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ARTICLE INFO ABSTRACT
Keywords: Due to the increasing presence of electric vehicles (EVs) in urban electricity distribution networks, distribution
Electric vehicle network operators face the challenge of energy management. A smart parking lot (SPL), renewable energy
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sources (RESs) such as photovoltaic systems (PV) and wind turbines (WT), and local dispatchable generators
(LDG) such as microturbines (MT) and fuel cells (FC) are integrated as a microgrid (MG) while an energy
management system is presented in this study which considers the uncertainties of wind speed, solar irradiation,
and load consumption. The optimal operation of the SPL, which serves as a load and energy generation source for
the distribution network, is done in this article with the goal of lowering costs. To cut costs, demand response
program (DRP) based on a time of use (TOU) tariff is utilized, which moves a part of load from on-peak to off-
peak time intervals, flattening the load curve. The goal is to reduce the operational expenses of the upstream grid
(UG), LDGs, and SPL while taking into account the technical and physical limits of the units. Furthermore, for
dealing with the uncertainties of load consumption and wind generation, this research employs a new uncer-
tainty modeling method based on Hong's two-point estimate method. The suggested model is investigated by
applying the General Algebraic Modeling System (GAMS) software and is formulated as mixed linear pro-
gramming (MIP). The suggested model includes both a spinning reserve of LDG and a SPL, and the simulation
results verified that the DRP has a good impact on lowering operation costs.

1.1. Problem and procedure definition

Increases in the penetration of EVs and renewable sources may cause
challenges for power systems that result to significant increment in peak
load, renewable energy overproduction within low-load time intervals,
and increased ramping need. The transportation sector's energy con-
sumption is predicted to climb in the next years as a result of the massive
increase in electric car use [4]. Global penetration of EVs into the
transportation industry of 135 million by 2030 is anticipated by the
International Energy Agency in its Energy Outlook report [6,7].

Because most electricity consumers do not benefit from the advan-
tages and benefits of the power market and lack the skills to contribute
to the electricity market, power production and transmission entities
were the legislators of the power industry in the conventional structure
of the power grid. The advent of certain issues, such as higher servicing
costs, lower efficiency and system performance, and voltage drops
during peak hours, caused several power markets to collapse and impose
blackouts. As a result, power costumers tended to receive power at fixed

1. Introduction

Governments and international organizations all around the world
are increasingly working on instructions to protect the environment for
human health. The transportation fleet, which accounts for a major
share of global pollutant gas emissions, is a critical contributor to rising
greenhouse gas emissions [1]. Challenges of energy security and climate
change are motivating a transition away from fossil fuels and toward
alternative fuels and electric vehicle (EV) technologies that can guar-
antee long-term sustainability [2]. Moreover, transportation accounts
for one-third of total energy use in the United States, with fossil fuels
accounting for 97 % [3]. EVs have been advocated as a potential option
for lowering fossil fuel consumption while also addressing environ-
mental challenges including climate change.
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Nomenclature

Indices

t Time indicator

j LDG indicator

i EV indicator

k WT indicator

D PV cell indicator

f Auxiliary variable
Parameters

P WT rated power

Pyt WT output power

vk WT lower bound speed
Ve WT nominal speed

vE WT upper bound speed
Vv WT forecasted peed

P PV output power

P PV conversion efficiency
& PV area

Tq PV ambient temperature
G PV solar radiation

dy LDG power cost coefficients

P’I;DG’ max LDG maximum power

PEDG, min LDG minimum power

MUT; LDG minimum up-time

MDT; LDG minimum down-time

&, tofr LDG duration of continuous on/off status
§))le) LDG startup cost

RD RV LDG ramp-down/up rates

W%DtG Reservation fee of LDG

ll/iE’vt Reservation fee of EV

Y " LDG minimum up time

D " LDG minimum down time

e Power market price

Ngy EVs number parked in SPL

P& Upper bound of exchangeable power between MG and UG
At Sampling time for counting available EVs in SPL

Pich, max Charger maximum power when charging EV

Phch, max Charger maximum power when discharging EV
SOCL.x  EV maximum SOC

SOChyin  EV minimum SOC

ASOCL .« EV maximum possible charge/discharge rate
Té Approximated EV presence time in the SPL
Optimal EV charging price in the SPL

Optimal EV discharging price in the SPL

i

7Ch, Ev
1

TDch, Ev

Nvae EV battery efficiency in V2G mode
ngav EV battery efficiency in G2V mode
SOCh4wa EV initial SOC at departure time from SPL

