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It is challenging to handle the non-linear power consumption model, complex workflow structures, and
diverse user-defined deadlines for energy-efficient workflow scheduling in sustainable cloud computing.
Although metaheuristics are very attractive to solve this problem, most of the existing work regards the
problem as a black-box and ignores the use of domain knowledge. To make up for their shortcomings, this
paper tailors an energy-aware intelligent scheduling algorithm (EIS) with three new mechanisms. First,
we derive the optimal execution time that minimizes energy consumption for each task on a given
resource. Second, based on the optimal execution time of each workflow task, the EIS distributes the
workflow slack time (difference between its completion time and deadline) to reduce the voltages and
frequencies of task executions for energy saving. Third, the EIS mines the idle time gaps caused by task
precedence constraints to further reduce dynamic energy consumption whilst satisfying workflows’
deadline constraints. To measure the performance of the EIS, we conduct extensive comparison experi-
ments based on actual workflow applications. The results demonstrate that the energy consumption of
the EIS is much lower than that of the competitors under different deadlines, and has a faster descend
rate with the evolution process.
� 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Computers and Artificial Intel-
ligence, Cairo University. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Context and issues

Cloud computing is an innovative development of distributed
and utility computing [1,2]. It provides on-demand access to
unlimited virtual resources such as network, storage, and comput-
ing on a pay-as-you-go basis. This flexible and scalable resource
delivery paradigm is attractive to a wide range of individuals and
various organizations [3–5]. According to Gartner’s report, more
than 60 percent of organizations resort to cloud services for
required resources, and cloud computing alone accounts for nearly
15 percent of global IT expenditure [6].

To match the prosperously growing demand for cloud services,
mainstream cloud service providers, e.g., Google Cloud, Amazon
EC2, and Alibaba Cloud, have built a large number of super-scale
datacentres around the world. A cloud datacentre often houses
thousands of heterogeneous servers, network devices sensors,
cooling systems, and many other facilities [7]. It is a typical high
power density infrastructure, consuming enormous amounts of
electrical energy [8–10]. Statistics illustrate that the energy con-
sumption of a medium-sized datacentre reaches the energy con-
sumption of 25,000 households [11]. Such high energy
consumption of cloud datacentres subsequently increases opera-
tional costs, and leaves substantial carbon footprints that nega-
tively pound the environmental sustainability [12]. Amazon’s
evaluation of its datacentres reveals that 42% of the operation
and maintenance costs are caused by energy consumption [13].
In cloud datacentres, the energy consumed by computing and cool-
ing systems together accounts for 85% of total energy consumption
[8]. Meanwhile, the energy consumption of the cooling system
mainly stem from dissipating the heat emitted by the computing
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system. Thus, developing application oriented energy-aware opti-
mization technologies is of upmost importance to cloud datacen-
tres toward reducing operational cost and maintaining service
sustainability [14,12,15].

Over the past decade, the widespread implementation of Inter-
net of Things has resulted in the rapid growth of data volume and
data generation speed [8,16]. To process the huge amounts of data
automatically and timely, workfow has become a powerful tool for
cloud platforms [17]. A workfow refers to a set of data processing
tasks together with dependencies, which fulfil data communica-
tion for various scientifc and business applications. It is notewor-
thy that the workflow scheduling component is a middleware
layer of a cloud platform, and it directly determines its energy con-
sumption, other performance metrics, and service experience of
users. In general, workflow application oriented energy-aware
scheduling in clouds involves mapping tasks to resources, arrang-
ing tasks’ execution order, and assigning appropriate task execu-
tion time, such optimizing energy consumption and satisfying
complex constraints. It is a NP-complete problem, and has been
researched extensively in the literature [18,19]. Most of the exist-
ing literature on energy-aware workflow scheduling in clouds can
be roughly divided into two categories: heuristics and
metaheuristics.

1.2. Literature and motivations

Heuristic rule-based workflow scheduling approaches are typi-
cally classified as: cluster-based, replication-based, and list-based
scheduling heuristics. Cluster-based heuristics [20,21] are to group
workflow tasks into multiple clusters according to certain criteria,
and then map all tasks of the same cluster to the same resource.
The replication-based algorithms [22,23] replicate the one task
on multiple resources, hence decreasing data transmission over-
head among workflow tasks and start time of tasks. Most heuristic
approaches are based on the list strategy. They arrange all the
workflow tasks based on certain priorities and then schedule tasks
one by one onto suitable resources. For instance, Lee et al. [24] sug-
gested two energy-conscious workflow scheduling methods using
dynamic voltage scaling to balance makespan and energy con-
sumption. Li et al. [25] designed a resource selection, task merging,
and resouce reuse mechanism to reduce execution cost and energy
consumption while meeting workflows’ deadlines. Safari et al. [26]
integrated the dynamic voltage/frequency scaling technique into
the list-based scheduling algorithm to minimize energy consump-
tion while considering workflow deadlines. Qureshi et al. [27] sug-
gested a profile-based energy-efficient approach to balance power
usage, CPU utilization, and monetary cost. Rani et al. [28] proposed
a power and temperature-aware scheduling algorithm to minimize
the computing and cooling energy of executing workflow tasks
along with meeting deadlines. Fan et al. [29] designed a hybrid
workflow scheduling approach to optimize energy consumption
and resource utilization while meeting the deadline and data-
dependency constraints of workflows. As heuristics are often tai-
lored for specific scenarios, their generalization capability is insuf-
ficient, especially for dealing with complex structured workflows
and nonlinear power consumption model.

