
Chapter 3

Implementation and System
Overview

The chapter of implementation and system overview is made to give an overview over the working process
and an explanation of the code produced. The planning and execution of the master thesis is presented
first in this chapter, before the Prosper well-model is described. Further, the code for importing data
from the well-model to Python is presented, including some theory that helps explaining the process. A
mathematical formulation of the interpolation done is presented before the implementation of the code
is described. Next, the mathematical formulation of the different optimization problems are derived
leading up to the implementation of the code, which the next section is about. Section 3.8 is about the
code made for plotting, before the structure of the system is presented in the last section. The structure
of the system is mainly presented with the use of class- and flowchart diagrams.

3.1 Planning and Execution

To make a project schedule a Gantt chart was produced. This is a graphical depiction of a project
schedule with bar charts showing start and finish dates [9]. A part of the Gantt chart is presented in
figure 3.1. The figure shows different phases in the work and each phase consists of multiple tasks. In
addition it presents how many weeks are planned used for each task. The last part of the chart is phase
3: ”Writing the report” and is left out due to space limitations.
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Figure 3.1: A screenshot of one part of the Gantt chart used in the planning of the master’s thesis. The
chart is made in Norwegian.

3.1.1 Project Execution

Throughout this project there has been regular meetings with the supervisors on Teams every other week.
In addition there has been some extra physical meetings, when necessary, to discuss any difficulties in
the project. For the regular meetings there have been mainly three points on the agenda:

• What has been produced since last meeting

• What should be done the next couple of weeks

• Input and questions

These meetings made sure that the progress was as planned by updating the chart presented in figure
3.1. In addition these meetings made discussions possible.

The work in this master’s thesis have been done with basis in the Gantt chart in figure 3.1. However,
some parts of the plan have been changed during the project. An updated Gantt chart is presented
in figure 3.2. This shows if the tasks were completed within the deadline and which tasks were not
prioritized due to time limitations.

As presented in figure 3.2 the first three weeks were part of phase 1 which involved planning and research
of previous work. These tasks were completed on schedule. The next phase was optimization work,
including reading the model-file into Python, interpolate the table and make a solver that optimize the
different cases. The parts of calculating the gradients and producing a Python GUI was not prioritized
because more time on the optimization was needed. The calculation of the derivative was not that
important because the Scipy.optimizer made approximation of the derivatives (for some methods). This
resulted in extra time spent on the interpolation and optimization (orange colors), while the other tasks
were completed on schedule.
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Figure 3.2: A screenshot of one part of the Gantt chart after the table is updated. The chart is made in
Norwegian.

3.1.2 Research

At the start of the project it was necessary to do research on previous work on the subject. This was
done to identify the gaps between previous work and the goals of this project. The research was done
by searching for work done on gas lift optimization on Google Scholar, NTNU’s University Library and
previous master’ thesis in NTNU’s Open library. Some helpful resources was also handed out by the
supervisors.

3.1.3 Development of Code

The process of building a code that solved the problem consisted of different parts. The process from
the first meetings to the final code is summarized by the following list:

1. Define what the end goal is:

• Make a code that optimize a well-network subject to various process constraints and give
optimal GLIR as result

2. Define what tasks that have to be solved to reach the end goal.

• Import data from the well-model into Python

• Interpolate the data imported

• Make different plots to understand the well-behavior

• Make different optimization-cases in Python

• Test the different optimization-cases and verify if they are correct

3. Solve the tasks in point 2.

4. Test if the code works and give result that matches the theory.

5. Make adjustments to the code to make it smarter and more efficient

When working with the code the main focus was to make a code that worked and solved the different
tasks. When the code worked and had solved the main goal of the project the remaining time was used
to improve the code. Some of the key elements that was changed to improve the code was:
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• Clean the code to make it easier to understand.

• Make the objective function and the constraints dynamic so it changes when the number of wells
changes, instead of multiple if/elif-statements representing each well.

• Test different ways of approximating the jacobian to find the fastest way to solve the problem.
Different types of jacobian include:

– 2-point method for approximation

– 3-point method for approximation

– Calculating the jacobian and give it as input to optimizer

3.2 Prosper Well-Model

The modelling of the well was done using Prosper, which offers artificial lift design and modelling
capabilities for the user community. The modelling capabilities includes nodal analysis for wells with gas
lift injection [19], which is used in this master’s thesis.

The data for the well to be optimized was real and handed out by Lundin Energy. The well-model
consists of five free variables and 24 calculated variables and is presented in a .TPD-file. The free
variables are named Rates (liquid rate), Gaslift injection rate, WC, GOR, and Top node pressure and
have respectively 20, 7, 12, 10 and 10 values each. This results in 20 · 7 · 12 · 10 · 10 = 168000 rows of
values for the calculated variables. The first 8 rows of result of calculated values are shown in figure 3.4,
below the line with ”# 4 Variable TPD Results”.

Figure 3.3: First part of the well-model from Prosper showing the name of the calculated variables,
among other things

One column in the results corresponds to the type presented two rows below ”# Number of Calculated
Values (columns)” in figure 3.3. There are 24 calculated variables, but it is only the 10 first columns
that are presented in figure 3.4 (due to space limitations). In the same figure the free variables with its
values are shown, from Rate Variables (Liquid rate) to Variable 1 (Top Node Pressure).
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Something worth noting with the Prosper well-model is that Column 1 in the result is the WHP. In
addition, the free variable ”Variable 1: Top Node Pressure” is the BHP of the well.

