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functions, the governing equation of the vibration of a pipe with lumped masses is
newly established based on Hamilton’s principle. The gravitational force of the lumped
mass should be considered in the theoretical model but has been essentially ignored
in previous research. The harmonic differential quadrature (HDQ) method is applied to
solve the governing vibration equation. The newly developed model is validated through
a comparison with published data. Numerical results show that the gravity force of
the lumped mass plays an important role, and ignoring this force leads to inaccurate
results in the investigation of lumped mass effects. The instability of the pipe is analyzed
using this new model with various lumped mass weights, positions, and fluid mass
ratios. The numerical results showed that lumped masses significantly affect the critical
flow velocity, vibration frequency, and modal shapes. The conclusions are expected to
supply valuable guidance to reduce pipe vibration using lumped masses in engineering
applications.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

The cantilevered pipe is widely employed in fields such as deep sea mining, ocean thermal energy conversion (OTEC),
solution mining, the oil and gas industries, and nuclear reactor systems (Paidoussis, 2014, 2016; Li and Yang, 2017; Liang
et al., 2018; Balkaya and Kaya, 2021; Zhen and Zou, 2022; Hisamatsu and Utsunomiya, 2023). A vertical cantilevered pipe
conveying fluid experiences flutter instability as the internal flow velocity reaches critical value. The vibration induces
accidents such as fatigue failures, damage, and explosions. Hence, many researchers have performed stability analyses
for internal flow-induced pipe vibration (Paidoussis, 1970; Kuiper and Metrikine, 2005; Paidoussis, 2008; Kuiper and
Metrikine, 2008; Rinaldi and Paidoussis, 2010; Kheiri and Paidoussis, 2015; Butt et al., 2021; Bahaadini et al., 2018; Li
et al,, 2018; Askarian et al., 2020; Paidoussis, 2022).

A vertical cantilevered pipe can be used in deep-sea mining system to transport a mixture of water and nodules from
the seabed to a mining vessel platform. Then, the processed ore debris and seawater are discharged into the ocean through
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DTM
FEM
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Greek symbols

Pp» Of

o

T
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Qe

Re(£2), Im(£2)

Differential quadrature

Differential transformation method
Finite element method

Harmonic differential quadrature

Weighting coefficients in n-order
External diameter of pipe
Internal diameter of pipe

Matrix

Bending stiffness

Continuous function
Gravitational acceleration
Coefficient matrix

Heaviside function

Identity and Null matrix

Indices

Imaginary unit

The k-th dimensionless lumped mass ratio
Total pipe Length

Distance from the fixed end to the lumped mass

Mass, damping and Stiffness matrix
Mass of the fluid and pipe per unit length
Lumped mass

Total grid points

Time

The pipe kinetic and strain energy
Internal flow velocity
Dimensionless flow velocity
Dimensionless critical flow velocity
Lateral displacement

Axial spatial variable

Dimensionless gravity

Dimensionless fluid mass ratio
Dimensionless displacement

Small element of the pipe

Dirac delta function

Dimensionless lateral deflection
System eigenvalue

Dimensionless axial spatial variable
Length of lumped mass from fixed end
Density of pipe and fluid
Dimensionless external damping parameter
Dimensionless time

Eigenvalue

Critical frequency

Real and imaginary part of eigenvalue
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Fig. 1. Sketch of a deep-sea mining system.

a discharging pipe, as shown in Fig. 1. However, the discharged ore debris carries a large number of microbial communities.
When the discharging pipe is too short (less than 200 m in length), it causes the death of microbial communities as a
result of habitat changes or extinction of surrounding marine species groups, and thus destroys the original ecosystem.
The discharging ore debris produces sediment clouds in the ocean, and these clouds may contain toxic heavy metals and
may spread over long distances, disturbing the seabed and damaging the habitats of marine organisms. Furthermore, the
discharging ore debris can affect the migration of marine fish. Therefore, the length of the discharging pipe should extend
as far as possible to reach the seabed (pipe length greater than 1000 m) to minimize pollution of the ocean environment.
To achieve this, it is necessary to study the vibration problem of long vertical discharging pipes. In order to avoid harmful
vibrations, the pipe’s critical flow velocity is usually designed to be as high as possible. The lumped mass may change
the pipe’s critical flow velocity significantly, and attaching a lumped mass has proven to be a very economical solution
in practical applications. These facts spur research aiming to control pipe stability performance using lumped masses.
Hill and Swanson (1970) used theoretical and experimental methods to study the effects of adding lumped masses to
a horizontal cantilevered pipe conveying fluid. The results showed that adding lumped masses reduced the critical flow
velocity. Copeland and Moon (1992) used an experimental method to study the three-dimensional nonlinear dynamics
of a cantilevered pipe conveying fluid with an end mass attached at the free end. Their experimental results revealed
that the cantilevered pipe with an end mass exhibited quasi-periodic and chaotic motion as the flow further increased
beyond the flutter instability, and suggested complex interactions between several unstable modes. Addessi et al. (2005)
studied the in-plane free vibration of highly flexural beams with lumped masses and summarized the occurrence of modal
steering phenomena. Yoon and Son (2007) investigated the dynamic stability of a rotating cantilevered pipe conveying
fluid with a tip mass and found that the tip mass significantly affected pipe stability. Modarres-Sadeghi et al. (2007)
and Wadham-Gagnon and Paidoussis (2013) investigated the three-dimensional nonlinear dynamics of a cantilevered
pipe conveying fluid with an end mass attached at the free end using theoretical and experimental methods. They found
that the resulting periodic motion followed a period-doubling or quasi-periodic path into chaos as the flow increased,
depending on the end mass parameters. Fazelzadeh and Kazemi-Lari (2013) investigated the stability of a cantilevered
pipe resting on an elastic foundation subject to a partially distributed follower force with a lumped mass located in an
arbitrary position. It was found that the vibration amplitudes could be reduced by changing the position and weight
of the lumped mass. Zhang et al. (2016) established nonlinear equations of three-dimensional motion for a horizontal
cantilevered pipe conveying fluid with lumped masses at arbitrary positions along the pipe. It was found that the nonlinear
vibration gradually evolved into three different forms as flow velocity increased: periodic motion, quasi-periodic motion,
and chaotic motion. Na et al. (2019) examined the dynamic stability characteristics of liquid-filled cylindrical shells with
lumped masses under a follower force, and found that the lumped mass, filling ratio, length ratio, and thickness ratio
influenced the dynamic characteristics of the liquid-filled cylindrical shells. EINajjar and Daneshmand (2020) studied the
dynamical behavior of both horizontal and vertical cantilevered pipes conveying fluid with lumped masses and spring
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elements. It was found that the critical flow velocity decreased for all fluid mass ratios for a pipe with two lumped
masses located in the middle and at the end. Khudayarov et al. (2020) considered the vibration problems of a horizontal
pipe made of composite materials with a lumped mass, and the results showed that the lumped mass led to a decrease in
critical flow velocity. Yamashita et al. (2022) examined the non-planar self-excited vibration in a vertically cantilevered
pipe conveying fluid with an attached end mass. They found that both coupled plane and pendulum oscillations caused
by nonlinear interactions between the third and fourth modes exhibited dynamic instabilities. Though various attempts
have been made, previous research has only considered the inertial force of the lumped mass and has ignored the effects
of gravity. This treatment is arguably suitable for horizontal and vertical pipes with high-frequency vibration because the
gravity of the lumped mass has smaller effects than the inertial force in these cases. However, for the long pipes used
in deep ocean mining and ocean thermal energy conversion, the internal flow-induced vibration has a relatively small
frequency and amplitude. In these cases, the effects of gravity become important and ignoring the gravitational force
leads to inaccurate or incorrect conclusions when the lumped mass effects are investigated. In addition, most previous
studies only focused on lumped masses located at the free end of the pipes; few researchers have studied the effects of
multiple lumped masses at arbitrary positions on the stability performance of vertical pipes.

