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Abstract
In this paper, extension of the 1-D adaptive filter schemes to 2D formation and the new 2D adaptive filters are designed.

The results of proposed scheme are compared with 2D variable step-size normalized least mean squares, the 2D VSS affine

projection algorithms, the 2D set-membership NLMS, and 2D SM APA. The performance of proposed scheme is compared

with other reported methods for 2D adaptive filter design. Based on simulation results, it is demonstrated that the proposed

method can achieve 85% and 90% reduction in normalized mean square error and normalized maximum error mean,

respectively. Moreover, the proposed 2D-ANC filter applied for reconstruction of a biomedical image shows 6 dB signal-

to-noise ratio improved as compared to recently reported algorithm.

Keywords 2D ANC � 2D VSS NLMS � 2D SM NLMS � 2D SM APA � Biomedical image

Introduction

Adaptive filter algorithms have numerous applications in

electrical engineering [1–3]. For the past two decades, one-

dimensional as well as the two-dimensional adaptive filter

has received a lot of thoughts [4] and the attributes of these

filters of taking into consideration the nonstationary sta-

tistical property as well as statistical correlation of the two-

dimensional space make this scheme attractive to

researchers. The application of this filter scheme for the

field of image processing ranges from de-noising of image,

enhancement, cancellation of noise, two-dimensional line

enhancer and identification of system. The least mean

squares adaptive scheme (LMS) which was originally

proposed in 1D was stretched out to two-dimensional

spaces in [5]. This scheme was used for measurements of

nonstationary images. In paper [6], another two-dimen-

sional LMS scheme is presented which uses the block

diagonal-based scheme for filter designing. This

scheme was used for the McClellan transformation. The

scheme presented in [5] is a stretched out version of its 1D

opposite match.

The 2D scheme is an intriguing concept with the

advantage of simple architecture, but this scheme is highly

delicate for changes in eigenvalues, and the rate of con-

vergence is too slow which is not desirable. For over-

coming these problems, the normalized LMS (NLMS)

scheme was presented. In this scheme, the effect of mag-

nitude on rate of convergence was taken into consideration.

In paper [7], filter presented relies on affine projection

scheme (APA). The presented scheme gives the advantage

of freely selecting the projection vectors. The efficiency of

the presented scheme increases when the host data possess

a strong correlation. Unfortunately, this improvement

comes at the expense of increased algorithm complexity. In

paper [7], another APA scheme was presented for linear

filtering. The simulation results display the fast conver-

gence and good track down attributes of the scheme. In

paper [8], a recursive LMS scheme is presented in two-

dimensional spaces. When the scheme was extended from

1D to 2D space, the complexity of algorithm increased.
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The 2D RLS has good performance in many applications,

but the cost that we have to pay to enjoy its abilities is so

expensive; therefore, we did not consider this algorithm. In

2D adaptive filter algorithms, the small changes of the step

sizes can produce a considerable change in adaptation

speed and accuracy.

Therefore, the optimal step-size selection is important in

different applications. This selection is usually attained by

trial and error method. Furthermore, an adaptive system

with a constant step size cannot efficiently control its

parameters. To overcome this problem, the time-varying

step-size technique was presented in [7]. In [7], the variable

step-size APA (VSS APA) and variable step-size NLMS

(VSS NLMS) algorithms for one-dimensional case were

presented. The same approach in [8] was successfully

extended to the other adaptive filter algorithms in [8]. In

this paper, with the purpose of using variable step size in

2D applications, we extend the approach in [5–8] to

establish two new 2D adaptive filter schemes which are

referred 2D VSS APA and 2D VSS NLMS algorithms. In

simulation results section, we demonstrate the good per-

formance of the proposed algorithms in adaptive noise

cancellation in digital images for image de-noising.

