W̃n

∥∥2 −
(

1
2

δWD − 1
2an

γn

)∥∥W̃D
∥∥2

+
1
2

δWn∥Wn∥2 + 0.5θn
2 + γn|ρh −1|2ηn

2

+ γnξ̄ 2
D +

1
2

δWD∥WD∥2. (72)

According to the above design procedure, to further
clarify the design principle in this paper, we present the
proposed adaptive control scheme in Algorithm 1.

Algorithm 1:
Step 1: For 1 ≤ i ≤ n, select the activation functions

of NN φi(·), φD(·) and the sampling interval T . Initial
parameters are set as Ŵi(0), D̂i(0), ŴD(0), D̂n(0). Assign
l = 0, lend (time to stop the algorithm), θW and θWD (the
small positive real number) for the convergence condition.

Step 2: For 1 ≤ i ≤ n, update Ŵ (l+1)
i by (41), update

Ŵ (l+1)
D by (61), update D̂(l+1)

i by (44) and (63), update
v(l+1) by (55).

Step 3: For 1≤ i≤ n, if
∥∥∥Ŵ (l+1)

i −Ŵ l
i

∥∥∥≤ θw,
∥∥∥Ŵ (l+1)

D −

Ŵ l
D

∥∥∥≤ θwD and l = lend , then stop the algorithm, else l =
l +1, go back to Step 2.

The convergence of Algorithm 1 is given in Section 4.

4. STABILITY ANALYSIS

The main result of this paper is summarized in the fol-
lowing theorem.

Theorem 1: Consider a class of uncertain MISO sys-
tem (1)with the unknown asymmetric input saturation, ex-
ternal disturbance and actuator fault. The updated laws of
the RBFNN weight are chosen as (23), (41), (57) and (61).
The compounded disturbance observers of each step are
designed as(25), (44) and (62). The intermediate virtual
control signals are designed as (18) and (35). The dis-
turbance observer based on fault-tolerant control scheme
is developed as (55). Given for all the initial conditions
and the appropriate design parameters, then all the close-
up signals will be uniformly ultimately bounded under the
proposed adaptive NN fault-tolerant control scheme based
on the nonlinear disturbance observer.

Proof: Consider the Lyapunov function candidate as

V =
n

∑
j=1

Vj =
1
2

n−1

∑
i=1

zi
2+

1
2

n−1

∑
i=1

W̃ T
i Γi

−1W̃i

+
1
2

W̃ T
n Γn

−1W̃n +
1

2ρh
zn

2

+
1
2

n−1

∑
i=1

ςi+1
2 +

1
2

n−1

∑
i=1

D̃2
i

+
1
2

D̃2
n +

1
2

W̃ T
D ΓD

−1W̃D. (73)

Invoking (31), (50) and (66) in the previous recursive de-
sign procedures, we can gain

V̇ ≤−
n−1

∑
i=1

(
ki − ¯̄gi −

1
2

)
zi

2 −
(

kn −
1
2

)
zn

2

− 1
2

n−1

∑
i=1

(
δWi −

1
ai

γi

)∥∥W̃i
∥∥2

−
(

1
2

δWD − 1
2an

γn

)∥∥W̃D
∥∥2

−
n−1

∑
i=1

(
1

τi+1
−1−

¯̄gi

4

)
ςi+1

2 −
δWn

∥∥W̃n
∥∥2

2

−
n−1

∑
i=1

(
γi −1− 1

2
γiaiµi

2
)

D̃2
i

−
(

1
2

γn −
1
2

γnanµD
2 −1.5

)
D̃2

n

+
n

∑
i=1

δWi∥Wi∥2

2
+

n

∑
i=1

θi
2

2
+

n−1

∑
i=1

¯̄λ 2
i

2

+ γnξ̄ 2
D + γn|ρh −1|2ηn

2 +
1
2

δWD∥WD∥2

≤−ϕV +β , (74)

where ϕ and β are given by

ϕ := min



2ki −2 ¯̄gi −1,2ρ̄hkn −1,
1

λmax(Γi
−1)

(
δWi − 1

ai

)
, δWn

λmax(Γn
−1)

,

2
(

1
τi+1

−1− ¯̄gi
4

)
,2γi −2− γiai µi

2,

γn − γnan µD
2 −3, 1

λmax(ΓD
−1)

(
δWD − γn

an

)


,

(75)