In this regard, the present study intends to investigate the stability performance of a vertical cantilevered pipe
conveying fluid with single and multiple lumped masses located at arbitrary positions. The governing vibration equation
of the pipe with lumped masses is newly derived based on Hamilton’s principle using delta and Heaviside functions. This
new model is validated through comparison with published data. The harmonic differential quadrature (HDQ) method
is applied to solve the vibration equation. Numerical simulations are performed to examine the effects of lumped mass
weight, position, and fluid mass ratio. The numerical results show that lumped masses significantly affect the critical
flow velocity, vibration frequency, and modal shapes. The lumped masses have both stabilizing and destabilizing effects
on the pipe vibration induced by conveying internal flow. In order to reduce pipe vibration using lumped masses, careful
investigation must be conducted with the number of lumped masses, weight, position, and fluid mass ratio all considered.

2. Governing vibration equations for pipe with multiple lumped masses

A sketch of a cantilevered pipe conveying fluid subjected to multiple lumped masses at various positions along the pipe
is shown in Fig. 2. L is the total pipe length and xy is the distance between the fixed end and the lumped mass position
(k =1,2,...). U is the internal flow velocity, and D, and D; are the pipe’s external and internal diameter, respectively.
Multiple lumped masses my are attached to the pipe at the position x. The fluid in a vertical cantilevered pipe is conveyed
through the fixed end to the free end. The pipe experiences vibration due to the transfer of energy from the internal flow
to the pipe. Both inertial and gravitational forces act on the lumped mass during the pipe vibration.

The new vibration considering the pipe with lumped mass is derived by Hamilton’s principle. The kinetic energy T of
the system is the sum of the pipe kinetic energy T, fluid kinetic energy T, and lumped mass kinetic energy Ts.

1 [t faw)?
T, = 5/0 my (W) dx, (1)
1 t 5, 0w, 9%w dw
TZ_E/ frcr e (22 () ) .
L K 2
/ [ <8w(xk,t)> }dx’ -

where w(x, t) is lateral displacement of the cantilevered pipe at position x at time t. my and m, denote the mass of the
fluid and pipe per unit length. K represents the total number of lumped masses on the pipe. §(x — xi) is a delta function,
defined as §() = 1 for x — x, = 0 and §() = O for x — xix #~ O.

The total potential energy V is the sum of the elastic potential energy of the pipe Vi, potential energy stored in the
pipe and fluid V5, and potential energy stored in the lumped mass V3.

1 9w\’
V= - / B (ZY) ax, (4)
2 /o 0x2

L ow 2
Vo= - (m,, + my)g(L — x) (@) dx, (5)

L K 2
/ Z [mkgH X — X) <7aw(xk’ t)) } dx, (6)
0 X

where EI is flexural rigidity, g is gravitational acceleration, and H(x — xi) is the Heaviside function, and is defined as
H() =1 for x —xx > 0and H() = 0 for x — xx < O.
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X1

X2

X3

Fig. 2. Illlustration of vertical cantilevered pipe conveying fluid with multiple lumped masses attached.

By applying Hamiltonian’s principle, the motion of the dynamical system between two points with time interval t; to
t, makes the line integral

5}
3/ (T—V)dt =0 (7)

f

where T and V are the kinetic energy and potential energy, respectively, in the arbitrary time interval [t; t,].
By substituting Eqs. (1)-(6) into Eq. (7), the new vibration equation is obtained. The details of this derivation are
provided in Appendix A. The new vibration equation can be obtained as

15184—"’+[m U? — (my, + my)g(L — )]azw+2mu32w (m +m)ﬂ
axd T p T8 w2 T it AL RS

Jw K 9w (8)
+ (mp+mg -+ kZ]:mktS(X—xk) at2 kX:mkgH =) | o =0.