Nmax Maximum permitted switching times between charge and
discharge

ow Predicted wind speed error

Wpy Predicted solar radiation error

load§ Base load

DRmax Maximum load size contributing to DRP

incmax Maximum increase load size

M-t Auxiliary variable for EVs presence status in the SPL

a Percentage of EV discharged power for contributing to
spinning reserve

& Estimated EV entrance time to the SPL

& Estimated EV departure time from the SPL

Variables

Pie MG and UG power exchange

Citls LDG scheduled power cost

SCile  LDG startup cost

SRif;  LDG scheduled spinning reserve

Pt g, EV charged power

P4 g, EV discharged power

SRkt Spinning reserve scheduled for EV

Pils LDG scheduled power

Soctt  EVSOC

ASOC* ¢ Energy changes amount in two continuous time intervals
SOCheparture Conclusive SOC of EV when departing SPL

Up;, ¢ Auxiliary variables used in minimum up-time model of
LDG

Dny, ¢ Auxiliary variables used in minimum down-time model of
LDG

load" Load considering the application of DRP

DR' DRP participation amount

idr* Load transferred between two time intervals

load’,.  Increased load amount

inc* Increased load size

Ut Binary variable used for defining the on/off status of LDG
in the SPL

Wit Binary variable used for defining the charge status of EV in
the SPL

Whd, Binary variable used for defining the discharge status of EV
in the SPL

SRS®'  Binary variable used for defining the participation of EV in

spinning reserve

prices without considering the volatility of the electricity market. Other
issues include reduced fossil fuel resources, increased environmental
pollution and greenhouse gas emissions [8]. Accordingly, decision-
makers and the electrical business policymakers are being pressed to
make decisions about electrical industry restructuring [9]. Application
of demand response programs (DRPs), making smart microgrids (MGs),
and developing smart electric vehicle (EV) parking lots are some of the
methods that have been used in the field of restructuring the electrical
sector to increase system efficiency and performance while reducing
pollution [10]. The energy sector is currently studying a unique solution
known as the EVs smart parking lot (SPL) to manage the charging and
discharging of electricity as well as energy supply challenges [11].
According to Fig. 1 there is a central controller which gathers all the
required information from the various sources and the market operator,
upstream grid and parking lot and optimizes the problem and specifies
the optimal production of all sources and the hourly charge and

discharge schedule of the parking lot.

In addition, microgrid central controller utilizes point estimate
method during optimization to address the uncertainties of wind and
load. This process helps the operator to consider uncertain situations
and utilize the information which is more reliable.

Some challenges, such as rising electrical energy demand, dimin-
ishing fossil fuel resources, and rising greenhouse gas emissions, are
prompting increased investment in the field of renewable resources
[12]. Smart grids will play an essential role in supplying electrical en-
ergy demand by changing the structure of power networks and moving
to make power systems smart [13]. LDGs in the MG will have major
advantages such as increased efficiency, reduced losses, and reduced
environmental effects, and distributed generation power will be
achievable with the utilization of renewable energy sources such as
photovoltaic (PV) cells and wind turbine (WT) [14], as well as fuel cell
(FC) [15]. DRP has given active consumer participation to improve the
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Fig. 1. A graphic explainer of the microgrid optimization process.

power system operation, and DRP in a critical state can lower system
demand in a short period [16]. This program moves the load from peak
to off-peak time intervals, resulting in a smoother load curve and lower
operational expenses. The time of use (TOU) DRP was utilized in this
study [17]. This program will benefit consumers, society, and the elec-
trical firm by lowering electricity prices, improving service levels, and
reducing harmful environmental effects. It is believed that the optimal
scheduling of renewable energy systems and DRP will increase the
reliability and security of the MG. However, renewable generation and
load fluctuations are non-dispatchable and their participation in MG
increases the uncertainties of scheduling. To achieve optimal production
of various sources and reduce operating costs, proper day-ahead
scheduling and correct financial decisions are required in MG. There-
fore, the uncertainties of scheduling pose challenges for the operator in
achieving an optimal simulation for the MG.

1.2. Literature review

Researchers have studied several SPL energy management ap-
proaches in recent studies to charge and discharge EVs in a smart
parking lot. For example, while parking lots connect grid and EV for
exchanging electrical energy between them, some suggestions are pre-
sented in [18], such as using vehicle-to-parking (V2P) and parking-to-

vehicle (P2V) instead of vehicle-to-grid (V2G) and grid-to-vehicle
(G2V), and a random approach is presented based on statistical data
and general instructions on charging EVs for estimating the daily impact
of having EVs. In [19], the problem of charging an electric vehicle in a
parking lot is solved by applying the game theory. In [20], two studies
were provided that were compared in an attempt to establish the best
charging strategy, one of which related to parking lot service during the
day and outside of commercial areas, and the other to parking lot service
at night and outside of residential areas. The authors in [21] presented a
discharge scheduling system for EVs in parking lots based on the real-
time movement and park pattern of the EV, with a concentration on
the personal parking lot. The authors in [22] presented the ideal
behavior of electric vehicles in the energy market and reserve, consid-
ering DRP and EV owner satisfaction.