Metaheuristics depending on stochastic search techniques are
attractive for handling complex optimization problems. In recent
years, many metaheuristic algorithms [30–32] have been designed
to optimize the energy efficiency of workflow execution in cloud
platforms. For instance, Gill et al. [12] suggested a cuckoo
optimization-based cloud resource management approach to
holistically cut down energy consumption and carbon footprints
for cloud data centers, while satisfying service reliability. Tarafdar
et al. [33] combined a heuristic search and positive feedback mech-
anism into the ant colony optimization to improve energy-
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efficiency and task schedulability. Malik et al. [34] employed parti-
cle swarm optimization to iteratively optimize energy efficiency
and resource utilization for virtualized data centers. Li et al. [35]
improved the nondominated-sorting Owl optimization algorithm
with a chaotic local search to balance the energy consumption,
makespan, and cost, while meeting the pre-specified deadline
and budget constraints. Qi et al. [36] formalized virtual machine
scheduling in cloud platforms as a multi-objective optimization
problem, and improved NSGA-II to balance consumption, down-
time, and resource utilization. Hussain et al. [37] designed an
energy-aware approach including new task sequencing, variable
neighborhood search, and resource searching mechanism to sched-
ule deadline-constrained workflows. Domanal et al. [38] hybri-
dised ant colony optimization and particle swarm optimization
for task scheduling and resource management. These metaheuris-
tics follow a completely black-box approach and fail to make effec-
tive use of domain knowledge, such as workflow structure, power
consumption model, and dynamic voltage/frequency scaling tech-
nique. Modern cloud processors using a multi-core architecture
commonly integrate voltage regulators for each core [39], which
enables per-core dynamic voltage/frequency scaling to dynami-
cally adjust the supply voltages and operation frequencies by tak-
ing actual workloads into account.

Meanwhile, there exists substantial work on intelligent algo-
rithms to optimize the energy consumption of executing a set of
dependent tasks in other fields [40–42]. For instance, Wang et al.
[43] developed a cooperative memetic algorithm to simultane-
ously optimize energy consumption and delay. This algorithm
includes two heuristics to initialize the population, a feedback-
based cooperative search mechanism, multiple problem-specific
evolutionary operators, and multiple environmental selection
strategies. To solve distributed assembly flow-shop scheduling
problem, Zhao et al. [44] improve the water wave optimization
algorithm with a variable neighborhood search and a reinforce-
ment learning mechanism. Zhao et al. [45] proposed a hyperheuris-
tic with Q-learning to solve the energy-efficient distributed
blocking flow shop scheduling problem. Wang et al. [46] suggested
a hybrid adaptive differential evolution algorithm to optimize the
completion time, delay time, and energy consumption for job-
shop scheduling problems. Pan et al. [47] designed a knowledge-
based two-population optimization algorithm to reduce energy
consumption and tardiness for distributed energy-efficient
scheduling problems. These works provide great inspiration for
this study. However, the optimization problems in these fields
are quite different from the energy-efficient scheduling of cloud
computing workflows, such as the dynamic voltage/frequency scal-
ing technique of computing resources and the on-demand supply
of cloud resources. Thus, these intelligent algorithms cannot be
directly applied.

1.3. Main contributions

The deficiencies of the existing works drive us to integrate the
domain knowledge of cloud workflow execution into the evolu-
tionary optimization framework to improve energy efficiency.
Our core contributions are below.

� We derive the optimal execution time that minimizes energy
consumption for each workflow task by considering the nonlin-
ear power consumption model.

� Based on the optimal execution time of each task, we propose a
mechanism to distribute workflow slack time (difference
between its completion time and deadline) among tasks with
complex structures for energy conservation by adjusting the
voltage and frequency.
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� The idle time gaps caused by task precedence constraints are
excavated to further reduce dynamic energy consumption
whilst satisfying workflows’ deadline constraints.

� We conduct comparison experiments to demonstrate the supe-
rior energy efficiency of the proposed approach.

1.4. Paper organization

The rest of this paper is as follows: Section 2 introduces the
models for power consumption and workflows, and then formu-
lates the workflow scheduling problem as a single-objective con-
strained problem. Section 3 develops the energy-aware
intelligent algorithm, followed by its numerical validations in Sec-
tion 4. Section 5 concludes this paper and points out two research
directions.

2. Preliminaries and modeling

This section formulates the constrained single-objective work-
flow scheduling problem by defining the power consumption
model, workflow model; optimization objective; as well as prece-
dence and deadline constraints.

2.1. Power consumption model

A cloud datacentre houses a set of virtual machines
R ¼ fr1; r2; � � � ; rmg, providing computing resources to satisfy the
user-defined quality of services. A virtual machine rk can be

described as quadruple f�vk; v̂k;
�f k; f̂ kg, where �vk and v̂k represent

its lower and upper supply voltage; �f k and f̂ k represent its lower
and upper operation frequency.

The power consumption of rk can be roughly divided into static
part ps

k and dynamic part pd
k [24,48]. Static power consumption

refers to the energy consumption per unit time when the virtual
machine is completely idle. It is an inherent attribute of the virtual
machine and has nothing to do with its working frequency.
Dynamic power consumption is caused by the virtual machine exe-
cuting the applications, and can be adjusted via dynamic voltage/
frequency scaling technology. Then, the total power consumption
of a virtual machine at time t refers to the summation of static
and dynamic powers:

pkðtÞ ¼ ps
k þ pd

kðtÞ: ð1Þ
The dynamic power of a virtual machine is directly proportional

to its supply voltage squared and frequency [24], and can be
described as

pd
kðtÞ ¼ ak � vkðtÞ2 � f kðtÞ; ð2Þ

where ak denotes the coefficient of proportionality; vkðtÞ and f kðtÞ
denote the supply voltage and frequency at time t, respectively.