Eq. (8) consists of seven terms:

N O b W=

L (mp+mp)SF
. Z{f:] md(x — xk) o 2, the inertial force of the lumped mass;

. E1Z% the flexural restoring force;

34‘

. me2 52 the internal flow-related centrlfugal force;
. (mp + mf )g — (mp +my)g(L — x)u x2 , the pipe and fluid gravity-induced tension;
L 2mpU 5 P the internal flow-related Coriolis force;

oxat’
2w

o2 the mertlal force of the fluid-filled pipe;

. [Z{f:] mgH(xx — x)]2 o <%, the lumped mass gravity-induced tension.

Many researchers are concerned with the dynamic stability of pipes and have investigated the effects of lumped
masses (Hill and Swanson, 1970; Wadham-Gagnon and Paidoussis, 2013; EINajjar and Daneshmand, 2020; Khudayarov
et al., 2020). However, they only considered the inertial force of the lumped mass and did not consider the effects of its

gravity. In this study, both inertial and gravitational forces are considered in the vibration equation. The effects of the

lumped mass can be accurately investigated to understand the critical flow velocity u,., frequency £2., and mode shapes.

5
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The boundary conditions at the ends of the pipe are given as

dw(0, t
wo.0 =0 200 5 4 x=o
ox
%w(L, t) 3w(L, t)
=0, =0, at x=1L.
0x2 0x3

Eq. (8) can be rendered dimensionless through the use of the following dimensionless quantities as
£ X Xk w El 2 ¢ (10)
= -, = —, = —,T = —_— —,
A A m+m,) 12

where & is a dimensionless axial spatial variable, ¢, is the distance of the lumped mass from the fixed end, n is
dimensionless lateral deflection, and 7 is dimensionless time.
This yields the dimensionless equation of motion

*n 1o #n on 1a. 9% 9%
— +|u"—y(1 - — “Lyqpley — 1T 4 71
a&* Lt é)]aéz +'y85 +26 dEIT t o
K K (11)
3°n 8%y
+ |:ZK1<5(§ - Ck):| 302 |:ZK1<)/H(§|( — f):| 32 =0,
k=1 k=1
with
1 3
mp\ 2 m (my + my)gl
”=<?{> B = EIf ’
my + my, (12)
My
K= ——.
(mf + mp)L

where u is dimensionless internal flow velocity. 8 and y are the dimensionless fluid mass ratio and gravity parameter,
respectively. Ky denotes the k-th dimensionless lumped mass ratio.
The corresponding boundary conditions are mathematically presented as

9
=0,— =0, at £=0,
n oF at &
o2 o (13)
— =0,— =0, at &=1.
9E2 93

3. Discretization of the pipe model

In this section, the HDQ method is introduced to discretize the equation of motion of the cantilevered pipe. The
principle of the differential quadrature method is that any partial derivatives of a function at given grid points are
approximated as the weighted linear sum of the function values at all grid points in the entire variable domain (Bert
and Malik, 1996). Mathematically, application of the HDQ method to partial differential equations is expressed as

9"f (xi)

dax"

N
=Y APf) ii=1,2.....N, (14)
j=1

where f(x) is a continuous function, N denotes the total number of grid points in the domain, and the n-order denotes the
partial derivatives of f(x). AE-") are the weighting coefficients for n-order derivatives. Note that the weighting coefficients
were derived by Ma et al. (2023) and are supplied in Appendix B.

For the vertical cantilevered pipe, the grid points are in the domain of £. Using the unequally spaced method to
discretize £ (0 < & < 1), we obtain the grid point position with two adjacent u-points (& = 1078 ~ 1073) at the
ends of the two boundaries. The unequally spaced sampling points with adjacent u-points can be represented as

‘65_1:03 52:“/’

1 i—2
i = = 1-— .:,4,...,N—2, 1
& 2[ cos(N_3n>] (i=3 ) (15)
Snvoi=1—p, & =1
Lateral deflection 7 still has the variables & and t. The solution of Eq. (11) is represented as
(. 1) = A(£)e”", (16)

where $2 represents the eigenvalue of the pipe system. A is the displacement and is independent of time .

6
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By substituting Eq. (16) into Eq. (11) and then applying the HDQ method to discretize the equations, the following
discretization form is obtained:

N
Z{A§f>+[u —y(1-¢& ZmH ;k—S)}AEf’wAEj”}A

j=1 k=

. ¢ (17)
+ 2 ) 2/puA’ | A+ 22 [1 + ) Kid(E - Sk)i| 4; =0,
j=1

k=1
i=3,4,...,N-2.

Similarly, the boundary conditions are expressed as

A =0, ZA“A =0,

N (18)
> A =o. ZAB)AJ =0.
j=1 j=1
Eq. (17), combined with Eq. (18) yields the following set of linear equations:
1 0 0 0 0o . 0 7 4, T
(1) (1) (1) (1) (1) (1)
Al AL Aln-) Aln Al Ay A
(2) (2) (2) (2) (2) (2)
Ayq Apz ANin-1) ANy A3 o Ayn-2) An-1
3) 3) 3) 3) 3) 3) A
Ay; Ap; Aviv—1) Agn Aps Ann—2 AN
H3, H3, H3yn—1) Hzy Hz3 H3nn—2) A3
Hy Hyp Hyn—-1) Hyn Hys Hyn—2) 4
L Hn-2n Hw-—22 Hwn-2yv-1) Hw-—2v  Hw—23 ... Hpy—anv—2) d L An-2
B 0 0 0 0 0 0 17 Ay 7]
0 0 0 0 0 0 Ay
0 0 0 0 0 0 AN_1
0 0 0 0 0 0 An (19)
Lo S31 S S3n—1) San S33 S3(N-2) As
Sq1 Sp SaN-1) San S43 we San—2) Ay
L Swv—201 Sv—2)2  Sin—2yn-1) Stv—2v  Sin—2)3 ... Sin—2yn-2) | L An—2 ]
rT0 0 0 0 O 071 Ay 7 0 7
0 0 0 0 O 0 Ay 0
0 0 0 0 O 0 AN_1 0
0 0 0 0 O 0 An 0
5 0 0 0 0 1 0 Az . 0
21 0 00 0 0 0 A |= | o
00000 .. 1] Ava2] [o0]
Hj; and S;; denote the coefficient matrix of the Eq. (19) and are expressed explicitly as
K
Hy=A" + [uz —y+v&— Y KyH(G - s)} AP +yA, (20)
k=1
Sij = Z[UAEJ] s (21)
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wherei=3,4,...,N—2,andj=1,2,...,N. When i = j, and the §j; is defined as
Si = 2/puAl’. (22)

