
DA2004/DA2005: Labs

Lars Arvestad, Evan Cavallo, Christian Helanow, Anders Mörtberg, Kristoer Sahlin

Machine Translated by Google

Lab rules

• You can Google for Python commands, syntax, error messages, etc, but not for ready-made
solutions. Google in English to get est answer. On the site https://stackoverow.com/ nns
probably the answer to many of your questions.

.

. . .

.

.
.

.

10

. . .

.

.
.

.

.

.

.

.

.

.

1 Temperature conversion 1.1
Learning objectives .

.

• You have to work individually with the labs and the project. This means that you must write your own code
and find your own solutions. You must not give solutions to each other or copy code from the Internet. All
submissions are automatically compared and suspected cheating is reported to the university's disciplinary
committee, which may lead to suspension.

.

. . .

.

3.3 Data .

.

.

.

16

.

.

.

. . ..

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.

..

. . .

.

. 3

.

.

.

.

. . .

.

2 Polynomials
2.1 Learning objectives .

1

5

.

17

.

.

.

.

.

.

. . .

.

.

.

.

.

.

.

.

.

.

. . .

.

. . .

.

.

.

.

.

.

. . .

.

.

.

.

..

.

. . .

.

.

2.3 Data

.

5

.

. . .

.

• All deadlines are strict. If the deadline is missed, the lab or project must be redone at the next one

.

.
.

.

.

.

.

• If you know that you will not be able to finish a lab or the project (due to a valid reason, e.g. illness), inform
the course leader before the deadline. If you contact the course leader only after the deadline , it will be
counted as missed and you will have to do it again at the next course opportunity.

.

.

.

4 Coming later

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

3.2 Submission .

.

..

3

. . .

.

.

10

11

. . .

.

1.2 Task .

.

.

. . ..

.

5 Coming later

.

.

.

.
. . .

.

.

.

.

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

5

3

.

.

. . .

2.2 Submission .
.

.

.

.

.

.. . .

.

.

. . .

10

.

.

.

.

.

.

.

. . .

..

.

.

.

.

.

.

.

.

.

.

.

.

.

5

.

.

. . .

. . .

.

. . .

course opportunity. Contact the course leader if this happens.

3 Iteration, lhandling, error handling and lookup tables 3.1 Learning
objectives .

.

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.
.

. . .

.

.

.

.

.

. . .

.

. . .

.

.

.

.

.

.

.

.

. . .

.

.

.
.

.

.

.

. . .

.

..

.

.

.

.

.

.

.

.

.

.

.

.

Content

Machine Translated by Google

https://stackoverflow.com/

specified explicitly in the instructions.

• Do you have problems with things that have nothing to do with the programming itself, e.g. if you have problems using the

terminal, libraries that are in conic, etc., contact one of the teachers for help.

• In normal cases, no report is required, but in the event of ambiguities, we may require an oral report. • During reporting,

you must be able to answer questions about the solution orally.

2

• The solution must have a reasonable structure, ie it is not ok to have extremely long programs with the same copied code

over and over again instead of e.g. a loop. Unnecessarily complicated code may lead to point deductions.

• Solutions must be written in Python 3. Submissions in Python 2 are therefore not permitted.

man 2 bonus points.

• Do not use functions from any library in the labs unless it is explicitly stated that you will get them (ie,

• Keep a good tone and give constructive feedback on other people's code when you peer-correct. In case of problems contact
the course leader.

do not use “import” anywhere).

• Submissions may not be made in any language other than Python. • Solutions

must be submitted in the form of .py files. No lformat other than .py is accepted otherwise

• You must get at least 2 points per laboratory and a total of at least 25 points to be approved for the laboratory course.

• Peer correction is a mandatory part of every lab. If you don't do it, the lab is counted as missed

and you have to redo the lab at the next course session.

• If you reach 35 points, you get 1 bonus point for the project, and if you reach 45 points, you get

• Your solution must provide the correct output for a given input.

• Each laboratory is worth 10 points.