As the frequency is proportional to the supply voltage, the (2)
can be rewritten as:

pd
kðtÞ ¼ ak � f kðtÞ3; ð3Þ
Assume p̂k is the maximum dynamic power consumption of rk,

its proportionality coefficient ak can be approximated as

ak ¼ p̂k

f̂ 3k
; ð4Þ

Based on (1), (3), and (4), the total power consumption of rk at
time t can be rewritten as below:

pkðtÞ ¼ ps
k þ

p̂k

f̂ 3k
� f kðtÞ3: ð5Þ
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2.2. Workflow model

A workflow application often contains a set of tasks with data
dependencies and is commonly abstracted to a directed acyclic
graph. Formally, a workflow is depicted by a 3-tuple
G ¼ fT; E;Dg, where T ¼ ft1; t2; � � � ; tng denotes a set of tasks,
E# T � T represents a set of directed edges among data-
dependent tasks, and D indicates the total deadline of this
workflow.

An edge ei;j 2 E represents the data dependency from ti to tj, in
which ti is the predecessor task of tj and tj is the successor task of ti.
The weight of a directed edge wðei;jÞ denotes the size of files trans-
ferred from ti to tj. The signs Pi and Si represent the sets of ti’s
immediate predecessor tasks and successor tasks, respectively.
Due to data dependency, a task cannot start runing until all its pre-
decessor tasks have completed and all the input files have arrived.

To visualize the workflow model, Fig. 1 provides an example of
a workflow. For this workflow, it consists of six data-dependent
tasks T ¼ ft1; t2; � � � ; t6g, and the data dependencies among tasks
are defined by the directed edges as
E ¼ fe1;3; e1;5; e2;3; e3;4; e4;5; e4;6g. For task t5, the set of its immediate
predecessor tasks is P5 ¼ ft1; t4g. The set of the immediate succes-
sor tasks for task t1 is S1 ¼ ft3; t5g.

2.3. Problem formulation

This work aims to optimize energy consumption while meeting
the user-specified deadline constraints for workflows. Based on the
models of power consumption and workflow application, this sub-
section formulates the constrained single-objective optimization
problem.

In cloud datacentres embracing dynamic voltage/frequency
scaling technology, the runtime of task ti on virtual machine rk
depends on the computation length of ti and the frequency of rk,
i.e.,

si;k ¼ li
f k

; ð6Þ

where li and f k denote the computation length of ti and frequency of
rk, respectively.

When two immediate data-dependent tasks are executed by
the same virtual machine, the data transmission time between
them is negligible, whilst they are executed by different virtual
machines, the data transmission time can be estimated based on
the data size wðei;jÞ and bandwidth b. Assume rg and rk denote
the virtual machines used to execute two immediate data-
dependent tasks tp and ti. The data transmission time fp;i from tp
to ti can be described as:
Fig. 1. Example of a DAG.
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fp;i ¼
0; if rg ¼ rk;

wðei;jÞ
b ; otherwise:

(
ð7Þ

The start time �si;k and finish time ŝi;k of task ti on virtual
machine rk can be calculated as:

�si;k ¼ maxfak;max
tp2Pi

fŝp;� þ fp;igg; ð8Þ

ŝi;k ¼ �si;k þ si;k; ð9Þ
where ak indicates the available time of virtual machine rk to exe-
cute ti; Pi represents the set of ti’s immediate predecessor tasks. If
rk has not been used, ak is its set-up time; otherwise, ak is the finish
time of the last task executed on rk.

Then, the completion time of a workflow, referring to the max-
imum finish time among all its tasks, can be described as:

_s ¼ max
ti2T

ŝi;�: ð10Þ

Based on (8) and (9), the start time stðrkÞ and finish time ftðrkÞ of
virtual machine rk can be obtained as below:

stðrkÞ ¼ min
ti2T

�si;k;

ftðrkÞ ¼ min
ti2T

ŝi;k:
ð11Þ

Hence the energy consumption of rk to execute workflow tasks
is computed as:

eck ¼
Z ftðrkÞ

stðrkÞ
pkðtÞdt

¼
Z ftðrkÞ

stðrkÞ
ps
k þ

p̂k

f̂ 3k
� f kðtÞ3dt:

ð12Þ

Then, the total energy consumption for executing a workflow is

EC ¼
Xm
k¼1

eck

¼
Xm
k¼1

Z ftðrkÞ

stðrkÞ
ps
k þ

p̂k

f̂ 3k
� f kðtÞ3dt:

ð13Þ

Considering the high energy consumption in cloud datacentres,
this paper attempts to allocate the workflow tasks to a suitable set
of virtual machines and adjust the execution time of each task, so
as to reduce the energy consumption before the user-specified
overall deadline. The considered optimization problem can be
summarized mathematically as follows:

Minimize EC;

s:t: _s 6 D;
�si;k P max

tp2Pi
fŝp;� þ fp;ig; 8ti 2 T;

�f k 6 f kðtÞ 6 f̂ k; 8rk 2 R;
�vk 6 vkðtÞ 6 v̂k; 8rk 2 R;

8>>>>>>><
>>>>>>>:

ð14Þ

where the optimization objective is to minimize the energy con-
sumption of workflow execution; the four constraints respectively
come from the workflow’s deadline, data dependencies among
tasks, minimum and maximum CPU frequencies of virtual machi-
nes, as well as minimum and maximum supply voltages of virtual
machines.