Eq. (19) can be written as
A A 4y By Bug Ay

> 0 0 Ay ] o
cetlo T A )=o) @)
Ay =(A1 Ay An—1 Ay),
Ag=(4A3 Ay ... Ayoy),

where the subscript b indicates an element closely related to the boundary points, and d is another element. 0 denotes
the null matrix, I represents the identity matrix with order d x d, and A = (4, Ay)'.
By eliminating Aj, the following homogeneous equation can be derived:

[2°M + 2C + KAy =0, (24)

where M, C and K denote the structural mass matrix, damping matrix, and stiffness matrix, respectively. The matrices C
and K are calculated as

C = —ByA,'Apd + Bua, K = —AaA;, Abg + Aga. (25)

The solution of Eq. (24) is transformed into the eigenvalues of the following matrix:

E :[ —Mo_ll( —Ml—lc ] (26)

By solving the matrix E, the eigenvalue £2 can be obtained, which is a series of complex numbers £2=Re($2)+ilm (£2),
where i is the imaginary unit. The real part of £2, Re(£2), corresponds to the dimensionless frequency of vibration, and the
imaginary part, Im (£2), is related to damping. A negative value of the imaginary part of the dimensionless eigenvalues
indicates that the pipe is unstable, leading to pipe flutter or static divergence. Whenever Im(£2) = 0 and Re(§2) # 0, this
signifies pipe amplified oscillation known as flutter; conversely, if Re(§2) = 0, then a static instability occurs, identified
as static divergence.

4. Results and discussion
4.1. Theoretical model validation

A numerical investigation was conducted to validate the theoretical model and compare it with those of EINajjar and
Daneshmand (2020) and Yi et al. (2020). Numerical simulations were performed for a pipe conveying fluid with y = 10,
K; = 0.2, and ¢; = 0.5. The dimensionless critical flow velocity u. for various dimensionless mass ratios 8 are shown
in Fig. 3. The present results are in excellent agreement with EINajjar and Daneshmand (2020). It should be emphasized
that both models ignored the gravitational force in these simulations. The proposed theoretical model is further compared
with the experimental results of Yi et al. (2020) to demonstrate the importance of lumped masses and the corresponding
gravitational force. No lumped masses were included, and only inertial force-including cases are presented. Table 1 shows
that the lumped mass has noticeable effects on the pipe’s critical flow velocity and that the proposed model produces
better results than the previous model when compared with the experimental data. Differences of less than 3% occurs
for various cases. From a physical point of view, when the lumped mass is installed on the vertical cantilevered pipe, the
pipe is subject to the gravity of the lumped mass and produces a vertical tension force. When the pipe vibrates under
the internal flow, it is subject to the inertial and tension forces of the lumped mass simultaneously. Only when gravity
and the inertial force of the lumped mass are considered simultaneously can the vibration characteristics of the pipe be
accurately reflected. A large error can occur if only the inertial force of the weight is considered.

4.2. Single lumped mass effects

4.2.1. Single lumped mass weight effect

Five different weights, that is, no lumped mass, K; = 0.1, 0.2, 0.5, and 1, were considered. Fig. 4 represents the critical
flow velocity u. and frequency £2.. for a cantilevered pipe with various lumped masses K. The first case, represented by
the black square (M), is the original cantilevered pipe with no lumped mass. The S-shaped curves illustrate the vertical
cantilevered pipe with no lumped mass and exhibit trends similar in all cases. It is shown in Fig. 4(a) that increasing the
lumped mass decreases the critical flow velocity values, i.e. a lumped mass on a vertical cantilevered pipe at the free end
has a destabilizing effect. The critical flow velocity of the pipe increases as 8 increases regardless of the value of K;. A clear

8
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Fig. 3. The effects of a lumped mass on the critical flow velocity u. as a function of the parameter g for different lumped mass values for y = 10,
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The effect of a lumped mass on the critical flow velocity u, and frequency $2. as a function of the parameter 8 for different lumped mass

values for y =10 and ¢; = 1.

Table 1
Comparison between the present study and Yi et al. (2020) experimental results for g = 0.313,
y =51.69 and K; = 0.437.
71 =05 1 =0.82 1 =0.95

No lumped mass included ug = 10.12 U = 10.12 ug = 10.12
Only inertial force included u, = 10.14 U, = 8.99 Uy = 7.98
Both inertial force and gravity included ue = 10.54 ug = 9.47 us = 8.4

Yi et al. (2020) ue = 10.78 ug = 9.64 u, = 8.48
Difference (%) 2.2 1.7 0.9

“jump” is observed in the critical frequency for K; = 0.5 and 1, as shown in Fig. 4(b). This is mainly because when the
weight of the lumped mass increases, the lower-mode unstable balance state undergoes a transient change and reaches
a new state of equilibrium, leading to the mode jumping, which triggers the occurrence of the “jump” phenomenon.
Fig. 5 shows the first modal shapes of the cantilevered pipe conveying fluid with various K; values for 8 = 0.3. The
maximum displacement of the pipe occurs at the free end when no lumped mass is included (K; = 0). However, with a
lumped mass, K; > 0, the maximum amplitude of the first modal shape occurs at a position above the free end. It was
observed that as K; increased, the displacement decreased. However, the maximum displacement first decreased and then
increased. When the lumped mass is installed at the free end of the pipe, the pipe is under gravity-induced tension. When
pipe vibration occurs, the free end of the pipe is affected by the tensioning force of the lumped mass, resulting in the
maximum amplitude of the pipe occurring above the free end. In addition, the heavier the lumped mass, the smaller the