Submission

Peer correction on PeerGrade

Accounting

Scoring

Machine Translated by Google

The main purpose of this laboratory is for you to familiarize yourself with the development environment either in the halls

or on your own computer.

1.1 Learning objectives

1.2 Assignment

Temperature conversion

2. Rewrite the function fahrenheit_to_celsius so that it calculates correctly. (2 points)

to type q (short for “quit”). (2 points)

You should be able to write, run, and modify a small Python program.

1. Download, test run and study the konvertera.py program from the course homepage (see the "Code
for labs" folder). Does it work as it should?

5. Extend the program so that it continues to ask for conversions, until exiting through

Here are your details:

To pass the lab you must have at least 2 out of 10 points, but remember that to pass the lab part at the
end of the course you must have at least 25 of the maximum 50 points in the labs.

4. Expand the program so that it asks for the conversion you want to do. (2 points)

The program converta.py in the "Code for labs" folder on the course homepage is supposed to ask for a
temperature in Fahrenheit, read in from the user, convert to the Celsius scale and then print the result.

3. Extend the program with a function that converts from Celsius to Fahrenheit. (2 points)

3

6. Extend the program so that it can also convert to and from Kelvin from both Celsius and Fahrenheit.
For full points, the program must still ask what conversion to do right up until the user types q. (2
points)

Lab 1

Machine Translated by Google

4

7. Submit your solution to PeerGrade.io. If you haven't registered yet, do so using the registration code found
on the course website. Important: use your real name/the same name as you are registered in the course
with when you register on Peergrade!

Remember: it's always good to comment the code where necessary (to clarify the purpose of e.g. a line of code
or a block of code) and to document functions. All functions you write should also be thoroughly tested so that

you know they work as intended!

8. Peer-review other solutions on PeerGrade.io! It will be possible after the deadline.

Machine Translated by Google

http://www.peergrade.io/

2 4ÿÿ

[0, 0, 0, 0, 1] [0, 0, 4,

5] [5,4,3,2,1]

In the lab, polynomials must therefore be represented as lists, below are some of your examples of how polynomials can be

implemented as lists:

In this task we will represent polynomials using lists of coefficients. The word "representation" here roughly means "storage

method in computer", and it means concretely that a polynomial like 1+3x+7xˆ2 is stored in Python as the list [1,3,7]. In general,

the coefficient of the term of degree n is therefore stored at position n of the list .

5

Polynomial

Remember: it's always a good idea to comment the code where necessary (to clarify the purpose of e.g. a line of code or a block

of code) and to document functions.

3 4 +
2ÿÿ + ÿÿ

Python representation

To pass the lab you must have at least 2 out of 10 points, but remember that to pass the lab part at the end of the course you

must have at least 25 of the maximum 50 points in the labs.

3 + 5ÿÿ

2 5 + 4ÿÿ + 3ÿÿ

Submission of the laboratory must be done as usual on PeerGrade. Don't forget to peer correct!

• You will see how to give an abstract concept (polynomial) a concrete representation in the computer and

4
ÿÿ

how to make calculations on it. • You must be
able to write small simple functions • You must be able

to work with the data structure list.

Polynomial

2.1 Learning objectives

2.2 Submission

2.3 Data

Lab 2

Machine Translated by Google

https://www.peergrade.io

However, it can be good to include the tests in the form of commenters to make it easier for those who have to read

through and test the code.

• Terms with coecient 0 are not printed. That is, 0 + 0x + 2xˆ2 must be simplified to 2xˆ2. • A list

containing only 0 as elements, e.g. [0, 0, 0] is written as 0.

Here >>> is the “prompt” in the Python interpreter, i.e. poly_to_string(p) is a command to be executed by Python and on

the line after comes the result. This may look different on your computer and be achieved in different ways, e.g. in Spyder

you can instead write:

Start by creating a l labb2.py, to get started with the lab, and copy over the function poly_to_string there. You must now

solve all the tasks below by adding the necessary code to solve problems specified in the tasks. As you will see, you

also have to (later) modify the function poly_to_string (see task 2).