Unfortunately, when we use time-varying step size, we

have to pay its cost, because of increasing the computa-

tional complexity. Another way to overcome the problem

of existence trade-off between low misadjustment and high

convergence speed contemporaneous is using the concept

of set-membership (SM) filtering. In this method, by defi-

nition an upper bound on the estimation error, the number

of adaptation of filter coefficients is reduced. The one-di-

mensional SM NLMS algorithm and the SM APA were

proposed in [7, 8], respectively. For reducing the com-

plexity in two-dimensional spaces applications, a new 2D

SM adaptive scheme was developed. The simulation results

of the two-dimensional SM NLMS and SM APA confirm

the higher efficiency of the scheme in noise elimination. In

the traditional filter schemes, the coefficients of filter are

updated to full extent. For reducing the difficulty, other

filter schemes making use of partially updated coefficients

were brought forth. Based on this approach, the filter

coefficients to be modified are opted in a manner so as to

maximize the efficiency [6–9].

The one-dimensional schemes like SPU NLMS and SPU

APA are popular cases of adaptive filters [6–9]. To reduce

the computational complexity of conventional 2D NLMS

and 2D APA algorithms, we extend the SPU approach to

2D structure to establish the 2D SPUNLMS and 2D SPU

APA. In two-dimensional filter schemes, selection of

parameters is not clearly defined. These parameters are

usually adopted by means of trial and error method. In the

presented paper, we study both previous and new two-di-

mensional spaces schemes simultaneously. As we know,

each algorithm has different behaviour in various applica-

tions of adaptive filters. So, we consider the performance of

the presented algorithms in 2D ANC for de-noising of

images.

These schemes are faced by many obstacles which

include rate of convergence, analysis of nonlinear and

nonstationary process, partial complete overlap of the

signal and bandwidth of noise signal. These setbacks are

countered by means of evolutionary schemes commonly

referred as particle swarm optimization (PSO) employed

for 2D adaptive filter design. Literature survey reveals the

2D ANC filter based on MPSO has not yet been reported.

The main inspiration for this work is to develop a 2D ANC

filter relying on PSO for intelligent recovery of biomedical

image. This is shown that this scheme attains much satis-

factory performance parameters in comparison with filter

relying on LMS, NLMS, VSS NLMS, VSS APA, SM APA

and SPUNLMS schemes in two-dimensional spaces. The

architecture of presented ANC filter scheme in two-di-

mensional spaces is an intelligent approach for removing

noise from bio-medical images which give better SNR,

MSE, ME and correlation factor.

Design 2D-ANC Filter Using Particle Swarm
Optimization Technique

Based on the chronological order of research finding which

includes the design presented, procedure proposed the

adaptive filters are said to posses the ability of self-learn-

ing. This property is very useful in reducing the noise of a

host signal; with every iteration the error is minimized

[10–17].

The filter scheme presented relies on gradient-based

approaches like LMS and RMS schemes [14]. In past few

years, evolutionary schemes like MPSO, PSO, CS, MCS

and ABC, ABC-MR were used for selection of most

favourable filter parameter values for intelligent recon-

struction of one-dimensional signal [14]. Hence, in the

presented paper MPSO and gradient relying approaches are

used for designing the ANC filter.

The flow diagram of 2D-ANC filter based on MPSO is

displayed in Fig. 1. The noisy MRI brain image (d(i, j))

involves the pure image (x(i, j)) and noise (v(i, j)). In case

of MRI brain image, v(i, j) consists of Gaussian distur-

bance. These types of disturbances are additive and posses

very less correlation with (x(i, j)). In the presented work,

d(i, j) is input from data base of MIT-BIH [18]. In Fig. 1,

v1(i, j) is the disturbances generated using MATLAB. It is

observed that the v1(i, j) is correlated with v(i, j) but have

very less correlation with (x(i, j)). The v1(i, j) is standard

noise disturbance (input) of linear FIR model in two-di-

mensional spaces, which is clearly defined in lattice space
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of regular interval (i, j) e [N1, N2], where N1 and N2 rep-

resent order of input. The outcome of the FIR digital filter

in two-dimensional spaces is given as below:

y i; jð Þ ¼
XM1

t¼o

XM2

l¼0

a t; lð Þx i� t; j� lð Þ ð1Þ

where x(i, j) is the reference signal, a(t, l) is coefficients

of the model, and M1 and M2 represent order of FIR

filter. Typically, the two-dimensional spaces signal is

represented in the form of matrix. Therefore, the weight

matrix a(i, j) and the input matrix x(i, j) are introduced

as

ak i; jð Þ ¼

a 0; 0ð Þ . . . :: a 0;M2 � 1ð Þ
a 1; 0ð Þ . . . . . . a 1;M2 � 1ð Þ

: : : :
a M1 � 1; 0ð Þ . . . . . . a M1 � 1;M2 � 1ð Þ

2
664

3
775

ð2Þ

xk i; jð Þ ¼

x i; jð Þ . . . :: x i; j�M2 þ 1ð Þ
. . . . . . . . . . . .. . .
: : : :

x i�M1 þ 1; jð Þ . . . . . . x i�M1 þ 1; j�M2 þ 1ð Þ

2

664

3

775

ð3Þ

where k is number of iterations and 0 B k B N1N2. Had-

houd expressed in [5] that the weight matrix and the host

matrix can be mapped into one-dimensional structure by

lexicographic ordering. Equations (4) and (5) present the

one-dimensional form of Eqs. (2) and (3).

ak i; jð Þ ¼ a 0; 0ð Þ. . .. . .a 0;M2 � 1ð Þa 1; 0ð Þ. . .a M1 � 1;M2 � 1ð Þ½ �T

ð4Þ
xk i; jð Þ
¼ x i; jð Þ. . .. . .x i; j�M2 þ 1ð Þx i� 1; 0ð Þ. . .x i�M1 þ 1; j�M2 þ 1ð Þ½ �T

ð5Þ

Both vectors x(i, j) and a(i, j) have dimensions

(M1M2) 9 1. From Eqs. (4) and (5), Eq. (1) can be stated

as

ykði; jÞ ¼ aTk i; jð Þxk i; jð Þ ð6Þ

The error signal (e(i, j)) is computed as the difference of

d(i, j) and y(i, j). This in turn is input to the ANC filter in

every loop run. The iteration continues until e(i, j) noise is

minimum. The final outcome (x0(i, j)) is almost equivalent

to x(i, j). The cost function for e(i, j) is defined as:

nkði; jÞ ¼ E e2k i; jð Þ
� �

ð7Þ

where ek (i, j) is the error signal at the kth iteration and is

given by

ekði; jÞ ¼ dk i; jð Þ � aTk i; jð Þxk i; jð Þ ð8Þ

where dk (i, j) is the desired signal. The aim of 2D-LMS

scheme is to obtained the most favourable weight matrix so

that the cost function, nk(i, j), is minimum. To solve non-

linear Eq. 7, the MPSO technique can be used. This

scheme starts with initialization of arbitrary swarm having

population M and R unidentified parameters whose most

favourable values are to be calculated. This scheme re-

members and in a sequential pattern substitutes the most

favourable position parameter of every individual particle

(pbest, i = 1, 2, …, M) along with the group velocity

parameter (gbest). The traditional PSO schemes encounter

several obstacles when the population size is large. In order

to avoid these conditions, PSO is modified by bringing a

new parameter in the equation known as the inertia weight

(w). In MPSO, the velocity ðvijðnþ 1ÞÞ and position

ðvijðnþ 1ÞÞ of each particle are modified in accordance

with the following eq:

vijðnþ 1Þ ¼ w� vijðnÞ þ c1 � rð0; 1Þ � gbest � pijðnÞ
� �

þ c2 � rð0; 1Þ � pbestij � pijðnÞ
� �

ð9Þ
pijðnþ 1Þ ¼ pijðnÞ þ vijðnþ 1Þ ð10Þ

where vij(n) represent velocity vector at nth loop count, r(0,

1) represent vector of arbitrary values in range of (0, 1),

and c1, c2 represent coefficients of acceleration in the

direction of gbest and pbest, respectively. The location

improvisation is carried out at the scenario when current

location p(n ? 1) has better performance than previous

location p(n). The PSO technique is used to minimize the

objective function (Eq. 7) which provides the coefficients

(h(n), n = 1, 2,…, m) of optimum 2D-ANC-MPSO. In this

process, the main objective is to evaluate the pbest and gbest
for each particle and update their values in every iteration.