9
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Fig. 5. The first mode shape of the pipe with different lumped mass weights for u = 3 for g = 0.3.
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Fig. 6. The effect of a lumped mass on the critical flow velocity u. and frequency £2. as a function of the parameter 8, with different lumped
mass values for y = 10 and ¢; = 0.25.

amplitude of the pipe; therefore, a reasonable choice of the weight of the lumped mass has a significant influence on the
stability of the pipe.

Different lumped mass weights were investigated at various positions in the pipe. Each case consisted of five different
lumped mass ratios K at the position ¢;. The results for the first three cases are shown in Figs. 6-8, respectively. From
the first case (¢; = 0.25, K; = 0.1, K; = 0.2, K; = 0.5, K; = 1), it can be concluded that the lumped mass beside the
clamped end has a marginal effect on the pipe for 0.05 < 8 < 0.25, as shown in Fig. 6. It should be noted that any lumped
mass in a pipe with 8 > 0.25 has a destabilizing effect. The critical frequency of the pipe decreases as the lumped mass
increases. For ¢; = 0.25, the lumped mass has a marginal effect on the pipe for 0.05 < 8 < 0.25, as shown in Fig. 6. Note
that any lumped mass for 8 > 0.25 has a destabilizing effect. The critical frequency of the pipe decreases as the lumped
mass increases, regardless of the value of 8.

A lumped mass can increase stability when it is positioned in the middle (¢; = 0.5) for 8 < 0.4 and reduce the stability
for 8 > 0.4, as shown in Fig. 7. The S-shaped curve for K; = 0 gradually disappears as K; increases. Moreover, the critical
flow frequency of the pipe decreases as the lumped mass increases. For ¢; = 0.75, as shown in Fig. 8, the lumped mass
has a strong destabilizing effect, regardless of the weight.

4.2.2. Single lumped mass position effect

Argand diagrams depicting the pipe vibration characteristics of lumped masses located at different positions are shown
in Fig. 9(a)-(d). These figures show the first four modes of the pipe with 8 = 0.3, y = 10, and K. = 0.5.

The critical flow velocity is 8.7 in the second mode (Fig. 4) when no lumped mass is included. The critical flow velocity
is reduced to u = 8.59, which corresponds to the flutter instability in the third mode for ¢; = 0.25. This indicates that the

10
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Fig. 7. The effect of a lumped mass on the critical flow velocity u. and frequency $2. as a function of the parameter g for different lumped mass
values for y = 10 and ¢; = 0.5.
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Fig. 8. The effect of a lumped mass on the critical flow velocity u. and frequency £2. as a function of the parameter g for different lumped mass
values for y = 10 and ¢; = 0.75.

introduction of a lumped mass can decrease the critical flow velocity and thus reduce the stability of the cantilevered pipe.
It is noteworthy that the critical flow velocity increases to 8.8 and corresponds to flutter instability in the second mode
when the lumped mass is located at ¢{; = 0.5. For ¢; = 0.75, the critical flow velocity decreases to 5.7, corresponding
to the flutter instability in the second mode. When the lumped mass is positioned at ¢; = 1, the critical flow velocity
increases to 7.7 and the corresponding instability mode shifts to the third mode. We conclude that the critical flow velocity
shows a complex trend when the position of the lumped mass changes from the fixed end to the free end. This is primarily
because the lumped mass generates inertia force and gravity on the pipe (Eq. (8) terms 6-7), and its two parameters can
change the stiffness and mass matrices of the system (Eq. (19) terms 1 and 2). When the lumped mass is closer to the
free end of the pipe, the influence on the parameters of the stiffness matrix is greater, such that the unstable equilibrium
state of the mode changes instantaneously and reaches a new equilibrium state, which leads to mode jumping. Therefore,
the critical flow velocity and frequency experience “jumps”.

The effect of the lumped mass position was investigated further by considering two cases. Each case consisted of four
different positions with a lumped mass ratio K; at position ¢;. These two cases are illustrated in Figs. 10-11, respectively.
In the first cases (¢; = 0.25, ¢ = 0.5, ¢ = 0.75, K3 = 0.2), when the lumped mass was located near the top end, little
effect was observed on the pipe. The stability marginally changed when the lumped mass was at the mid-pipe (¢; = 0.5)
for 0.05 < B < 0.4, whereas the lumped mass destabilized the pipe for higher values of §. For a larger lumped mass
K; = 0.5, the lumped mass generally reduced the pipe stability, except in the case where ¢; = 0.5 and 0.05 < 8 < 0.4,
as shown in Fig. 11.

Fig. 12 illustrates the influence of a lumped mass at various positions on (a) the critical flow velocity u. and (b)
critical frequency §2. for 8 = 0.3 and y = 10. When the lumped mass position ¢; is less than 0.33, the critical flow
velocity remains approximately constant and then increases when 0.33 < ¢; < 0.44. The critical flow velocity decreases
and then increases as ¢; increases. When the lumped mass is located above ¢; = 0.33, the critical frequency remains
approximately constant as ¢; increases. When ¢; increases from 0.33 to 0.6, the critical frequency begins to gradually

11
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Fig. 10. The effect of a lumped mass on the critical flow velocity u, and frequency £2. as a function of the parameter g for different lumped mass

positions with y = 10 and K; = 0.2.

decrease and reaches the lowest point at approximately ¢; = 0.6. Then, the critical frequency gradually increases when

g > 0.6.