3. Algorithm design

Energy-aware workflow scheduling for cloud platforms is con-
fronted with the non-linear power consumption model, sophisti-
cated workflow structures, heterogeneous cloud resources, and
280
diverse user-defined deadlines. To handle this highly challenging
problem, this section designs an intelligent algorithm to reduce
the energy consumption of workflow execution. The proposal first
iteratively evolves the mapping from workflow tasks to cloud
resources. Then, it excavates the workflow slack time (difference
between its completion time and deadline) to adjust the execution
time/frequency of workflow tasks for overall energy conservation.
The proposal also excavates the idle time gaps caused by task
precedence constraints to further reduce dynamic energy
consumption.

Fig. 2 provides an example to visualize the above ideas. Fig. 2a
shows the Gantt chart of the scheduling result for three tasks, i.e.,
t1; t2, and t3. Since task t3 needs to wait for the output files from
task t2, an idle time gap between t3 and t1 is left on virtual machine
r1. As shown in (3), the dynamic power consumption is propor-
tional to the third power of the frequency. Intuitively, reducing
the execution frequency of task t1 will definitely reduce the
dynamic energy consumption, as shown in Fig. 2b. As shown in
Fig. 2, the completion time of this workflow is 14 s. Assuming that
the deadline of this workflow is 20 s, its slack time between dead-
line and completion time is 20� 14 ¼ 6 seconds, which will be dis-
tributed to each workflow task to reduce execution frequency, such
reducing overall energy consumption.
3.1. Solution representation

The workflow scheduling in clouds involves arranging tasks’
execution order, mapping tasks to resources and optimizing task
execution time. To simplify the evolution process, we attempt to
evolve the mappings from tasks to resources and the execution
time of each task. The execution order of tasks is sorted based on
their downward rank [49], which is recursively defined as follows:
rankðtiÞ ¼
maxrk2Rsi;k; if Pi ¼ £;

maxtp2PifrankðtpÞ þmax
rk2R

si;k þwðep;iÞ=bg; otherwise;

(

ð15Þ
where Pi denotes the set of immediate predecessor tasks of task ti;R
denotes the candidate resource pool, si;k is the execution time of ti
on resource rk;wðep;iÞ=b denotes the data transmission time from tp
to ti. The downward ranks are calculated recursively by traversing
the DAG downward starting from the tasks without predecessors.

Basically, the downward rank of a task stands for the longest
distance from it to the tasks without predecessors. According to
the definition in (15), the rank of a task is greater than that of all
its predecessors. When tasks are sorted according to their down-
ward ranks, a task must be next to all its predecessors, inevitably
fulfilling the precedence constraints among tasks.

In this paper, we encode a solution as two n-dimensional vec-
tors. The first vector corresponds to the mapping from tasks to vir-
tual machines, where an index denotes a task, and its value
denotes the virtual machine where this task will be executed.
The second segment corresponds to the mapping from tasks to
execution time, where an index denotes a task, and its value
denotes the execution time of this task.

Fig. 3 gives the encodings for the Gantt charts in Fig. 2. As
shown Fig. 3a, the values of the first vector (i.e., 1, 2, and 1) indicate
that tasks t1 and t3 are mapped to the virtual machine r1, and task
t2 is mapped to r2. Then, the values of the second vector indicate
that the execution time of these three tasks is 5, 8, and 4 s, respec-
tively. Since the Gantt chart in Fig. 2b is obtained by adjusting t1’s
execution time from 5 to 10 s, the corresponding encoding only
changes the execution time of task t1, as shown in Fig. 3b.
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3.2. Main process

For the proposed energy-aware intelligent scheduling algorithm
(EIS), its main process is summarized in Algorithm1. Its elemental
inputs contain the data about the workflow, candidate resource
pool, population size of the algorithm, and the maximum function
evaluations as stop condition. When the EIS meets the stop condi-
tion, it will select and output a scheduling solution with the min-
imum energy consumption.

Algorithm1: Main Process of EIS

As shown in Algorithm1, the proposal follows the popular
framework of evolutionary algorithms, consisting of three stages:
initialization, reproduction and selection. In the initialization stage,
the proposal arbitrarily generates a population (Line 1), and
employs parameter FEs to record the number of function evalua-
tions that have been used (Line 2). Since we explore the energy
saving of workflow execution in dynamic voltage/frequency
scaling-enabled cloud datacentres, each schedule solution in pop-
ulation P is defined to contain two decision vectors: mappings from
tasks to resources as well as mappings from tasks to execution
time. Since the mappings from task to runtime involves sophisti-
cated constraints, see (14) for details, the random generation of
this vector is easy to violate these constraints. Thus, during the ini-
tialization phase, the task runtime on the mapped resource is set to
the minimum value, that is, the runtime under the maximum fre-
quency/power consumption of the mapped resource. After initial-
ization, the EIS iterates the two processes of population
reproduction and selection until the number of function evalua-
tions used FEs reaches the pre-specified maximum value MFE.

In the population reproduction stage, N decision vectors
describing the mappings from workflow tasks to cloud resources
are generated using the classic reproduction operators, such as dif-
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ferential evolution [50] and particle swarm optimization [51] (Line
4). The above reproduction process is to evolve the mappings from
tasks to resources, i.e., the first encoding segments of solutions. In
this process, the task execution time on the mapped resource is set
to the maximum value. Then, the Function SlackTimeAssignmentðÞ
is called to reduce energy consumption by distributing workflow
slack time to extend the runtime of each task (Line 5). Next, the
Function IdleTimeGrabðÞ is called to extend some tasks’ runtime
by mining the idle time gaps between tasks to achieve the purpose
of reducing dynamic energy consumption (Line 6). The above two
functions are to optimize the execution time of each task, i.e., the
second encoding segments of solutions. These two functions are
detailed in Algorithm2 and Algorithm3, respectively. Based on
the mappings from workflow tasks to cloud resources and the
mappings from workflow tasks to rutime, the proposed algorithm
evaluates the energy consumption of each scheduling solution to
generate an offspring population (Line 7). Also, the number of func-
tion evaluations used FEs is updated (Line 8).