The iteration ends when the fitness function ((u1)) given

Fig. 1 A obstruct figure of 2D

ANC filter with MPSO

technique
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below becomes less than a pre-specified tolerance value

(ep = 0.1).

u1 ¼ min nkð Þ ð11Þ

where K is the initial input of MPSO. It may be noted that

exploration and exploitation are two main characteristics of

MPSO. Exploration shows how more search area can be

covered by the technique for better performance, whereas

exploitation indicates accurate convergence to a particular

point. These characteristics depend upon the w parameter.

A higher value of w gives more exploration, while

exploitation is better for lower value of w. Therefore, w is a

critical parameter which must be updated carefully. Ini-

tially, the w is assigned a high value which is lowered as

iteration goes towards the end. The implementation steps of

MPSO are as follows:

Step 1 Start with the initialization of position and

velocity for every particle of the population.

Step 2 Evaluate the fitness value ((u1)) of every

individual point of the population using Eq. 11.

Step 3 Evaluate the point with largest fitness value and

reset its position to obtain lowest fitness value. If lowest

fitness value is acceptable, then update the position

otherwise assign new random value to the particle

according to Eqs. 9 and 10 for position and velocity.

Step 4 For every point, perform comparison of the fitness

value with pbest and update the value only if it is superior

than the pbest.

Step 5 Evaluate the best point in accordance with its

fitness value and update if it is superior than gbest.

Step 6 Perform the check for final criterion, if satisfied

stop the loop, otherwise repeat from step 3.

From Eqs. 9 and 10, it is clear that w is an important

parameter affecting the velocity and position of each par-

ticle in PSO. Depending on selection of w, the PSO tech-

nique is classified into different categories. In Constant

Weight Inertia (CWI) PSO, the w is kept constant between

0 and 1 for each particle and at any time instant, the inertia

weight (wt) is given by:

wt ¼ c ð12Þ

However, a constant value of wt may not lead to opti-

mum exploitation and exploration in the simulation process

for various signals. Therefore, for better performance of

MPSO, adaptability in wt is required. In case of Dynamic

Inertia (DI) MPSO [11], the wt is updated in each iteration

as:

Wt ¼ 0:5þ Rand �ð Þt
2

ð13Þ

where Rand(.)t is the random function that generates

numbers uniformly distributed between 0 and 1. Since new

wt obtained in each iteration has no relation with the pre-

vious value, there is difficult to choose the random value to

achieve better exploitation and exploration. To overcome

this, a linear decay inertia (LDI) MPSO is used in which wt

is updated in each iteration linearly between maximum and

minimum values. The iteration process starts with maxi-

mum value of wt and decremented as the iteration pro-

gresses. For LDI MPSO, the wt after each iteration is

written as:

Wt ¼ wmax �
wmax � wminð Þ � t

tmax

ð14Þ

where wmin and wmax are the minimum and maximum

values of wt, respectively, and tmax denotes the maximum

time of iterations. Although LDI MPSO provides better

results for exploitation, exploration is not optimized as per

requirement. For improving exploration, the nonlinear

inertia (NLI) MPSO is used in which Eq. 9 is modified by

introducing nonlinearity as:

Wt ¼ wmax �
wmax � wminð Þ � tmax � tð Þn

tnmax

ð15Þ

where n is the nonlinear modulation index.