Consider a cantilevered pipe with a lumped mass at the quarter position of the pipe (for example, the curve in Fig. 7
with ¢; = 0.25, K; = 0.5). These curves have “S-shaped” portions ((Hill and Swanson, 1970) called “knees”) in the critical
flow velocity and frequency curves in the ranges 0.615 < 8 < 0.655 and 0.855 < B < 0.97. The Argand diagram of a
cantilevered pipe with one lumped mass (¢; = 0.25, K; = 0.5) with 8 = 0.63 are shown in Fig. 13. As shown, as internal
flow velocity u increases, the imaginary part of the first mode frequency moves into the lower half-plane, moves back
to the upper half-plane, and finally moves back into the lower half-plane and stays there. It should be noted that the
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Fig. 13. Argand diagrams of a cantilevered pipe with one lumped mass (¢; = 0.25, K; = 0.5) with 8 = 0.63.

cantilevered pipe restabilizes at 8 = 0.63, corresponding to three critical flow velocity values. This knee-type behavior
was also reported in Paidoussis (1970) and Hill and Swanson (1970).
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Fig. 14. Argand diagrams of a cantilevered pipe with one lumped mass (¢; = 1, K; = 0.5) with g = 0.29.

Consider a cantilevered pipe with a lumped mass at the free end (for example, the curve in Fig. 4 with ¢; = 1, K; = 0.5),
there are ‘kinks’ in the critical flow velocity curve and ‘jumps’ in the critical frequency curve for 8 = 0.29. The Argand
diagram of a cantilevered pipe having one lumped mass (¢; = 1, K; = 0.5) with 8 = 0.29, as shown in Fig. 14. It
is observed that, as internal flow velocity u approaches u. for § = 0.29, the characteristic roots of 2nd and 3rd modes
approach the imaginary axis at the same value of u: u,, = 6.32. The characteristic root of 2nd mode crosses the imaginary
axis before the characteristic root of 3rd mode for 8 < 0.29. Furthermore, the characteristic root of 3rd mode moves the
imaginary axis before the characteristic root of 2nd mode in g > 0.29.

Fig. 15 displays the variation of vibration frequency mode jumps with the location of the lumped mass, where n denotes
the mode number. For 8 = 0.1, there is no mode change as the location of the lumped mass changes, whereas for
B = 0.3, the critical frequency is mainly concentrated in the second mode, and the mode jumps to the third mode at
0.28 < ¢1 < 0.5and 0.94 < ¢; < 1. For B = 0.5, the critical frequency is mainly concentrated in the third mode, and the
mode jumps to the second mode at 0.38 < ¢; < 0.83. For 8 = 0.7, the vibration mode gradually jumps from the first to
the fourth mode.

The pipe vibration mode jumping refers to the phenomenon when solving the eigenvalues of the system vibration
characteristic equation in which a small change in the structural stiffness and mass matrix can cause a sharp change
in some of the structural modal data, resulting in a Jump When the lumped mass is located on the pipe, the inertia

{f_l med(x )(1()"’,J > and gravity [Zk 1 mygH(xy — x)] 2 terms of the lumped mass are added to the control equation,
and after dlscretlzmg the equation of motion, these two parameters change the mass and stiffness matrices of the system.
As the location of the lumped mass changes, the mass and stiffness matrix data of the system change dramatically, such
that the ordering of the eigenvalues of each mode changes when solving for the eigenvalues, resulting in changes in the
vibration modes.

Fig. 16 shows the effect of lumped mass position on the model shape for § = 0.3, K; = 0.8 and u = 3. The maximum
amplitude of the pipe does not always occur at the end of the pipe, but may appear at some position in the upper part of
the pipe. The vibration amplitude of the pipe increases and then decreases when the lumped mass position ¢; increases
from 0 to 1. The maximum amplitude 5,4 of the pipe at ¢; = 0.75 was 0.192, whereas the minimum amplitude was
0.143 at ¢; = 1. It was observed that the amplitude of the pipe can be effectively reduced when the lumped mass is
installed at the free end.

According to the results in Table 2, the vibration amplitude increases with an increase in ¢; when the lumped mass is
installed in the range of 0 to 0.75. When the lumped mass is located closer to the free end of the pipe (¢; > 0.75), the
vibration mode of the pipe transitions from second-to third mode shape (as shown in Fig. 9) and the amplitude decreases.
Taking the case of K; = 0.6 as an example, by moving the lumped mass position ¢; from 0 to 0.75, the pipe vibration
amplitude increases from 0.167 to 0.201, which is a 20.3% increase. However, when the lumped mass position {; moves
from 0.75 to 1, the pipe vibration amplitude decreases from 0.201 to 0.142, that is, it decreases by 29.3%. This is mainly
a result of the transition of vibration modes when the lumped mass is installed at different positions in the pipe.

4.3. Multiple lumped mass effects

The effects of multiple lumped masses were studied by considering five different lumped mass positions, as shown in
Fig. 17. Each case has two lumped masses K; = K, = 0.5 at position ¢, (k = 1, 2). The stabilization effects are evident
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Fig. 16. The modal shape of a pipe conveying fluid varying with the lumped mass position for § = 0.3, y = 10 and u = 3.