During the population selection process, solutions in the off-
spring population Q compete with the solutions of the parent pop-
ulation P one by one, and the solutions with lower energy
consumption will survive to the next generation (Lines 9–13). Pi

represents the i-th schedule solution in population P. Similarly,
Qi corresponds to the i-th solution in Q. ECðPiÞ and ECðQiÞ denote
the energy consumption of schedule solutions Pi and Qi, respec-
tively. When the proposal reaches the stop condition, it checks
each solution in the final population and selects a schedule solu-
tion with minimum energy consumption (Lines 15–20).

3.3. Energy-aware mechanisms

To reduce the voltages/frequencies of task executions for energy
saving, the Function SlackTimeAssignmentðÞ distribute the work-
flow slack time (difference between its completion time and dead-
line) to each workflow task according to its optimal runtime that
minimizes energy consumption. We derive the optimal runtime
of a task as follows.

Assume the operating frequency of a virtual machine rk is fixed
for executing a task ti, and ti’s computation length is li. The runtime
of this task is a variable, expressed as si;k. Based on (6), the operat-
ing frequency of rk is f kðtÞ ¼ li=si;k. Then, the functional relationship
between energy consumption and task runtime can be expressed
as follows:

eck;i ¼
Z stðrkÞþsi;k

stðrkÞ
ps
k þ

p̂k

f̂ 3k
� f kðtÞ3dt

¼ ps
k � si;k þ

p̂k

f̂ 3k
� ð li
si;k

Þ
3

� si;k

¼ ps
k � si;k þ

p̂k

f̂ 3k
� ðliÞ3
ðsi;kÞ2

:

ð16Þ

Let @ðeck;iÞ
@ðsi;kÞ ¼ 0 for optimization, we obtain

ps
k � 2 � p̂k

f̂ 3k
� ðliÞ3
ðsi;kÞ3

¼ 0: ð17Þ

Based on (17), the optimal execution time of ti can be computed
as

si;k ¼ li
f̂ 3k

�
ffiffiffiffiffiffiffiffi
2p̂k

ps
k

3

s
: ð18Þ

The pseudo-code of Function SlackTimeAssignmentðÞ is illus-
trated in Algorithm2. This function first calculates the start and
finish time of each workflow task based on its minimum runtime
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on the corresponding virtual machine, thus obtaining the comple-
tion time of the entire workflow. Then, the workflow slack time
between its deadline and completion time is available. Based on
the optimal runtime in (18), the workflow slack time is distributed
to appropriately extend tasks’ runtime, so as to reduce the operat-
ing frequencies of virtual machines to achieve the purpose of
energy saving.

Algorithm2: Function SlackTimeAssignment(DV ;G;R)
As shown in Algorithm2, Function SlackTimeAssignmentðÞ
receives a set of decision variables DV, each of which corresponds
to a mapping from tasks to resources. According to each decision
variable, denoted as~x, this function assigns runtime to each work-
flow task. It calculates the completion time of the workflow as fol-
lows (Lines 3–14). The RT is used to record the ready time of the R
resources for executing the next task (Line 3). Starting from the
tasks without predecessors, all the workflow tasks are traversed
downward to calculate their start time sti and finish time fti (Lines
4–13). The value of the parameter xi indicates the index of the
resource mapped to task ti, and the operation in line 5 stands for
that a task’s start time is greater than the resource’s ready time.
The operation in line 7 is to calculate the latest time at when a task
completes receiving the input files from all its predecessors. Also,
the start time of a task should be larger than at to fulfill the prece-
dence constraints (Lines 8–10). The operation in line 12 is to obtain
the finish time for each workflow task. It is worth noting that the
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above calculations are based on the minimum runtime of the tasks
on the mapped resources. Then, the completion time ct and slack
time slaT of the workflow are obtained (Lines 14–15).

After that, Function SlackTimeAssignmentðÞ calculates the opti-
mal runtime of each task (Lines 17–19), where OETi records the
optimal runtime for the i-th task in the workflow. Based on work-
flow slack time and task optimal runtime, this function assigns the
real runtime for each task (Lines 21–23). From the operation in line
22, we can see that the slack time is distributed to each task in pro-
portion to its optimal runtime, i.e., OETi=

Pn
h¼1OETh. Besides, the

real runtime of a task cannot exceed its optimal value. Next, this
function updates each task’s start time and finish time based on
its real runtime (Line 24).

The pseudo-code of Function IdleTimeGrabðÞ is shown in Algo-
rithm3. This function excavates the idle time gaps caused by task
precedence constraints to further reduce dynamic energy con-
sumption whilst satisfying workflows’ deadline constraints.

Algorithm3: Function IdleTimeGrab(DV ;G)
As shown in Algorithm3, Function IdleTimeGrab receives a set of
decision variables DV, each of which contains a mapping from tasks
to resources and a mapping from tasks to runtime, which has been
determined by Function SlackTimeAssignmentðÞ. The 1� n vector
RET is used to record the real runtime for each workflow task (Lines
2 and 14). For a decision variable ~x in DV, this function traverses
each task to obtain its latest finish time lfti, before which complet-
ing this task will not delay the start time of all its successors and
the tasks executed after it. For a task ti, its latest finish time is first
initialized to the start time of the task appended immediately after
it (Line 6), which can avoid affecting the start of subsequent tasks.
Then, each successor task of task ti is traversed to update its latest
finish time (Lines 7–12). Next, the real runtime of task ti is updated
(Line 13). If a task is at the end of the task queue on a resource, i.e.,
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ta ¼ £, its runtime remains unchanged (Lines 14–15). After that,
this function updates each task’s start time and finish time based
on its real runtime (Line 18).