β :=
n

∑
i=1

δWi∥Wi∥2

2
+

n

∑
i=1

θi
2

2
+

n−1

∑
i=1

¯̄λ 2
i

2
+ γnξ̄ 2

D

+ γn|ρh −1|2ηn
2 +

1
2

δWD∥WD∥2, (76)

where i = 1,2, . . . ,n−1.
If the following inequalities are satisfied: 2ki−2 ¯̄gi−1> 0,
2γi−2−γiaiµi

2 > 0, 1
τi+1

−1− ¯̄gi
4 > 0, δWD− γn

an
> 0, δWi−

1
ai
> 0, γn − γnanµD

2 −3 > 0 and selecting the appropriate
corresponding design parameter ki, γi, δWi, δWn, δWD then
ϕ > 0 will be ensured. On the other hand, the elements
Wi, θi, ¯̄λ i, ξ̄D, ηn and WD are all bounded in β . It is clear
that β is a bounded positive constant.

Finally, we have

0 ≤V ≤ β/ϕ +ϑe−ϕ t , (77)

where ϑ =V (0)−β/ϕ . V = f (zi,zn,W̃i,W̃n, D̃i, D̃n) is ex-
ponentially convergent, i.e., lim

t→∞
V (t)≤ β/ϕ , ∀t > 0.
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Thus, the output tracking error zi, W̃i and the compounded
disturbance approximation error D̃i are uniformly ulti-
mately bounded. The closed-loop system under the de-
sign adaptive control scheme is stability. This proof is
completed. □

Remark 4: The control scheme involves the choices of
control gains ki > 0 and disturbance observer gains γi > 0,
which theoretically is no criteria. Compromise between
stable performance and transient performance made for
the selection of given system. Increasing the value of ki

or γi will result in a better tracking performance or obtain
good stable performance. Otherwise, too big value will
degrade the transient performance. The choices of the de-
signed parameters should be trade-off.

Remark 5: In this note, the NDO is developed to
estimate compounded disturbances which combined un-
known external disturbance of nonlinear system with the
RBFNN approximation error. The considered distur-
bances are more general and practical without satisfying
the matched parametric or requiring the known boundary
requirements.

Remark 6: In this paper, a robust adaptive fault-
tolerant control scheme is developed, comparing with
most existing methods, the proposed control scheme holds
several salient features such as: 1) estimated unknown dis-
turbance by an NDO without considering the known up-
per boundary requirement of unknown disturbance; 2) re-
solved the problem of asymmetric saturation input by pro-
posed smooth input saturation model compared with [7];
3) precluded the complexity and dimension curse by adap-
tive fault-tolerant with dynamic surface control for gen-
eral nonlinear system with asymmetric input constraint,
unmatched disturbances and actuator faults.

Remark 7: Our mentioned works are based an as-
sumption that state variables are available. Moreover,
many controller designs for nonlinear systems include the
same assumption [7–9]. However, to apply these control
strategies in wider practical engineering, the assumption
can be removed. State observers can be designed first, the
stability and tracking control procedure can be done based
on the presented observers.

5. SIMULATION

In this section, simulation results are given to verify
the effectiveness of the proposed adaptive NN DSC fault-
tolerant schemes. Consider the following uncertain non-
linear system with input saturation [28]:

ẋ1 = x2 + f1(x1)+d1(t),

ẋ2 = f2(x1,x2)+b1u1 +b2u2 +d2(t),

y = x1, (78)

where f1(x1) = −x1e−0.5x1 , f2(x̄2) = x1 sin(x2
2), b =

[0.2,0.8], d1(t) = cos(t), d2(t) = sin(t). Based on the
above conditions, two cases of different simulation of the
uncertain nonlinear system (78) are given to examine the
effectiveness of our proposed control method.

Case 1: The desired trajectory is chosen as . The asym-
metric saturation value of control input signa is chosen as
uU = 0.8, uL = −1.2, respectively. To illustrate the ef-
fectiveness of the proposed adaptive fault-tolerant control
scheme, the unknown faults are set as

u1(t) = uc,1(t),

u2(t) =

{
uc,2(t), 0 < t < 10 s,

0.2, t ≥ 10 s,
(79)

where the first actuator is normal, the second actuator is
assumed to occur Lock-in-place failure at time moment
t = 10s.

The initial state conditions are chosen as x1(0) =−1.5,
x2(0) = 0.3. The design parameters are chosen as k1 = 12,
k2 = 4, τ2 = 0.05, δw1 = δw2 = 1, δwD = 2, γ1 = γ2 = 1,
Γ1 = Γ2 = ΓD = 2I5×5 and other initial values are all set
as zero.