The authors in [23] provided a probabilistic strategy for determining
the ideal allocation of an EV parking lot in the distribution network and
determining the optimal capacity while considering EV's variable
driving behaviors. The authors in [24] established an online smart de-
mand coordination amongst EV in dispersed systems based on the fuzzy
system distributing points for EVs. For molding the participation of EV
SPLs with PV cells in reserve market and in ancillary services provision,
a Mixed Integer Linear Program (MILP) is presented in [25]. In [26], EVs
battery in the SPL is studied as an energy storage source in
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multifunctional systems, and to reach this goal, the authors have
modified energy hub approach for considering reservation sources as
ancillary services and power generation participation, based on the
profitable role of smart parking lot. The optimal placement of the SPL in
distribution networks is done in [27] with the goal of dealing with
voltage drop and power loss in distribution network considering
renewable energy sources such as PV and WT. The authors in [28] have
investigated the conversion of a traditional parking lot to an SPL in
Tehran, Iran, allowing for large-scale charging and discharging of
electric vehicles.

The authors in [29] proposed a model of MG management's energy
resources, taking into account some constraints related to optimal
probabilistic operation of the SPL and renewable sources in MG. In [30],
a scheduling model is proposed for a large number of EVs in the urban
SPL, taking into account various constraints connected to the EV battery
and its capacity. In [31], a stochastic scheduling model is introduced for
charging and discharging EVs in the SPL, which includes PV and LDG.
The authors in [32], performed two optimizations, the first of which
studies optimal size and location of installed distributed generators in
the MG with the goal of lowering costs and losses, and the second of
which studies the optimal size of combined renewable energy systems
with the goal of lowering costs and determining the appropriate number
of decision variables. A multi-objective strategy is described in [33] to
find the ideal size and location of the SPL in urban areas that serve as an
assistant for drivers in reaching a station from anywhere in a city
considering an appropriate distance. In [34], a multi-objective approach
is presented for determining the optimal number, location, and size of
SPL in distribution systems, as well as the generated power by each
energy source in the system. Table 1 is provided in the following to
summarize the literature with a focus on operation optimization of
microgrids with RESs and EVs/EV parking lots with RESs.

1.3. Procedure and contributions

The evaluated studies looked at some of the most relevant conse-
quences; nevertheless, further research is needed to address the un-
certainties of renewable resources and load consumption in optimal
energy and reserve scheduling of MG with DRP. Comparing alternative
methods to model uncertainties when reaching optimal values, on the
other hand, is a research gap around this topic, according to the authors'
best knowledge.

The energy management of the SPL in the MG is discussed in this
study, which takes into account the SPL's participation in the energy
market and reserve, as well as the use of DRP to lower operation costs.
The amount of charge and discharge of an EV, as well as the dispatched
power of an LDG containing MT and FC, were compared, and solved in
four distinct situations to demonstrate the effects of SPL participation in
the reserve market and the use of DRP in cost reduction.

Furthermore, a novel optimization model based on the concepts of a
stochastic method called two-point estimated method (2-PEM) has been
proposed in this study for addressing the uncertainties of renewable
generation and load consumption in order to approach optimal results
for short-term MG scheduling. To put it another way, a risk management
model based on the 2-PEM is offered to protect the operator from
financial losses resulting from MG uncertainty. This research aims to
reduce an MG's operating costs while taking into account the unpre-
dictability of load use and renewable energy supply. As a result, by
varying wind and solar production and load consumption, the 2-PEM
approach is employed to ensure that the schedule remains optimal.
This method has several advantages over other methods for modeling
uncertainty. To begin with, this method does not necessitate a large
amount of data and instead models using only a few initial moments
derived from the incoming data. Second, this method employs deter-
ministic methods like the Monte Carlo method, with the exception that it
requires a significantly fewer number of executions, resulting in a very
quick simulation time and entirely reliable and useable results. As a
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Table 1
Summary of the literature around EV SPLs.
Reference ~ Main objective Optimization Considerations Published
procedure year
[35] Analyzing the Electrical Studying the 2019
influence of EV. Power System impact of
PLs with Analysis changes in
rooftop PVs on Software seasonal weather
distribution (ETAP)
systems environment
[11] Optimal CPLEX solver Studying 2021
management of  of GAMS uncertain
EV PLs with parameters by
renewable proposing a
energy sources robust-stochastic
model
[36] Energy Genetic Investigating 2021
management of  optimization encouragement
EV PLs algorithm and punishment
policies for EV
drivers in PLs
[37] Operation CPLEX solver Studying DR 2018
optimization of  of GAMS programs and
smart vehicle to grid
distribution (V2G)
systems with
EV PLs
[38] Satisfaction of Fuzzy particle Investigating 2018
charging swarm allocation of
demand and in optimization resources to EV
minimizing the  algorithm PLs
energy cost of
the EV PL
[39] Optimization MATLAB Considering the 2019
and software satisfaction of EV
management of  environment drivers and a
EV SPLs real-time model
[40] Dynamic Backward/ Studying 2020
planning of EV forward sweep uncertainty of
PLs load flow SPL investment
approach
[41] Maximizing CPLEX solver Investigating the 2017
profit of smart of GAMS uncertainty of
distribution RERs and EVs
companies and
EV PLs
[42] Energy MIP in GAMS Modeling price 2020
management of  software uncertainty by
EV PLs environment application of
considering robust
uncertainty optimization
model

result, the GAMS software was used to optimize the problem under
investigation.