Table 1 represents the computation difficulty of 2D

adaptive schemes which were established in this paper. It is

clearly observed that the computation difficulty of 2D ANC

PSO is less than conventional 2D NLMS and 2D NLMS

algorithms

Simulations and Results

The performance of 2D adaptive noise filter is designed

with MPSO evaluated on brain image corrupted with 10 dB

noise as discussed in [16]. In this work, the reference noise

is considered as the Gaussian noise as generated from

MATLAB software. The fidelity parameters such as output

signal-to-noise ratio (SNR), normalized root-mean-square

error (NRMSE), and normalized root maximum error

(NRME) are calculated by different input SNR. These

fidelity parameters are calculated using following equa-

tions [8]:

Input SNRdB ¼ 10 log10
xpure i; jð Þ
� �2

dnoisy i; jð Þ � xpure i; jð Þ
� �2 ð16Þ

Ouput SNRdB ¼ 10 log10
xpure i; jð Þ
� �2

x0filtered i; jð Þ � xpure i; jð Þ
� �2 ð17Þ

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 x0filtered i; jð Þ � xpure i; jð Þ

� �2
PN

i¼1 xpure i; jð Þ
� �2 � 100

vuut ð18Þ
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NRME ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abs x0filtered i; jð Þ � xpure i; jð Þ

� �

abs xpure i; jð Þ
� �

s

� 100 ð19Þ

In response to the noise brain image, the enhanced

image of 2D ANC output using LMS, NLMS, and MPSO

schemes is represented in Fig. 2. The image sources of

Fig. 2a represent the corrupted brain-axial image, Fig. 2b

represents the enhanced brain-axial image based on 2D

ANC VSS NLMS, Fig. 2c represents the enhanced brain-

axial image based on 2D ANC MPSO, Fig. 2d represents

the corrupted brain-web image, Fig. 2e represents the

enhanced brain-axial image based on 2D VSS NLMS,

Fig. 2f represents the enhanced brain-axial image based on

2D ANC MPSO, Fig. 2g represents the corrupted brain-

nerve image, Fig. 2h represents the enhanced brain-nerve

image based on 2D VSS NLMS, and Fig. 2i represents the

enhanced brain-nerve image based on 2D ANC MPSO. It is

can be seen that the 2D ANC filter with MPSO technique

improved the quality of brain image. This means brain

image information can be more accurately detected using

2D ANC MPSO technique. Figure 3 compares the varia-

tion of output SNR with input SNR for four different

algorithms. As observed, the output SNR performance of

2D ANC MPSO technique is better as compared to that of

2D ANC VSS LMS and 2D ANC SM NLMS algorithms.

The proposed 2D ANC MPSO technique gives nearly 6 dB

improvement in average output SNR in comparison with

recently reported 2D-ANC VSS NLMS technique [14].

Figure 4 illustrates the changes of NRMSE as a function of

different input SNR for 2D adaptive filter based on four

various schemes. As observed, the NRMSE of 2D adaptive

filter using MPSO technique is much lower as in compar-

ison with other algorithms. Typically, the 2D ANC MPSO

algorithm achieves 85% reduction in average NRMSE as

compared to the 2D ANC VSS NLMS algorithm. Figure 5

represents NRME of output MRI brain image for various

levels of input SNR. 2D adaptive filter with MPSO tech-

nique provides considerable decrease in NRME as com-

pared to other algorithms for all values of input SNR. The

average NRME of filtered brain image with MPSO algo-

rithm is found to be 90% lower in comparison with 2D

ANC VSS NLMS technique. The performance fidelity

parameters of proposed 2D ANC filter using MPSO tech-

nique are also compared with other reported 2D ANC VSS

Table 1 Computation difficulty

of various algorithms
Techniques Product operation Add operation

2D-ANC(LMS) [13] 3M1M2 ? 1 (M1 ? 3)(M2 ? 5) ? M1M2

2D-ANC(NLMS) 2M1M2 ? 1 (M1 ? 3)(M2 ? 5) ? 8

2D-ANC (PSO) M1M2 ? 1 M1 ? M2 ? 1

Fig. 2 a The corrupted brain-

axial image. b The enhanced

brain-axial image based on 2D

ANC VSS NLMS. c The

enhanced brain-axial image

based on 2D ANC MPSO.