when the lumped mass is in the upper part of the pipe length (¢; = 0.25, & = 0.5) for 0.05 < 8 < 0.65. When the
pipe is attached to the two lumped masses, the different positions of the lumped mass affect the magnitude of the critical
flow velocity of the cantilevered pipe. Taking 8 = 0.3 as an example, the critical flow velocity of the pipe is 71.8% higher
when the two lumped masses are located at £; = 0.25 and ¢; = 0.5 than when ¢; = 0.75 and ¢, = 1. In Fig. 18, three
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Maximum vibration amplitude 7,4 of the cantilevered pipe conveying fluid at different lumped
mass positions for § = 0.3 and y = 10..
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3 K1 =02 Ki =04 Ki = 0.6 Ki=0.8 Ki=1
0 0.167 0.167 0.167 0.167 0.167
025 0.179 0.176 0.174 0.171 0.169
05 0.188 0.185 0.182 0.177 0.172
075 0.265 0.257 0.201 0.192 0.183
1 0.149 0.143 0.142 0.143 0.147
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Fig. 17. The effects of two lumped masses on the critical flow velocity u. as a function of the parameter g for different lumped mass positions

with y =10 and K; = K; = 0.5.
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Fig. 18. The effects of three lumped masses on the critical flow velocity u. as a function of the parameter B for different lumped mass positions

with y = 10 and Ky = K, = K3 = 1/3.

cases are considered to study the effects of three lumped masses at different positions of the pipe. It was observed that
multiple lumped masses have limited effects on the critical flow velocity.

The effects of multiple lumped masses on the critical flow velocity u. were investigated further. In each case, the total
dimensionless weight of the lumped mass is Z};l Ky = 1. The shaped curve of the position at the top represents the
vertical cantilevered pipe without a lumped mass in Fig. 19. The lumped mass effects depend on the number of lumped
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Fig. 19. The effects of multiple lumped masses on the critical flow velocity u. as a function of the parameter g for different lumped mass positions
with y = 10.

masses and the mass-fluid ratios 8. It can be observed that the critical flow velocity of the cantilevered pipe increases
as B increases regardless of the number of lumped masses. The lumped mass stabilizes the cantilevered pipe when it
is positioned in the middle (¢; = 0.5) for § < 0.4, and destabilizes the pipe for 8 > 0.4. Similarly, the two lumped
masses stabilize the cantilevered pipe when the lumped masses are positioned in the middle (¢; = 0.25, &, = 0.5) for
B < 0.25, whereas they destabilize the pipe for § > 0.25. It is noteworthy that the vertical cantilevered pipe becomes
more destabilized when three or more lumped masses are attached to it. Moreover, when three or more lumped masses
are attached to the vertical cantilever pipe, the curves almost overlap at 8 < 0.35, indicating that the lumped mass
effects are ignored in these cases. When the number of lumped masses on the pipe increases, the result is equivalent to
increasing the mass per unit length, which results in a decrease in the fluid mass ratio 8 = my/(m; 4+ m,), thus causing
a decrease in the critical flow velocity of the pipe.

Contrary to the conventional understanding, installing lumped masses on a pipe does not always improve the pipe
stability; the results are highly dependent on the position and number of lumped masses installed. In particular, during
actual field operation, the position and weight of the lumped mass must be reasonably designed to minimize the vibration
of deep-sea mining discharging pipes. The proper design of lumped masses can improve pipe stability. However, an
improper design reduces pipe stability. The numerical results of this study can provide theoretical support for the
reasonable arrangement of submersible pumps for deep-sea mining discharging pipes.

5. Conclusion

In this study, the stability of a vertical cantilevered pipe conveying fluid with single and multiple lumped masses
was analyzed. The HDQ method was utilized to solve the governing vibration equation, which was derived based on
Hamilton’s principle and the introduction of the delta and Heaviside functions. The gravitational force of the lumped
mass is considered in the theoretical model. The newly developed model was validated by comparison with previously
published data. The pipe’s instability performance was analyzed using this new model for various lumped mass weights,
positions, and fluid mass ratios. From the numerical results, the following conclusions were drawn.

(1) Increasing the lumped mass improves stability when the lumped mass is positioned in the middle (¢; = 0.5) for
B < 0.4 and decreases stability for § > 0.4. However, the critical flow velocity decreases for all values of 8 for pipes
with more than two lumped masses.

(2) The lumped mass significantly affects the modal shape of the vertical cantilevered pipe. Larger lumped mass ratios
do not guarantee that the maximum amplitude of the modal ratio always occurs at the end of the pipe; it may occur
higher up. Increasing the lumped mass ratios can decrease the modal shape amplitude. The pipe amplitude reaches a
minimum when the lumped mass is attached to the free end of the pipe, whereas the amplitude is at its maximum at
three-quarters of the pipe.

(3) When the lumped mass position ¢; increases from 0 to 1, the critical vibration mode of the cantilevered pipe shifts.
When the fluid mass ratio is sufficiently large, the vibration mode of the cantilevered pipe also shifts.

(4) The lumped mass position and fluid mass ratio are important factors affecting the stability of cantilevered pipes.
The critical velocity of the cantilevered pipe varies with the lumped mass position and fluid mass ratio.
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(5) Regardless of the weight of the lumped mass, the lumped mass at a position close to the clamping end did not
significantly affect the dynamic behavior of the cantilevered pipe length.

(6) The vertical cantilevered pipe is destabilized when two or more lumped masses are present as compared to the
case of a single lumped mass.

These conclusions are expected to provide valuable guidance for engineering applications, such as deep-sea mining
and OTEC, with the purpose of alleviating pipe vibrations using the lumped mass method.
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Appendix A. Detailed derivation of the governing equation process using Hamilton’s principle

Integration on pipe x; and x, gives the total kinetic energy T of the system
K

X2 w2 5 {(dw 2 %w dw (X, t)
T:1/2/ mp<¥> +myU (5) +2U ﬁ+< ) +Z mk< ) dx (A1)