1.4. Highlights

In order to specify the contributions and highlights of the paper this
subsection is added to introduction. The important contributions of this
paper are highlighted as follows:

Integrated schedule and management of LDG and SLP of the EVs in
the MG.

Using the SPL to make it easier for EV owners and MG operators to
interact and communicate.

Using demand side management programs to decrease the operating
costs, smoothen demand profile and facilitate the load participation
in power demand decrement.

SPL participation in the energy market and reserve, as well as
consideration of DRP at the same time.

For dealing with the unpredictable nature of wind and solar gener-
ation and load consumption, a novel uncertainty modeling algorithm
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based on 2-PEM concepts is being used, which uses deterministic
approaches in solving stochastic situations.

e The competence of the used 2-PEM in addressing the unknown pa-
rameters was evaluated using the MC approach.

1.5. Paper organization

The following is a breakdown of the structure of this paper: In Sec-
tion 2, mathematical modeling is presented that relates to the best use of
the SPL and lowering the cost of the MG in the presence of DRP. Section
3 discusses the 2-PEM approach for modeling uncertainty. The suggested
model was tested in a test environment, and the results were compared
to examine how the SPL affected participation in the spinning reserve
market and how the DRP affected participation in Section 4. Finally,
conclusions based on the acquired results are offered in Section 5.

2. Formulation

Various distributed sources such as PVs, WTs and SPL are considered
in the studied MG. In addition, the UG has been considered to maintain
the stability and reliability of the MG. EVs can play both the role of load
with charging and an energy source with discharging which can reduce
system operation costs. When the EV enters the SPL, some information is
received from the owner by SPL. This information includes the current
SOC of the EV, departure time, the amount of charge required at the time
of departure, battery life and the price of charge and discharge of the
battery. The information received by the SPL is sent to the MG operator
to be used in the optimization process. There is also an interface between
the MG and the upstream network that seeks the optimal MG
performance.

2.1. Objective function

The objective function of this study is to minimize the operating costs
of MG. The objective function of the problem is formulated as follows:

Pl X Tyt
G ) ) . .
r Cling +SCing + (SRipe X Wing) )+
OBJ = Z ;( LDG LDG ( LDG LDG) )
=1
N

i=1

The objective function of the problem includes three segments. The
first segment deals with the costs of exchanging power with the up-
stream network. The second part includes the costs of starting up and
generating power by LDGs and the third part considers the costs of
power exchange between MG and SPL and the costs of charging and
discharging of EVs.

2.2. Wind turbine
A big part of the microgrid's required power can be supplied by WT

units. The equation of power generation by WT is related to wind speed
as below [43].

Journal of Energy Storage 55 (2022) 105540

0 Vi< VEorVv' > vk
Vi— V¥
Pl = w_ﬁx% VESV <V 2
R c
Py VESV <V}

2.3. Photovoltaic system

The power produced by a PV unit depends on solar radiation and
temperature change, which is modeled as the following equation [44].

Ph, =1 xs” x G' x (1-0.005 x (T, —25)) 3)
2.4. LDG

Local distributed generation sources include MT and FC. Egs. (4) to
(6) are related to power generation cost and start-up cost of LDGs [45].

Chho=d x U+ x P, 4
5ClLg > (U — U1 x UDC 5)
SChe >0 (6)

Constraints (7)-(12) are related to LDG units and they can be pre-
sented as below:

Ploe +SRibe < Plpgma X U™ (@]
Pl > P’LDG,mm x U (€))]
Py — Pjpg < RU x U ©)
Pipg = Pipg < RD/ x U (10)
U — i < i Uris (11)

x At (@)

i il i it il i it i1 it
§ ( — Wé, X Peypy X Ty gy + Wpar X Ppaypy X Ape, gy + SRS X SRy, ¥ V’Ev)

- g < | — PP 12)
_[f f<MUT,

Upj-f_{Of>MUTj (13)
- _|f f<MDT;

Dn»'»f*{0f>MDTj as

Egs. (7) and (8) limit the maximum and minimum power output by
these units. The increase and decrease rate of power produced by LDGs
cannot be more or less than certain values modeled by Egs. (9) and (10).
Egs. (11) and (12) restricts the minimum up and down times which each
unit should deal with it.

2.5. Upstream grid

Due to the limitations of transmission lines and feeders, the power
received from the upstream network must be less than the specified
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values modeled by the following equation [46].

Pyl < Pyg (15)

2.6. SPL of the EVs

EVs in the SPL in order to charge and discharge and participate in
providing the required power of the MG with the SPL should respect the
following constraints [47]:

2.6.1. Charging and discharging constraints
The amount of charge and discharge power in each time interval
should be less than a maximum value modeled by Egs. (16) and (17).