4. Performance evaluation

This section presents the experimental verification for the pro-
posal in detail, e.g., experiment configurations including datasets,
parameters, and a performance metric, as well as experimental
results and analysis.

4.1. Experimental setting

In our evaluation, we select three relevant and recent meta-
heuristics, i.e., DMFO-DE [52], PSO-COGENT [53], and ERTS [54],
for performance comparison. The brief descriptions of these three
metaheuristics are as follows.

DMFO-DE is a hybrid discrete optimization algorithm. It combi-
nes an opposition-based Moth-Flame Optimization with the Differ-
ential Evolution to map workflow tasks to cloud resources, and
uses the heterogeneous earliest finish time rule to determine the
task execution order.

PSO-COGENT is a particle swarm optimization-based resource
allocation algorithm to reduce the energy consumption of cloud
datacentres by formulating deadlines as constraints.

ERTS integrates new genetic operators and a frequency scaling
strategy for resource provisioning and task scheduling in DVFS-
enabled cloud workflows.

To compare the four energy-aware workflow scheduling algo-
rithms, we employ five types of real-world workflows with differ-
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ent sizes [55], including Montage with 25, 50, 100, and 1000 tasks,
Epigenomics with 24, 46, 100, and 997 tasks, Inspiral with 30, 50,
100, and 1000 tasks, Cybershake with 30, 50, 100, and 1000 tasks,
and Sipht with 30, 60, 100, and 1000 tasks. Fig. 4 depicts the topo-
logical structures of five different real-world workflow applications
with around 30 tasks.

These workflows come from different fields. For instance, Mon-
tage [56] is a flexible toolkit to assemble and process large sky
images in the astronomy field. Epigenomics [57] is a pipeline data
processing for automatic genome sequencing operations in bioin-
formatics applications. Inspiral workflow [58] is to detect gravita-
tional radiation generated during the most violent events in
astrophysics. Cybershake [59] is a powerful analysis tool to study
earthquake hazards. Sipht [60] is a high-throughput technology
program for kingdom-wide prediction and functional annotation
of bacterial sRNA-encoding genes in the bioinformatics field.

To set the deadline constraint for a workflow, we estimate its
minimum completion time by allocating each workflow task to a
virtual machine with the most computationally powerful configu-
ration. The symbol _sm denotes a workflow’s minimum completion
time. We introduce a constraint factor a to control different con-
straints, and the deadline of a workflow is set as follows.

D ¼ a � _sm: ð19Þ
From the formula (19), it can be easily derived that with the
increase of factor a, the deadline of a workflow becomes more
relaxed.

The proposed EIS employs the uniform crossover and bit-flip
mutation operators evolve the mappings from tasks to cloud
resources. Mutation rate is set as 1=n, where n denotes the number



Fig. 4. Five real-world workflows [55].
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of tasks. Besides, the parameter settings of the three comparison
algorithms follow the recommended values of the original papers.

To ensure the fairness of performance comparison for different
algorithms, the population size of the four algorithms is set to 100.
The maximum number of function evaluations (FEs) is set as
n� 4e3, where n is the number of decision variables. Besides, we
conduct all the experiments on a PC with 8 GB RAM, two Intel CPUs
i5-6500, and 64-bit Windows 10 operating system. On this PC, we
install MATLAB R2020b to run these four algorithms.

4.2. Impact of deadline

To evaluate the effect of deadline constraint factor a on the per-
formance of the proposal and the three competitors, i.e., DMFO-DE,
PSO-COGENT, and ERTS, we increase the factor a from 1.5 to 6.0
with a step of 0.5, and stabilize other parameters. Fig. 5 illustrates
the change of energy consumption by prolonging the deadline on
Montage_50, Epigenomics_46, Inspiral_50, CyberShake_50, and
Sipht_30 workflows. The mark Montage_50 denotes the Montage
workflow with 25 tasks, the other four marks can be similarly
parsed.

From Fig. 5, we can see that with the increase of factor a, the
energy consumed by the four energy-aware workflow scheduling
algorithms decreases correspondingly. This trend can be attributed
to the following facts. Cloud datacentres are heterogeneous and
elastic, which means that the power-performance ratios of differ-
ent virtual machines vary greatly and the number of accessible vir-
tual machines is sufficient. Increasing factor a to prolong
284
workflows’ deadlines gives each workflow task a greater opportu-
nity to run on a virtual machine with a higher power-performance
ratio. This helps reduce the overall energy consumption of work-
flow executions.

In Fig. 5, one noticeable phenomenon is that when the deadline
constraint factor a increases to a certain extent, the energy con-
sumption of the four algorithms tends to be stable. The main rea-
son is that prolonging workflow deadlines is conducive to
extending the runtime of each task to reduce the dynamic energy
consumption, but the static energy consumption increases accord-
ingly. When the deadline increases to a certain extent, the reduced
dynamic energy consumption will be offset by static energy con-
sumption. Another striking phenomenon is that in different work-
flow instances, the factor values when energy consumption tends
to be stable are different. For example, the energy consumed by
the four algorithms tends to be stable when the factor a is larger
than 3.0 on the Montage_50 workflow, while that is larger than
5.0 on the Inspiral_50 workflow. This is due to the significant dif-
ferences in the topological structures of different types of
workflows.