Integration on pipe x; and x, gives the total potential energy V of the system

vt [ e (EY 2 L w\,y H dwix )’ d A2
=1/ /xl (W) + (my, + my)g( —X)(a) +Z mig (Xk—x)<T> X (A.2)

k=1

Substituting Egs. (A.1) and (A.2) into (7), the following equation is obtained

5] X2 ow 2 ow 2 32 Xot) 2

o .« ( (A3)
92w ow dw(xy, t)
— EI —(m me)g(L—x)| — ) — mgHxg — x) | ——— dxdt = 0.
(82) (mp + mp)g( )(ax) ;[kg(k )( o ”
Introducing of § variables into the integral
/ / my + my) w88w+ U28w88 +2m ansaw Elazwaazw
R A TR ox S ax T o O ax a2 R
dw( xk,t ow(x, t) ow _Jdw
b - L—x)—38—
+ Z [ ot (mp -y gL = X) 0 ox (A4)

k=1
K

a t). o
- Z [mkgH X — X) w(ax:((, )s w(;;, )] dxdt = 0.

k=1
Sub-integrate each term of Eq. (A.4) as follows For the first term:

/ / mp+mf) ta—dxdt (A.5)

18



i = /i i s ol 55 dazyi
iranpoper = Downloaded from https.//iranpaper.ir https:/ww.tarjomano.com ol gaazidezy l[J;J)D}J

AT
Y. Ma, D. Zhou, Y. You et al. Journal of Fluids and Structures 120 (2023) 103896

Eq. (A.4) switches the order of integration, first to the time integral before the length integral, and then to the divisional

integral in the following

X rt ow 21 dw 2 32y
/ / (my + my) S d(w)dx = (m, + mf)/ [(at(Sw)ﬁf - / = (Swdt] dx (A6)
X1 t X1 3]

Since Sw is equal to O at both ends of t; and t, on any path, it follows that

L rx ow _ow L rx 32w
m mp)—38 —dxdt = — m ms)——Swdxdt A7
/ﬁ/,q(ﬁ ey /ﬁ/xl(’”L )5 0w (A7)

Similarly, Sw is equal to 0 at both ends of x; and x, on any path the other terms can be derived as

For the second term:

Jw Jw X9
/ / meZ—wS—dxdt meZ/ / —wd Sw)d
9 2 524 (A.8)
= myU? (—w(Sw)"2 - —Swdx mez—(Swdxdt
ax ax?
tq X1

For the third term:

Xza
//meU—S—dxdt_meU/ / —wd(Sw
0‘w
—meU/ [(—5) / —Swdx:| /mefU—éwdxdt
. o L9

For the fourth term:

o rxr K 3 t) 9 t K X by t
/ / Z[mk w(Xk, )8 w (X, )]dxdtzzmk/ / Md&w(xk,t)dx
t x ot dt k=1 X Jh ot
9 t K 2 g2 t
—ka/ <Ms (xk,t)> —/ Tl 0 v oyt | d (A.10)
ot f ot?

t

2
/ f Z 9 w(x“’ Sw(xy, t)dxdt.

For the fifth term:

2 82 X9 82
f / g9 ~ 2 dxdt = —EI / / —da
8 X1
Pw _ d % 33y 9 % a3 ow
:—51/ (—fdaﬂ> —/ S8 | dt = 51/ / 252 dudt
t ox X “ X 0X X
2 93w Pw  \* ot
_EI/ / (d(Sw)dt_EI/ Y sw —/ W swax | dt
f 0x3 x . 0x4
1 1
9
:—EI/ / W swxt.
T

(A.11)
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For the sixth term:
ow
/ / (my + my)g(L —x)a—é—d xdt

—(mp + my gL/ / —(dsw)dt + (m, + mg)g / / x— (dow)dt
ow \*? [ 0%w 2 (ow  \?
= —(m, + mf)gL/ —8 —f —-dwdx | dt + (m, —i—mf)g/ [| x—dw
t1 ox X ox? f ox X

. (A.12)
2 (Qw 9w
— — — ) Swdx]dt = m,+m L—S dxdt
/m<8x+ >w ff ”+fgazw
— (mp+myp)g / / —(Swdxdt (mp +my)g / / x—éwdxdt
t
9w X2 ow
/ f (mp +mp)g(l — X)——- 0 Y swaxdt — / / (my —i—mf)ga—(Swdxdt
For the seventh term:
2 o K dw(xy, ) dw(xy, t £ 2% gw(xg, t
_/ / kagH(xk—x) w(x, )(3 w(Xy, )dxdt _ —kagH(xk—x)/ / Md(éw(xk,t))dt
n JIx X ax e Jx ax
k=1 k=1 1 1
« Loy t 2o % 2 t
- —Z|:mkgH(xk—x)/ (M(Sw(xk, r)) —/ %aw(xk,t)dx dt
¢ X x ax
k=1 1 X1 1
2 o X 2 w(xy, t
=/ f kagH(xk —X)M(Sw(xk, t)dxdt
t1 X1 k=1 ax
(A.13)
In summary, By substituting Eqs. (A.7)-(A.13) into Eq. (A.4), the vibration equation is given as
9w 92w Pw o~ w(x t)
El— + mfU? 2mpU m, 4+ mg)— mg————
//1[ o+ U 2+ (my f)ar2+12 SFTE
= (A.14)
(my + mg(L — 02+ (my + mp) Zm Hixe —x) (X‘“ 9 swaxde = 0.
— —X)—— —_— = —X)———ow =
b )8 92 p lf g Ix = k&M (XK
Appendix B. Weighting coefficient factor for HDQ method
The weighting coefficients of the first derivative Agj” and second derivatives Agjz) for i # j is given by
P (x;) /2
AV = 7P )/ iLi=1,2...N, (B.1)
" P (xj)sin[7 (xi —x) /2]
AD = Ay [2A§i” — 7 cot (%) n] : (B.2)
with
P(x) = | ]_[ 'sin (Tjn> (B.3)
J=1j#l
The weighting coefficients of the first and second derivatives AEJ-") for i = j are defined as
N
A= Y A=t ®4
=1
The Weighting coefficients for high derivatives are thereby expressed as
( ( 1)
Aijn ZAII( 13 . (B.5)
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