Py < Pl mar X Wi x M™ (16)
P;:)rz‘h.EV + SRy, < PiDLh,max X Wgoh x M™ a7

2.6.2. Synchronization constraint

EVs cannot be in both charge and discharge mode at the same time,
which is applied by Eq. (18).
Wei + W < 1x M as)
2.6.3. Switching constraint

Constantly switching the battery between charge and discharge
modes can reduce battery life, so it is limited by Eq. (19).

fy
W+ WL < N a9

i
=ty

2.6.4. EV spinning reserve constraints
Constraints of the spinning reserve related to the EVs of the ILP are
presented in Egs. (20) and (21).

SR <ax P, —xSRS"xM" (20)
SRY, < X iy X Wiy x M @D
2.6.5. EVs SOC

Eq. (22) determines the hourly SOC of each EV in each time interval,
which also depends on the charging and discharging efficiency of each
EV.

SOC* = SOC*! +Pl.(,‘Jh,EV X Ngay — chh,EV/”VZG (22)

2.6.6. EV SOC restrictions
Eq. (23) limits the hourly SOC level of each EV to its maximum and
minimum values. This constraint is modeled as follows:

soct, < SoC™ < SOC!

max (23)
2.6.7. Charge and discharge rate constraints

The difference between the charge and discharge rates of EVs must
be taken into account. For this purpose, constraint (24) has limited the
change of SOC level of EVs to maximum and minimum values.

—ASOC! < SOC™ —SOC"™! < ASOC!

max — max

(24)

2.6.8. Departure SOC of the EVs

For the convenience of the owner of EVs, constraint (25) guarantees
that the EV has maximum power when leaving the SPL. Constraint (26)
also ensures that the SOC level is higher than the arrival charge
throughout the EVs presence in the SPL.
SOCh e = SOC (25)

max
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SOC™ > SOCH

Arrival

(26)
2.7. Demand response program

In this paper, the TOU program has been utilized which shifts the
loads from peak periods to off-peak periods and smoothen the load
profile which can decrease costs [48]. It should be mentioned that DRP
is only able to shift the percentage of the loads which in this paper, only
20 % is allowed to shift. The utilized DRP has been formulated by Egs.
(27) and (28).

load' = (1 — DR') x load), + idr' @7
loady, — load' = DR' x load}, — idr' (28)

Egs. (29)-(32) propose the practical constraints related to TOU
program.

T T
Z idr' = ZDR’ x load;, (29)
=1 =1
load;,, < inc' X load, (30)
DR' < DRmax (€20)]
inc' < incmax (32)

The amount of load transmitted by DRP depends on the hourly price
of power in the network. Therefore, the shifted load in each time interval
can have different values and amounts. However, the sum of the loads
transmitted per hour must be equal to the sum of the contributions to the
DRP. This rule has been modeled by Eq. (29). Eq. 30 states that the
amount of load increase due to DRP in each time interval cannot be more
than a certain value. The percentage of transferable load by DRP in each
time interval cannot be more than a certain value (20 % in this study)
that is limited by Egs. (31) and (32).

2.8. Spinning reserve of MG
If any problem occurs and RES are not able to inject power to the MG,
LDGs and SPL should inject power to the MG and cause balance between

produced power and consumption, Eq. (33) is expressed for this reason
[49].

G N
D SRipg+ Y SRy > (00 % Py +wpy X Phy) (33)
Jj=1 i=1

2.9. Power balance constraint

In order for the microgrid to operate reliably, a balance must be
struck between the output power and the demand load, which is
modeled by Eq. (34) [50]. On the demand side, the new load has been
replaced which is changed by DRPs.

K P G N N
Pug+ D PV + Y Pov+ Y Piog+ Y Py =load + > Pé,
k=1 p=1 Jj=1 i=1 i=1
(€D)]
3. Uncertainty modeling
To formulate the energy systems, several methodologies such as
analytical, approximation, and simulation approaches can be used to
solve various optimization issues depending on their application.

3.1. Point estimate method

The point estimation method (PEM) formulation is a popular
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approximate method because of its excellent accuracy and short pro-
cessing time [51]. As a result, a strategy based on PEM is provided in this
study to address wind, solar and load uncertainty. The disparity between
projected and actual values is characterized as uncertainty. The execu-
tive costs will be greatly reduced by using a more accurate way to deal
with uncertainty. Depending on the type of problem and the factors that
are unknown, several modeling strategies are employed. 2-PEM can be
used by system operators to handle uncertainties because it is accurate
and has a short processing time [52].

