

1

Comprehensive Report on the Implementation Project of a

Reliable UDP-Based Transport Protocol

Introduction

This project aimed to implement a reliable transport protocol based on UDP

with the following capabilities:

• Dynamic congestion control

• Detection and correction of content errors

• Intelligent retransmission management

• Simulation of various network conditions

The project consists of three main components:

• Sender: Responsible for dividing data into segments and managing the

send window.

• Receiver: Responsible for assembling segments and generating

acknowledgments.

• Network (Medium): Simulator of real-world network conditions.

Section 1: System Architecture Analysis

1.1 File Structure

2

1.2 Data Transmission Sequence Diagram

Section 2: Key Implementations

2.1 Error Management

CRC-32 for error detection:

2.2 Congestion Control

Adaptive window algorithm:

3

2.3 Network Simulator

Configurable parameters:

Section 3: Experimental Results

3.1 Performance Table Under Different Conditions

3.2 Throughput Graph

Results:

4

Section 4: Comparative Analysis

4.1 Advantages Over TCP

1. Better adaptability in high-error-rate wireless networks.

2. Lower memory usage (maximum 3 MB in tests).

3. Advanced SACK support to reduce unnecessary retransmissions.

4.2 Limitations

1. No support for automatic load balancing.

2. Manual tuning of network parameters required in some scenarios.

Section 5: Project Achievements

5.1 Implemented Innovations

1. Hybrid mechanism combining CRC and SACK for improved efficiency.

2. Multi-factor adaptive algorithm for congestion control.

3. Advanced logging system for debugging.

5.2 Sample Execution Output

5

Section 6: Project File Analysis

Analysis of defs.h

Central header file with shared definitions.

Key changes:

• Added crc field for content error detection.

• Added SACK support with sack_count and sack_list fields.

• New constant definitions.

• New auxiliary functions

Analysis of medium.c

- Network Simulator Architecture:

This file is responsible for simulating real network conditions including:

- Packet loss

- Content errors

- Transmission delay

- Bandwidth limitation

- Key changes

6

- Error application algorithm:

- Advanced statistics:

- Counting sent/received packets

- Real-time error rate calculation

- Transmission delay monitoring

Analysis of receiver.c file

- Receiver architecture:

- Receive window management

- ACK/SACK generation

- Data reordering

- Major improvements:

- SACK mechanism:

7

- Performance statistics:

- Bit error rate calculation

- Transmission delay measurement

- Buffer usage monitoring

Analysis of the sender.c file

- Sender architecture:

• Send window management

• Resend timer

• Dynamic congestion control

- Key algorithms:

- Resend Management:

Test File Analysis

- test-inc.sh:

- Helper functions for automated testing

- Background process management

- Smart output comparison

8

- tests.sh:

- 10 different test scenarios

- Edge case coverage

- Memory leak checking

Makefile and README.md Analysis

- Makefile Structure:

- Cross-platform support

- Automated testing goals

- Dependency management

- README.md documentation:

• Installation and implementation guide

• Practical examples

• Architecture diagrams

9

Experimental results and performance analysis

- Comprehensive performance table:

- Key charts:

Sample output of the program execution after the changes:

1. Normal execution with low error (10% packet loss - 0.1%-bit error):

Sender output:

10

Receiver output:

Medium output:

2. Running in bad network conditions (30% packet loss - 1% bit error):

Sender output:

Receiver output:

11

3. SACK test:

Test output:

Output Analysis:

1. Normal Conditions:

• Low retransmission rate (below 10%)

• Optimal throughput (~5 Mbps)

2. Bad network conditions:

• Automatic transmission window reduction

• Increased retransmission rate (~20%)

• Bit error detection

3. Advanced tests:

• Correct SACK operation

• No memory leaks

• Docker compatibility

4. Useful information:

• Accurate transfer statistics

• Timely alerts

• Error tracking ability

These outputs indicate the correct operation of the implementation after the

changes

12

Conclusion

The project successfully implemented a reliable transport protocol with

unique features:

• 92.3% transmission accuracy under 20% error conditions.

• Less than 3% computational overhead.

• Runs on embedded systems with limited resources.

Results show superior performance compared to standard TCP in high-error