6

Note: you may not use functions from any library in the lab, i.e. you may not use "import" anywhere in the solution.

print(poly_to_string(p))

p = [...] q =

[...]

Note: you can assume that the lists you are working with only contain numbers.

• The empty list is converted to 0. •

Terms with coecient 1 are written without coecient. That is, 1xˆ2 should instead be written as xˆ2. • Terms

with coefficient -1 put a minus in front of the term, but the one is not printed. For example. 2 +

where the contents of the lists must be filled in. Test that you have written correctly in the following way:

The function in Python-len polynom.py (nns on the course homepage in the "Code for labs" folder) contains a function,

poly_to_string, which converts polynomials represented as lists to strings.

>>> poly_to_string(p) '2 + 0x
+ 1x^2' >>> poly_to_string(q)

'-2 + 1x + 0x^2 + 0x^3 + 1x^4'

p := 2 + x^2 q :=

-2 + x + x^4

-1xˆ2 is instead written as 2 + -xˆ2.

Change in poly_to_string so that:

Write code to store the list representation of these two polynomials in the variables p and q in Python. That is to say,

Assume that the polynomials p and q are dened as below.

and then observe the result in the console on the right after running the program. In that case you
will not see '2 + 0x + 1xˆ2' but only 2 + 0x + 1xˆ2, i.e. ' will not be printed. These types of tests are
very helpful when developing the code, but should not be included in the final version that you submit.

2.3.1 Task 1 (0 points, but needed for the tests later in the lab)

2.3.2 Task 2 (3 points)

Machine Translated by Google

and test the function:

Test that the code works:

Dene any polynomials with zeros at the end

>>> poly_to_string(q) '-2 +
x + x^4'

>>> eq_poly(p,p0)
True

>>> poly_to_string([]) '0'

p0 = [2,0,1,0] q0
= [0,0,0]

b) Write a function that tests when two polynomials are equal by ignoring all trailing zeros and then tests for
equality:

Test the function! The output should look like this:

a) Write a function drop_zeroes that removes all zeroes at the end of a polynomial and returns the result.
Tip: use a while loop and the pop() function.

>>> poly_to_string(p) '2 +
x^2'

def drop_zeroes(p_list): # here
be code

>>> poly_to_string([-1, 2, -3]) '-1 + 2x +
-3x^2'

>>> drop_zeroes(p0) [2,
0, 1]

def eq_poly(p_list,q_list): # here
be code

>>> drop_zeroes(q0) []

>>> poly_to_string([1,1,-1]) '1 + x +
-x^2'

2 + x^2 + 0x^3 # 0
+ 0x + 0x2

>>> poly_to_string([1,2,3]) '1 + 2x
+ 3x^2'

>>> poly_to_string([0,0,0]) '0'

7

2.3.3 Task 3 (2 points)

Machine Translated by Google

2.3.4 Task 4 (2 points)

1The proposed algorithm is not the most efficient, if you want to optimize, you can instead implement Horner's

• Iterate over the terms of the polynomial by iterating over the coefficients.
• Keep track of the degree of the current term and the sum of the terms you have summed so far.

In each iteration, calculate the value of the term as coeff * x ** degree (remember raised is **).

>>> eval_poly(p,1) 3

def neg_poly(p_list):

Then add the value of the term to the sum. •
When you have finished iterating, you return the sum.

>>> eq_poly(q0,[])

here be code

8

True

Tests:

Write a function named eval_poly that takes a polynomial and a value of the variable x and returns the value of the

polynomial at the point x.

>>> eq_poly(q,p0)

>>> eval_poly(q,-2) 12

Suggested algorithm:1

False

2.3.5 Exercise 5 (3 points) a) Dene

negation of polynomials (ie change the sign of all coefficients and return the result).

Also note that the code ni ck for poly_to_string returned the result string. Does your solution to problem 2 work the same

way? If not, go back and repeat.