With the proposed nonlinear adaptive controller
scheme, the simulation results under Case 1 are shown
in Fig. 2. As shown in Fig. 2(a), it can be clearly seen
that the tracking performance is satisfactory and the track-
ing error quickly converges to the equilibrium for the
nonlinear system (78)in presence of time-varying external
disturbance, input constraint and actuator failure (79). The
plot of z1 and z2 are shown in Fig. 2(b) From Fig. 2(c), we
can observe that the control input is bounded and satisfies
input saturation. The trajectories of control signals uc1

anduc2 are shown in Fig. 2(d).
To illustrate the robustness of the proposed con-

trol method in this paper, the modeling uncertainties
∆ f1(x1,x2) = 0.6cos(x2)sin(x1) is added in the system
(78) for Case 1. From Fig. 2(e), the proposed adaptive
fault-tolerant control scheme is still able to achieve satis-
factory tracking performance and robustness for nonlinear
system with nonlinear model uncertainty. Furthermore,
it should be emphasized that, comparisons are presented
with recently the proposed methodology as given in [29].
The simulation results of comparisons are Fig. 3. As
shown in Fig. 3(a), without actuator faults, tracking per-
formance is still satisfactory. Then, the same input fail-
ures are added as (79), as shown in Fig. 3(b), the tracking
performance is degraded largely using the proposed con-
troller, largely because of no considering for input actuator
failures in proposed control scheme in [29].

Case 2: Here, the desired trajectory is given by yd = 1.
In this simulation, the asymmetric saturation values of
control input are chosen as uU = 8 and uL =−10, respec-
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(a) System output follows desired output yd .
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(b) The plot of z1 and z2.
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(e) Tracking performance with model uncertainty.

Fig. 2. Simulation results under Case 1.
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(b) Tracking performance with actuator faults.

Fig. 3. Simulaiton results under [29].

tively. The unknown failures/faults are set as

u1(t) =

{
uc,1(t), 0 < t < 10 s,

0.6uc,1(t), t ≥ 10 s,

u2(t) = uc,2(t), (80)

where the first actuator is assumed to occur 40% partial
loss of effectiveness failure at time moment t = 10s, the
second actuator is normal.

The initial state conditions are chosen as x1(0) = 0.8
and x2(0)= 0.8. The design parameters are chosen as k1 =
16, k2 = 12, τ2 = 0.05, δw1 = δw2 = 1, δwD = 2, r1 = 10,
r2 = 8, Γ1 = Γ2 = ΓD = 2I5×5 and other initial values are
all set as zero.

With the proposed nonlinear adaptive controller
scheme, the simulation results under Case 2 are shown
in Fig. 4. As shown in Fig. 4(a), it can be clearly seen that
the tracking performance is satisfactory and the tracking
error quickly converges to the equilibrium for the non-
linear system (78) in presence of time-varying external
disturbance, input constraint and actuator failure (80).
The plot of z1 and z2 are shown in Fig. 4(b). It is shown
in Fig. 4(c) that the control input is bounded and satisfies
input saturation, while the tracking performance is satis-
factory for Case 2. The trajectories of control signals uc1

and uc2 are shown in Fig. 4(d).
From all two groups of simulations, the results ob-

viously show that the closed-loop system signals are
bounded and converge in a short time. Even the consid-
ered system is added extra unknown model uncertainty,
the tracking performances are still satisfactory.
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(d) Control signals of uc1 and uc2.

Fig. 4. Simulation results under Case 2.

According to the above simulation results, it is clearly
that the presented control algorithm in this note is valid
for the nonlinear system with unknown disturbances and
input constraints and actuator faults.

6. CONCLUSION

In this paper, an adaptive neural fault-tolerant con-
trol scheme is proposed for uncertainty nonlinear system
with asymmetric input constraint, unknown external dis-
turbance and actuator failures. A smooth hyperbolic tan-
gent function is introduced to present the symmetric input
saturation. The disturbance observer is employed to es-
timate the compound unknown disturbance consisting of
the NN approximation error and the external disturbance
and actuator faults. By the developed adaptive control al-
gorithm, the uniformly ultimately bounded convergence
of all the signals of the closed-loop system are guaranteed
via Lyapunov approach. Simulation results demonstrate
the effectiveness of the proposed approach. The primary
goal of our future work is to devise novel adaptive neuro-
fuzzy backstepping control scheme to handle large MIMO
nonlinear system subject to time delays and full states sat-
uration.
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