d The corrupted brain-web

image. e The enhanced brain-

axial image based on 2D VSS

NLMS. f The enhanced brain-

axial image based on 2D ANC

MPSO. g The corrupted brain-

nerve image and h The

enhanced brain-nerve image

based on 2D VSS NLMS. i The
enhanced brain-nerve image

based on 2D ANC MPSO
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NLMS, 2D ANC SM NLMS technique applied on MRI

brain image. Table 2 gives the output SNR for different

values of input SNR for various techniques. The simulation

results given in Table 3 clearly indicate that the output

SNR with 2D ANC filter based on MPSO technique is

much higher as compared to other techniques for all values

of input SNR. The NRMSE and NRME of filtered brain

image are given in Tables 4 and 5, respectively, for dif-

ferent techniques.

It is observed that 2D ANC filter with MPSO technique

provides much lower value of both NRMSE and NRME in

comparison with other reported algorithms. For the testing

of adaptation time, the square error of 2D adaptive filters is

analysed with mean and standard deviation. Table 5 lists

the mean and standard deviation (SD) of various schemes

along with CPU time. The MPSO-based 2D adaptive filters

are having smallest mean, SD and computation difficulty.

Fig. 3 SNR comparison of the

2D-ANC filter using MPSO,

VSS NLMS, SM NLMS and

SM APA algorithms

Fig. 4 Change of NRME with

different input SNR for the 2D

ANC filter using SM APA, SM

NLMS, VSS NLMS and MPSO

algorithms
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Fig. 5 Change of NRMSE with

different input SNR for the 2D

ANC filter using SM APA, SM

NLMS, VSS NLMS and MPSO

algorithms

Table 2 SNR comparison of

different schemes on MRI

image

SNRin (dB) SNRout (dB)

2D SM APA 2D SM NLMS 2D VSS NLMS 2D ANC MPSO

- 3.0 5.65 7.44 9.09 15.67

0.5 16.12 21.45 34.41 43.96

3.0 28.54 32.69 41.32 52.84

6.0 32.31 38.68 49.78 64.87

10 36.23 46.49 56.23 76.25

Table 3 NRMSE performance

of MRI image for different

schemes

SNRin (dB) NRMSE (9 10-4)

2D SM APA 2D SM NLMS 2D VSS NLMS 2D ANC MPSO

- 3.0 95.43 84.54 62.51 46.02

0.5 18.32 14.24 11.78 7.06

3.0 15.43 13.50 9.69 2.76

6.0 12.76 7.25 5.93 1.76

10 9.86 6.72 3.61 0.08

Table 4 NRME performance of

various schemes
SNRin (dB) NRME (9 10-3)

2D SM APA 2D SM NLMS 2D VSS NLMS 2D ANC MPSO

- 3.0 76.64 58.80 52.10 17.86

0.5 70.87 38.26 29.02 13.44

3.0 68.76 27.50 23.69 12.32

6.0 45.98 25.25 24.03 0.96

10 32.80 23.02 22.01 0.76
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Conclusion

An efficient 2D adaptive filter using MPSO technique has

been developed for enhancing the MRI image. A perfor-

mance comparison of proposed 2D adaptive filter using

MPSO technique has been carried out with other reported

techniques. The simulation results demonstrate that sig-

nificant improvement in SNR, NRMSE, NRME, and

coherence factor can be achieved from proposed 2D

adaptive filter design when compared with, 2D VSS

NLMS, 2D SM NLMS and 2D SM APA algorithms.

Moreover, the 2D adaptive filter based on MPSO

scheme requires lesser computation time. Therefore, the

2D adaptive filter with MPSO algorithm is a most efficient

approach for de-noising the MRI image.
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Table 5 Mean, SD and CPU

time of adaptive filters
Parameter 2D SM APA 2D SM NLMS 2D VSS NLMS 2D ANC MPSO

Mean 2.78 3.76 2.98 1.34

SD 38.67 26.56 22.54 16.21

CPU time (s) 2.43 1.897 0.651 0.084
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