>>> eval_poly(p,2) 6

>>> eval_poly(q,2) 16

>>> eval_poly(p,0) 2

The difference can be hard to grasp at first as the result looks similar when you run the code, but there is a very big

difference between a function that returns something and one that just prints something. See the end of 2.5.1 in the

compendium for more information on this.

Note: the drop_zeroes and eq_poly functions should return their results and not just print it out.

algorithm: https://sv.wikipedia.org/wiki/Horners_algorithm

Machine Translated by Google

https://sv.wikipedia.org/wiki/Horners_algoritm

2.3.6 Task 6 (0 points)

False

Note: the comments are only there to explain what the tests are testing. Can you think of good tests to find

possible bugs in the code?

p - (- q) = p + q >>>

eq_poly(sub_poly(p,neg_poly(q)),add_poly(p,q))

c) Dene subtraction of polynomials.

9

Read through, rewrite and document your code. Since the correction must be objective, you must not leave your
name in the file you submit.

def sub_poly(p_list,q_list):

True

True

b) Deny addition of polynomials (ie add the coefficients and return the result).

(p + q)(12) = p(12) + q(12) >>>

eval_poly(add_poly(p,q),12) == eval_poly(p,12) + eval_poly(q,12)

p - p = 0 >>>

eq_poly(sub_poly(p,p),[])

def add_poly(p_list,q_list): # here be
code

True

Test that the functions work:

p - q = 4-x+x^2-x^4 >>>

eq_poly(sub_poly(p,q),[4, -1, 1, 0, -1])

True

True

p + q = q + p >>>

eq_poly(add_poly(p,q),add_poly(q,p))

here be code

Tip: keep in mind that p - q can be dened as p + (- q), i.e. to subtract the polynomial q from p , you can first take

the negation of q and then add with p.

p + p != 0 >>>

eq_poly(add_poly(p,p),[])

Tip: read through “Rules of Thumb for Programming” under Resources on the course homepage for
recommendations on how to write good code.

Machine Translated by Google

This lab contains a number of independent tasks involving basic algorithms, lookup tables, lhandling,
and error handling.

No modules ("libraries") may be used, i.e. no imports. Put all the code in an l like in the last lab.

Remember: it's always good to remember to comment the code where necessary (to clarify the purpose
of eg a line of code or a block of code) and read through your code before submitting!

3.1 Learning objectives

3.2 Submission

Iteration, l handling, error handling
and lookup tables

• You should be able to translate an algorithm into code. •

You must be able to work with lookup tables. • You must be
able to read and write data from l. • You must be able to

use error handling.

Submission of the laboratory must be done as usual on PeerGrade. Don't forget to peer correct!

Tip: use documentation strings in all functions you've written so you can easily find out what the input is and what

the function does.

To pass the lab you must have at least 2 out of 10 points, but remember that to pass the lab part at the end of the

course you must have at least 25 of the maximum 50 points in the labs.

Remember to remove your name from the code, in case e.g. Spyder put it in the len.

10

Functions first, then the main program that calls the functions. On task 1, you may not use built-in functions for

sorting, such as sort or sorted.

Lab 3

Machine Translated by Google

https://www.peergrade.io

Insertion sort (eng.: insertion sort) is a common sorting algorithm, i.e. a method for sorting a list of
elements. The idea behind this algorithm is similar to the way you might sort a deck of cards: for
each card in the deck, insert it into the correct slot in a pile of sorted cards.

Algorithm idea:

>>> insertion_sort([12,4,3,-1]) [-1, 3, 4, 12]

>>> insertion_sort([]) []

>>> insert_in_sorted(2,[]) [2] >>>

insert_in_sorted(5,[0,1,3,4]) [0, 1, 3,

4, 5] >>> insert_in_sorted(2,[0 ,1,2,3,4]) [0, 1, 2,

2, 3, 4] >>> insert_in_sorted(2,[2,2]) [2, 2, 2]

Note: for scoring, insertion_sort must use insert_in_sorted.