According to the authors' best understanding, Hong's 2-PEM is a
useful method for dealing with uncertain issues, including random
variables and statistical data. The whole information of the density
functions of probabilistic parameters is not required by Hong's 2-PEM.
Such a strategy operates based on the approach of unknown input
parameter moments. The raw moments of output variables, such as the
average and variance of the variables, are approximated using PEM.
Using statistical data from random input variables, many moments can
be generated in this manner [53]. The authors will calculate two typical
points known as concentrations using central moments. These concen-
tration locations will be used to locate statistical data that will aid in the
discovery of random output variables. The concentrations of each var-
iable come from a combination of a location and a weight if we assume
as uncertain input variables with a particular mean and a definite
standard deviation. The following equation yields the location:

Xpg = py, + &0y (35)

where, £ ; is the standard position of the uncertain variable x;, as
determined by the equation below:

2 / )’ 2 )’
51,1:§+ rn-&-(%) 751,2:§— m+(§> (36)

The following equations were used to compute the weights of the
uncertain input variable x;.

51.2 éLl

) 2= 37
m(§1_] - 51‘2) e m(§1.1 - 51.2) @7

Wip = —

where, 4, 3 denotes the skewness of the uncertain input variable x;.

3
E[(x—n,)"]
ly=—"—5— (38)
()

Following the computation of concentration points, a deterministic
optimization will be performed, with the results displayed as Z; s = F(x;,
LXL, 2,..X], s ..-Xm, s). Where, Z; s is a function that acts as a vector
between uncertain input variables, approximating their output quanti-
ties. The raw moments of output variables are represented as follows:

E(Z) = E(Z) +wiZ;,

} . ; 39
E(Z) = E(Z) +wuZ),
where, Z is a function of uncertain input variables and can be defined as
Z = f(x1,x2, ..., Xm). For each unknown input variable xj, the function F
calculates just twice, utilizing the estimated locations and the mean
value iy, of the other input variables. To put it another way, 2 x myields
the total number of calculations.

Table 2

WT and PV parameters.
Photovoltaic system Wind turbine
Parameter Value Unit Parameter Value Unit
T, 25 °C Vr 12 m/s
n 15.7 % Pr 500 kW
s 1500 m? Ve 3 m/s
ww/wpy 20 % Vi 30 m/s
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4. Numerical optimization

In this study, the effect of DRP, spinning reserve of the LDG and
spinning reserve of the SPL on network performance has been studied
and the objective function has been analyzed in four different cases. The
objective function of the paper seeks to minimize the cost of MG oper-
ation so that the technical constraints of LDGs, SPL, and UG are taken
into account. The proposed objective function is modeled as a mixed
integer linear programming (MILP) formulation and optimization is
performed by General Algebraic Modeling System (GAMS) package.

4.1. Input parameters

Data on WTs and PVs are presented in Table 2 [54]. The information
about the parameters of the LDGs which contains MT and FC are pro-
vided in Table 3. The predicted day-ahead demand and the day-ahead
power cost of UG are shown in Figs. 2 and 3. Predictions of wind
speed and solar radiation for the next 24 h are provided in Figs. 4 and 5
[55]. EVs batteries have different capacities [56] from 8 to 48 kWh, and
in this article, it is assumed that EVs in the SPL have a capacity of 10 to
20 kWh. The spinning reservation fee for ith-EV is determined 10 % of
the expected discharge cost of the ith-EV. In addition, the spinning
reservation fee for the jth-LDG is determined 10 % of the UG power price
at that period of time. The parking capacity is equivalent to 230 EVs and
the SOC amount of ith-EV at the time of departure from the SPL is a
random number between 0.1 and 0.7. The optimal charge price of EVs is
considered a random number between 0.15 and 0.3 and the optimal
discharge price of these EVs is considered a random number between
0.25 and 0.4. Other information on EVs parameters is provided in
Table 4 [57]. The amount of power that can be exchanged with the UG is
limited to a maximum of 1000 kW. It is worth noting that the transfer-
able power by DRP is equal to 20 % of the demand.

4.2. Optimization results

In order to investigate the presence of SPL in the energy and reser-
vation market and the effect of DRPs on the demand curve, the objective
function of the problem has been investigated in 4 different cases:

e Case one: The objective function has been analyzed considering the
UG, LDGs and EVs constraints and without consideration of effect of
the DRP and spinning reserve.

Case two: To observe the impact of DRP on demand side and oper-

ating costs, the objective function has been investigated with

consideration of the impact of the DRP and without consideration of
the spinning reserve constraints.

Case three: The SPL participates in the spinning reserve market but

do not participate in DRP thus constraints of the spinning reserve are

considered but constraints of the DRP are neglected.

e Case four: The presented objective function has been formulated
with consideration of the effect of the DRP and participation in the
Spinning reserve market, therefore the effects of DRP on the load
curve and operation costs of the MG is studied in this case.

The output power of WT and PV according to the input data related
to 24-hour forecasting wind speed and solar radiation is shown in Figs. 6
and 7.