In comparison with the three competitors, the proposed EIS
achieves the lowest energy consumption under different deadline
constraint factors. Considering the Montage_50 workflow in
Fig. 5a, on average the proposed EIS achieves 30.89%, 27.46%, and
18.36% improvement in comparison to DMFO-DE, PSO-COGENT,
and ERT, respectively. The EIS poses similar advantages in solving
the optimization probelms derived from the other four workflows,
i.e., Epigenomics_46, Inspiral_50, CyberShake_50, and Sipht_30.
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Fig. 5. Impact of workflow deadline on energy consumption.
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Although the ERT and the proposed EIS both leverage dynamic
voltage/frequency scaling technology to reduce energy consump-
tion, the proposed EIS still shows overwhelming advantages. The
reason is that EIS benefits from the workflow slack time distribu-
tion mechanism. In summary, the proposed EIS achieves the lowest
energy consumption while satisfying workflows’ deadline
constraints.

4.3. Trends of energy consumption

This set of experiments attempts to compare the convergence
rates of the four algorithms. We select five workflow applications,
i.e., Montage_100, Epigenomics_100, Inspiral_100, Cyber-
Shake_100, and Sipht_100, and fix their deadline constraint factor
as a ¼ 1:5. Fig. 6 exhibits the changes in energy consumption as
the evolution progresses. The parameter FEs corresponds to the
number of function evaluations that have been used.

The intuitive impression of Fig. 6 is that the energy consumed
by the four algorithms ascends as the number of function evalua-
tions increases, especially in the initial search stage. This is because
a cloud datacentre has enough virtual machines and the quality of
randomly initialized solutions is low. In such a scenario, bio-
inspired optimization algorithms can quickly explore better solu-
tions. Among the three existing energy-aware workflow schedul-
ing algorithms, the ERT has obvious advantages in convergence
speed and value. It comes down to the fact that considerable
energy can be reducing by slowing down the voltages/frequencies
of virtual machines for executing some non-critical tasks, such that
the energy consumption of workflow executions can be reduced
without violating the deadline constraints. Compared with the
competitor ERT, the proposed EIS poses better convergence speed
and value. The primary reason is that the proposal not only mines
the idle time gaps to slow down the voltages/frequencies for
energy conservation, but also reasonably distributes the workflow
slack time to slow down the voltages/frequencies.

4.4. Comparison results

To further compare the performance of the four algorithms, this
set of experiments is to consider the schedule solution with the
lowest energy consumption in the output population of each algo-
Table 1
Energy consumption (Joule) of the four algorithms on 15 workflows.

Workflows n DMFO-DE PSO-CO

Montage 25 5.043e+3 (9.740e+1) 4.974e+
50 1.413e+4 (2.232e+2) 1.369e+
100 4.321e+4 (2.321e+2) 4.139e+
1000 5.759e+5 (5.827e+3) 6.056e+

Epigenomics 24 5.042e+5 (1.343e+3) 5.192e+
46 1.415e+6 (5.999e+4) 1.387e+
100 2.074e+7 (5.009e+5) 1.966e+
997 2.217e+8 (8.735e+5) 2.155e+

Inspiral 30 2.252e+5 (6.233e+3) 2.184e+
50 4.724e+5 (7.874e+3) 4.409e+
100 9.829e+5 (1.543e+4) 9.219e+
1000 1.187e+7 (1.460e+5) 1.134e+

CyberShake 30 1.979e+4 (5.564e+2) 1.959e+
50 4.627e+4 (1.425e+3) 4.593e+
100 9.231e+4 (1.245e+3) 8.913e+
1000 1.256e+6 (3.538e+4) 1.295e+

Sipht 30 1.318e+5 (5.963e+2) 1.316e+
60 3.156e+5 (1.642e+4) 3.169e+
100 6.224e+5 (1.607e+4) 5.969e+
1000 1.022e+7 (6.585e+4) 9.758e+

287
rithm. We set the deadline constraint factor as a ¼ 1:5, and the FEs
as n� 4e3. Table 1 provides a comparative summary of the energy
consumption of the proposed EIS and the three competitors, i.e.,
DMFO-DE, PSO-COGENT, and ERTS, in solving optimization prob-
lem derived from 20 frequently-used workflows. This table
includes the mean and standard deviation (in brackets) of energy
consumption of 30 repeated experiments.

As shown in Table 1, the proposed EIS poses a higher energy-
saving performance in all workflow applications. The reason is that
the competitors DMFO-DE and PSO-COGENT focus on evolving the
mappings from workflow tasks to resources to reduce energy con-
sumption, and did not consider the dynamic voltage/frequency
scaling technique. Although the competitor ERT employs the
dynamic voltage/frequency scaling technique, its energy consump-
tion is much higher than the proposed EIS. Such superiority of EIS
can be attributed to the following two facts. First of all, the EIS dis-
tributes workflow slack time (difference between its completion
time and deadline) among tasks based on the optimal execution
time of each task for energy conservation by adjusting the voltage
and frequency. Secondly, the EIS excavates the idle time gaps
caused by task precedence constraints to further reduce dynamic
energy consumption whilst satisfying workflows’ deadline
constraints.