11

We can divide this into two sub-problems:

b) Write insertion sort using insert_in_sorted:

2. Iterate over all indexes in < len(sorted_list) until you find some element sorted_list[i] that satisfies sorted_list[i] > x and

then insert x.

3. Return out.

3. If there is no sorted_list[i] greater than x: insert xi at the end.

Tests:

Tests:

Algorithm idea:

1. Initialize a variable out with the empty list.

2. For each element xi my_list insert it into out using your function insert_in_sorted.

1. Assume sorted_list is sorted.

a) Write a function that inserts an element xi into an already sorted list sorted_list:

def insertion_sort(my_list): # here be
code

def insert_in_sorted(x,sorted_list): # here be code

A matrix can be represented in Python as a list containing equally long lists of numbers.

3.3.1 Task 1: deposit sorting (2 points)

3.3.2 Problem 2: sparse matrices (1 point)

3.3 Data

Machine Translated by Google

I could not you; I dared not rob: Therefore
I lied to please the mob.

1 3

Write a function annotate(f) that takes an lname f as parameter and prints to a new l annotated_f with original
text, line number (counted from 0), total number of words up to and including that line.

can be represented as [[1, 0, 0, 2], [0, 8, 0, 0], [0, 0, 0, 5]].

12

Example: if len infile.txt contains:

Tests:

For example, the matrix:

So running annotate('infile.txt') should produce an l annotated_infile.txt containing :

>>> matrix_to_sparse([[1,0,0,2],[0,8,0,0],[0,0,0,5]]) {(0, 0): 1, (0, 3): 2,
(1, 1): 8, (2, 3): 5} >>> matrix_to_sparse([[0,0,0,0],[0,0,0,0],[0,0 ,0,0],
[0,0,0,0]]) {} >>> matrix_to_sparse([[0,0],[0,0],[0,0],[0,10]]) {(3, 1): 10}

ÿ ÿ 1 0 0 2 ÿ ÿ ÿ ÿ 0 8 0 0 ÿ ÿ ÿ ÿ 0 0 0 5 ÿ ÿ

A Dead Statesman 0 3

{(0, 0): 1, (0, 3): 2, (1, 1): 8, (2, 3): 5}

Now all my lies are proven untrue And I
must face the men I slew.

What tale shall serve me here among Mine
angry and defrauded youth?

Write a function matrix_to_sparse that takes in a matrix represented as a list of lists and produces a lookup
table like above. You can assume that the matrix has the correct form (ie that all lists are the same length).

A Dead Statesman

Consider a matrix with many millions of rows and columns containing only a handful of non-zero elements. A
better way to represent this type of matrix is as a lookup table from coordinates to nonzero elements.

If the coordinates are of the form (row, column) and we start counting from zero, then the matrix above can be
written in the following way as a lookup table:

A matrix is sparse if it contains mostly zeros. If you represent such a matrix as a list of lists, you
need to use up quite a lot of computer memory, especially if the matrix is very large.

3.3.3 Task 3: management (1 point)

Machine Translated by Google

Line 3: Therefore I lied to please the mob.

Example: a run of find_lines(), with infile.txt as above, might look like this:

Example (with infile.txt as above):

>>> hinfile = open('infile.txt') >>>

find_matching_lines(hinfile, 'the mob')

Hello, which file do you want to search in? infile.txt Ok, searching in

"infile.txt".

Note: The search must be case sensitive, so "the" is not the same as "The". Tip: How does in work for strings?

I could not you; I dared not rob: 2 11 Therefore I

lied to please the mob. 3 18 Now all my lies are proven

untrue 4 25 And I must face the men I slew. 5 33 What
tale shall serve me here among 6 40 Mine angry and

defrauded youth? 7 45

13

Note: find_matching_lines must take an lhandle, so it must not contain any call to open but it is assumed that open

is run before the function is called as shown in the tests above.

b) Write a find_lines() function that prompts the user for an l and a string, and uses the find_matching_lines function

to print the lines where the string was found.