Table. 5 shows the cost of MG operation in 4 different cases. Ac-
cording to the results of Table 5, in case one, which SPL only partici-
pated in the energy market and has not participated in the reserve
market and DRP has not been considered, operation cost is $1782.4. In
case two, objective function has been investigated in order to observe
the positive effect of the DRP on the demand profile and decrease the
operation cost of the MG. The difference between cases 1 and 2 shows
that DRP Cause 40 percent reduction in costs. It should be mentioned
that DRP with smoothen the demand profile and shift the demand from
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Table 3
Parameters of the LDGs.
Source Type a b pmin pmax MDT MUT ton/toff UDC RD RU
$ $/kW kw kW h h h $
1 MT 0.02 0.15 150 700 3 3 4 0.1 350 350
2 MT 0.04 0.25 100 450 2 2 -6 0.02 200 200
3 FC 0.09 0.45 50 300 1 1 -8 0.02 150 150
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Fig. 3. Forecasted price of the UG.

peak hours to off-peak hours cause the reduction in costs.

Also, SOC is getting lower in comparison with the case one and
therefore, less charging and more discharging cause reduction in oper-
ational cost. Second MT has a higher operating cost than first MT, and as
a result, reducing the use of second MT and replacing it with first MT
reduces operating cost. In the third case, the proposed objective function
is studied without considering the DRP in order to observe the partici-
pation effect in the reserve market on the operating costs of the MG.
With comparing cases 1 and 3, we see that spinning reserve increased
the 27.7 % of the operation costs. This increase of the operations cost
due to considering the 20 percent error of the weather condition and the
probability of reducing the produced power by the WT and PV. Finally,
in case four, in order to see the effect of the DRP on the load curve and
operation costs of the MG and considering the participation of the SPL in

the reserve market, constraints related to the DRP and spinning reserve
have been added to the objective function. With comparing cases 1 and 4
we see that operation costs reduced 36.7 % and 3.31 % of the difference
between case 2 and 4 is the result of the participation in the reserve
market which increases the operation costs. In general, as we have seen
DRP had been reduced the operation costs of the MG and spinning
reserve. In addition to its advantages, it has been increased the operation
costs of the MG.

Fig. 8 shows the load curve with considering the DRP in four cases. It
should be mentioned that, only in cases 2 and 4 DRP have been affected
and in case 3 DRP have not been affected for this reason demand profile
of case 3 is the same as case 1. With observing this figure, we realize that
DRP smoothen the demand profile in the second case more than other
cases. Whatsoever the demand profile smoothens more, operation costs
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Table 4
Parameters of the EVs.
a TH Plgh, max Pheh, max SOChax SOChin ASOChnax nGav Mv2g Ninax
0.2 2-8 5-10 5-10 10-20 0 5-10 0.9 0.8 10

reduced more.

Fig. 9 illustrates the charging/discharging of EVs in SPL and Fig. 10
illustrates the SOC of the EVs in the SPL. As we can see, SOC of the EVs in
the second case in some periods of time is less than other cases and this
mean more discharging occurred in these periods. In fact, in peak hours,
SPL acts as a source and provides the required power to the MG to buy
less power from UG, and in non-peak hours, when the price of UG power
is lower, SPL operates such as a load and recharges EVs.

The power exchanged between the MG and the UG is shown in
Fig. 11. In case two, DRP selling the power to the UG during peak periods
and cause reduction in the operation costs of the MG. In the third case,
MG exchanged power with spinning reserve instead of exchange power
with the UG in peak periods and this caused the reduction of the oper-
ation costs of the MG.

Figs. 12-14 illustrate the output power of MT 1, MT 2 and FC which
are the LDGs of the studied MG. Furthermore, in Table 6 the hourly

spinning reserve of the LDG and SPL is presented. As we can see in
Figs. 12-14 and Table 6, due to the fact that first MT has a lower cost, in
cases 2 and 4, where DRPs cover part of the power, the capacity of first
MT is released and more power is provided for the MG. As a result, it
reduces operating costs by reducing power purchases from the UG. It can
also be seen in Fig. 13 that due to the fact that second MT has a high cost
for power supply, in case 2 of DRPs, the production of second MT is
reduced and the cost of MG is reduced.

Also, in order to have a better understanding of the study, we
compared the results of this study with Monte Carlo simulation and the
results of [54]. In order to address the uncertainties of wind, solar
irradiation and load, 2-PEM and MC simulation as uncertainty modeling
methods have been utilized in 4 cases, and the results of operational
costs are illustrated in Tables 7 and 8. In the first step of the MC method,
10,000 scenarios for wind speed, solar irradiation and load consumption
are randomly produced which due the number of scenarios, the accuracy
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Table 5 1800 ——— " T T T .
Cost of MG performance studied in 4 cases. [se =
Case 3 J
Case 1 Case 2 Case 3 Case 4 ———Case2| :
Operati 16001 —.—-- Case 1 b
peration costs 1782.5 1068 1912.1 1127.71
Decrease cost compared to case 1 40 % —7.27 % 36.7 % |
I
& 1400} 1 .
- . - !
of the utilized MC method are guaranteed and the variation coefficient : | 1 :
of this method will be under 1 %. In the next step, the produced sce- 1

narios are utilized in the optimization process of the problem through
MC simulation.