Besides, with the increase of workflow scale, the EIS improves
the competitors more obviously. For instance, in comparison to
ERTS, the EIS achieves 16.43% improvement in the Sipht workflow
with 30 tasks, while that increases to 19.38% in the Sipht workflow
with 100 tasks. In general, as the workflow scale increases, the
workflows’ topological structures become more complex, and the
corresponding optimization problems become more difficult.
Hence, the improvement of the EIS in scheduling larger-scale
workflows demonstrates its advantages in handling optimization
problems derived from complex workflows.
4.5. Ablation analysis

The proposed EIS mainly includes two energy-saving compo-
nents. Function SlackTimeAssignmentðÞ is to reduce energy con-
sumption by distributing workflow slack time to extend the
runtime of each task (Line 5, Algorithm 1). Function
IdleTimeGrabðÞ is to extend some tasks’ runtime by mining the idle
GENT ERTS EIS

3 (2.326e+2) 4.766e+3 (1.502e+2) 3.933e+3 (2.424e+1)
4 (5.991e+2) 1.199e+4 (4.226e+2) 1.005e+4 (5.044e+2)
4 (1.084e+3) 3.579e+4 (2.004e+3) 3.032e+4 (1.863e+2)
5 (4.921e+4) 5.490e+5 (2.061e+4) 4.583e+5 (1.764e+4)

5 (1.316e+3) 5.521e+5 (2.264e+4) 4.547e+5 (6.089e+3)
6 (6.477e+4) 1.499e+6 (3.844e+4) 1.220e+6 (4.145e+4)
7 (7.607e+5) 2.093e+7 (7.925e+4) 1.743e+7 (6.573e+4)
8 (2.351e+6) 2.236e+8 (1.042e+6) 1.901e+8 (7.327e+5)

5 (6.146e+3) 2.336e+5 (3.966e+3) 1.943e+5 (4.628e+3)
5 (2.038e+3) 4.521e+5 (6.922e+3) 3.760e+5 (7.283e+3)
5 (2.847e+4) 7.876e+5 (2.543e+4) 6.409e+5 (4.276e+4)
7 (3.204e+5) 7.714e+6 (3.211e+5) 6.445e+6 (3.830e+5)

4 (7.552e+2) 1.945e+4 (7.628e+2) 1.615e+4 (4.901e+2)
4 (1.058e+3) 4.230e+4 (9.923e+2) 3.493e+4 (1.027e+3)
4 (1.231e+3) 6.339e+4 (6.100e+3) 5.255e+4 (3.158e+3)
6 (5.912e+4) 1.076e+6 (8.403e+3) 9.101e+5 (2.073e+4)

5 (6.349e+2) 1.557e+5 (2.342e+2) 1.301e+5 (4.517e+2)
5 (2.292e+4) 3.375e+5 (2.292e+4) 2.880e+5 (2.710e+4)
5 (1.796e+4) 6.009e+5 (2.818e+4) 4.844e+5 (2.934e+4)
6 (1.402e+5) 7.696e+6 (1.482e+5) 6.507e+6 (6.255e+4)



Non-STA Non-ITG EIS

Variants

3

3.1

3.2

3.3

3.4

3.5

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

J)
10

4 Montage_100

(a)

Non-STA Non-ITG EIS

Variants

1.75

1.8

1.85

1.9

E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
J)

10
7 Epigenomics_100

(b)

Non-STA Non-ITG EIS

Variants

5

5.5

6

6.5

7

7.5

8

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

J)

10
5 Inspiral_100

(c)

Non-STA Non-ITG EIS

Variants

4.5

5

5.5

6

6.5

7

7.5

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

J)

10
4 CyberShake_100

(d)

Fig. 7. Performance comparison of the proposal and its variants.
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time gaps between tasks to achieve the purpose of reducing
dynamic energy consumption (Line 6, Algorithm 1). To verify their
performance contribution, we construct two variants of the pro-
posed EIS, denoted as Non-STA and Non-ITG. Non-STA is con-
structed by removing the Function SlackTimeAssignmentðÞ, while
Non-ITG is constructed by removing the Function IdleTimeGrabðÞ.
Based on four workflows, i.e., Montage_100, Epigenomics_100,
Inspiral_100, and Cybershake_100, the energy consumption of
Non-STA, Non-ITG, and EIS is compared in Fig. 7.

The main component difference between variant Non-STA and
EIS is that Non-STA does not employ Function
SlackTimeAssignmentðÞ. Then, the amount of energy reduced by
EIS over Non-STA can be attributed to the performance contribu-
tion of Function SlackTimeAssignmentðÞ. Similarly, the energy
reduction of EIS over Non-ITG corresponds to the performance con-
tribution of Function IdleTimeGrabðÞ. According to the comparison
results on the four workflows, we can see that Function
SlackTimeAssignmentðÞ contributes more to energy saving. For
example, on workflow Montage_100, Function.

SlackTimeAssignmentðÞ reduces the energy consumption from
3.42e + 4 to 3.03e + 4, while Function SlackTimeAssignmentðÞ
reduces the energy consumption from 3.11e + 4 to 3.03e + 4.
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5. Conclusions and future work

This paper strives to optimize the energy consumed by execut-
ing workflow applications in a cloud datacentre. According to the
characteristics of cloud resources and applications, this paper pro-
vides the energy power and workflow models, and formulates the
optimization problem with deadline and precedence constraints.
Then, an energy-aware intelligent scheduling algorithm to explore
the workflow slack time and idle time gaps between tasks to reduce
dynamic energy consumptionwhilst satisfyingworkflows’ deadline
constraints. Also, extensive comparison results demonstrate the
proposal’s superior performance in terms of energy saving.

Based on this research, it is promising to holistically explore the
energy-efficient optimization problem for other types of subsys-
tems including cooling, network, storage, and cache in cloud plat-
forms. Besides, integrating the proposed techniques into real-
world cloud platforms is another research direction.
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