3.3.4 Task 4: string search in ler (2 points) a) Write a function

find_matching_lines(h,s) that takes a lhandle (eng: handle) h and a string s. The function must return both line
numbers (counted from 0) and content for the rows containing the string in the form of a list of tuples.

...

Line 5: And I must face the men I slew.

It is up to you whether the program should continue to ask and whether you should be able to change l to
search in, etc. As long as the user can choose l and string and that the code uses find_matching_lines ,
you get points.

[]

What do you want to search for? the The result

after searching for "the" is:

[(3, 'Therefore I lied to please the mob.\n'), (5, 'And I must face the men I slew.\n')] >>> hinfile.close() >>> with

open('infile.txt') as h: find_matching_lines(h, 'summer')

[(3, 'Therefore I lied to please the mob.\n')] >>> hinfile.close()

>>> hinfile = open('infile.txt') >>> find_matching_lines(hinfile,

'the')

Machine Translated by Google

1

1For documentation on which special cases are nndenied in Python see: https://docs.python.org/3/library/exceptions.html

...

>>> with open('infile2.txt') as hinfile2: d =
save_rows(hinfile2) print(lookup(d,0,0))
print(lookup(d,2,9)) print(lookup(d,2 ,10))

Space

save_rows(hinfile2)

Tests:

• If the row and/or column is not nns id, the program should throw a LookupError.

then the following should happen during a run:

hrs

We assume a 0-indexed coordinate system (as used in programming).

Example: if the input number infile2.txt contains:

...

Note: note that there are no \ni at the end of the strings. b)

Write a function lookup that takes in a lookup table d as above and two coordinates r and c which correspond to
row and column id and returns the character of the position that the coordinates correspond to.

...

2. Asks the user to provide coordinates for row number and column number.

But if you run, for example, lookup(d,3,0) or lookup(d,0,7), a LookupError must be raised. c) Use

save_rows and lookup to write a code snippet (a “program”) that:

{0: 'Hey you', 1: 'the moon revolves around earth', 2: 'two chairs and the table'}

• If the position is a space, "Space" must be returned.

pp

>>> with open('infile2.txt') as hinfile2:

14

...

Hey you
the moon revolves around the earth two
chairs and the table

These cases must be handled:

You choose the structure of this code snippet yourself, e.g. can you dene a function main() that takes no
parameters but contains the code containing 1-3 above:

...

3. Uses lookup to retrieve and then print the character in len at the location of the coordinate.

a) Write a function save_rows(h) that takes a lhandle (eng: handle) h and saves row numbers as keys and rows
as values in a lookup table. The function should then return the lookup table.

The idea is that lookup should be used together with save_rows (see subtask c)) and each character in len can
be said to lie on a row and in a column. For example, the word “Hey” in infile2.txt occupies the coordinates (0,0),
(0,1), (0,2). In the same way, the word "chairs" occupies the coordinates (2,4), (2,5), ...,(2,9).

1. Asks the user for an l, reads the len into the lookup table (using save_rows)

The user must be able to give your coordinates until he chooses to write exit , whereupon the program ends.

3.3.5 Task 5: position search in clay (4 points)

Machine Translated by Google

Provide column: 1

Provide row: 2

Provide column: 3

def lookup(...):

Provide column: 9

15

pp

...

Space

Example: if you run the program with len infile2.txt as above, running the program should look like this:

def save_rows(...):

Provide column: 1

At any point type "exit" to quit.

...

Provide row: 0

If lookup throws an exception because the coordinates are outside the text, it should be caught with try-except.

hrs

Warning: Out of bounds, try again!

Provide row: 3

def main():
infile2 = input('Enter a file: ') indexed_file
= save_rows(...)
More code here for steps 2 and 3

Provide row: 1

Provide row: exit

Then the message Warning: Out of bounds, try again! is printed and the program continues.

Machine Translated by Google

Lab 4

Coming later

16

Machine Translated by Google

Lab 5

Coming later

17

Machine Translated by Google