It can be seen that the operating cost of the microgrid in [52] is equal

20F | -4 —r‘_Ll_rr 1
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I
Iy

New load profile considering DRP (kW)
I

1000 F I -

to 1029 in deterministic mode, which is equal to case two of this study. -

Also, in the case of applying the robust optimization method, this value

has been reduced to 995. As the results of Table 9, the results of the 800} E

simulation in the presence of demand response programs in both studies

are very close to each other and these results are correct and reliable. 0 5; 1'0 1'5 2'0 2%

Tables 7 and 8 illustrate the closeness of the results achieved from the
MC and 2-PEM which shows the accuracy of the 2-PEM in addressing the
uncertainties of input parameters. Comparing the results, it can be seen
that the point estimation method has the capability of short-term MG
programming in terms of uncertainty. However, this method requires
much less repetition than the MC method, which reduces the simulation
time.

Time (Hour)

Fig. 8. Demand profile considering DRP.
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Table 6
Spinning reserve of the LDG and smart parking lot.

Journal of Energy Storage 55 (2022) 105540

Time MT1 MT2 FC Smart parking lot

Case Case Case Case

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 - - 43.4 43.4 - - - - - - - - - - - -
2 - - - 43.4 - - - - - - 43.4 - - - - -
3 - - - 32 - - - - - - 32 - - - - -
4 - - - 37.7 - - - - - - - - - - 37.7 -
5 - - - 42.3 - - - - - - - - - - 42.3 -
6 - - - 49.1 - - - - - - - - - - 49.1 -
7 - - 42.3 8.3 - - - - - - - - - - - 34
8 - - 43.6 - - - 5.2 48.8 - - - - - - - -
9 - - - - - - 73.8 73.8 - - - - - - - -
10 - - - - - - - - - - - - - - 66.9 66.9
11 - - - - - - - - - - - - - - 88.6 88.6
12 - - - - - - - - - - - - - - 96.4 96.4
13 - - - - - - - - - - 108.4 108.4 - - - -
14 - - - - - - - - - - - - - - 128.8 128.8
15 - - - - - - 83.2 83.2 - - - - - - 42 42
16 - - - - - - 116.7 116.7 - - - - - - - -
17 - - 107.7 107.7 - - - - - - - - - - - -
18 - - 102.2 102.2 - - - - - - - - - - - -
19 - - 99.1 99.1 - - - - - - - - - - - -
20 - - 100 100 - - - - - - - - - - - -
21 - - 100 60 - - - - - - - - - - - 40
22 - - 100 100 - - - - - - - - - - - -
23 - - 100 100 - - - - - - - - - - - -
24 - - 100 100 - - - - - - - - - - - -

Table 7 of wind, load and solar uncertainties and the results obtained from this
able

Cost of MG performance in 4 cases using point estimation method.

Min Mean Max Standard deviation
Case one 1732 1798 1851 403
Case two 1025 1076 1103 265
Case three 1843 1929 2034 472
Case four 1076 1133 1189 277
Table 8

Cost of MG performance in 4 cases using MC method.

Min Mean Max Standard deviation
Case one 1743 1801 1869 409
Case two 1032 1084 1113 278
Case three 1842 1925 2038 467
Case four 1089 1145 1195 258
Table 9
Cost of MG performance in various methods.
Utilized method Cost ($)
Deterministic 1743
2-PEM 1032
Robust optimization method 1842

5. Conclusion

In this paper, an optimal scheduling was performed to determine the
participation of different energy production units in supplying the
required demand of a MG, which aimed to minimize the operating costs.
The effect of DRPs and spinning reserve of LDGs and SPL on the cost of
MG performance was also investigated. Comparison of the results shows
that the DRP has had a positive effect on reducing costs, but spinning
reserve has increased costs. It was also observed that SPL also has a
beneficial effect on MG performance by reducing electricity costs for the
MG owner and smoothing overall demand profile. The results showed
that the 2-PEM has the ability to manage the studied MG in the presence

12

method are completely reliable. Also, in this paper, the results related to
the operating cost of MG by MC method and 2-PEM were compared in
four case studies of presence and absence of DRPs and spinning reserve.
The cost analysis of the operation of the studied EV PL shows that the
scenario where the robust optimization method has been used has
decreased the operation cost of the PL by 3.31 % with respect to the
deterministic model. Analyzing the load curve while taking the DRP into
account in the four cases reveals that only the DRP in cases 2 and 4 has
been impacted, while the DRP in case 3 has not been, and as a result, the
demand profile of case 3 is the same as case 1. With this realization, we
can see that DRP more thoroughly smooths the demand profile in the
second case than in the other circumstances. The smoother the demand
profile, the more the operation costs are lowered.
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