Figure 3.4: Second part of the well-model from Prosper showing the name and values of the free variables
and the values of the calculated variables

3.3 Read Data to Python

Before the implementation of reading data to Python is shown, some relevant theory is presented, in-
cluding different data-structures and Pandas.

3.3.1 List, Numpy Array, Tuple and Dictionaries

When dealing with data processing in Python it is important to know the different data-structures and
what the differences are. The different types (and most relevant for this work) are lists, arrays, tuples
and dictionaries.

Lists are enclosed by square brackets [ ] and are a mutable sequences of objects. Mutable means that
you can add, remove or update already existing elements in the list [25]. The list is ordered because it is
a sequence, and the objects can be anything from integers to other lists or functions. Tuples are enclosed
by paranthesis () and are an immutable sequence of objects. It thus consists of the same sequence of
objects as for lists, but are immutable (can not change its content by removing or adding elements) [25].
Arrays are not built into Python so it is necessary to import a module to use this. These are a mutable
sequence of similar type objects, so they are mutable like lists, but all objects have to be of the same
type. The last datatype described in this section are dictionaries. These are enclosed by curly braces {}
and are an unordered collection of key-value pairs. To be unordered means they cannot be indexed, but
the values are accessed by the key. An item in an dictionary is a key-value pair [25].

3.3.2 Pandas - a Python Package for Data Analysis

Pandas is a Python package that makes Python powerful when it comes to data analysis. An object
in Pandas consists of a two-dimensional tabular with labels for both rows and columns and is called a
DataFrame [13, p. 4]. This is useful for reshaping, slicing and selecting subset of data, among other things.
Pandas is built on top of NumPy which makes it suitable for NumPy-centric applications. NumPy is
short for numerical Python and is an elementary Python package for scientific computation. This package
includes the functionalities of multidimensional array object (ndarray), element-vise computations with
arrays, linear algebra operations and many more [13, p. 4].
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Series and DataFrame

Two frequently used data-structures in Pandas are Series and DataFrame, which are easy to use and
works for most applications. While series are one-dimensional objects that contain data like an array,
a DataFrame is a data-structure more like a spreadsheet that represents a tabular. A Series can be
thought of as an ordered dictionary with fixed length, because the Series maps the index values to the
data values [13, p. 113]. The DataFrame has both row and column index where the data it contains can
be different types, like numeric, string or boolean [13, p. 115].

Data loading

Pandas has features that makes importing of CSV-files easy. A CSV-file is a format where the data are
separated by comma, hence CSV (comma separated values) [12]. To import a CSV-file into a DataFrame
(df) one can write the syntax:

import pandas as pd

df = pd.read csv(’file name’)
(3.1)

3.3.3 Implementation

Because Python is the preferred programming language for solving the optimization problem it was nec-
essary to read the data from well-model to Python. The code for this was made in a class in Python and
called ”Read Model”. The class consists of the methods ”read line”, ”read rows”, ”read free variables”,
”read TPD results” and ”read all”. When reading the explanations for implementation in this section
and in 3.5 and 3.7 it is recommended to have a look at the code in Appendix A simultaneously.

The method ”read line” looks for the row consisting of a user-defined search-word and stores the row-
number in a list. This is used in ”read free variables” where the code stores the content in the correct
row in a dictionary by using ”read rows df”. This method returns a Pandas dataframe and has two
inputs; index (at which line to start importing data) and rows imported (how many rows should the
dataframe consist of/import). For ”read free variables” the search-word is ”values”, because this occurs
at every free variables. In the used well-model this word also occurs two times before the free variables,
hence the two first elements in the list are removed. Number of rows imported here are 1, because it is
only one line of interest for the free variables, as shown in figure 3.4.

The method ”read TPD results” does the same as ”read free variables”, but for the calculated variables.
For that reason the difference is the search word which is ”variable tpd results” here, and the number of
rows imported are unlimited (which means it imports all rows below the defined line).

”read all” returns a list of two items: free variables in a dictionary of dataframes (one for each free
variables) and the variable-results as a dataframe. The importing of the dataframe is possible because
of the comma separated values (CSV)-format of the well-model.

Something that is worth noting for using this class on other well-models is that the search-words are
defined within the class (and not as inputs to the methods). One should also remember that the number
of elements removed in the list ”self.row numbers” are specified within the method. It is necessary to
check if the search-word occurs other places than in the lines of interest when importing the data from
other well-models.

3.4 Interpolation - Mathematical Formulation

Because the data described in the previous section are points and not continuous it is necessary to
interpolate it. This is done so it is possible to get an approximated result for all combinations of the free
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variables. The interpolation gives one value as result and is dependent on the free variables as presented
in figure 3.5.

Interpolation

BHP

GOR

WC

GLIR

LR

WHP

Figure 3.5: Illustration of the interpolation with five free variables and WHP as the resulting value

For the case with five free variables the interpolation can be described like this, mathematically:

θ = (BHP,GOR,WC,GLIR,LR)

y = g(x, θ)
(3.2)

where θ consists of the constant inputs to the interpolating function y = WHP. In the optimization
presented later, some of the constants in θ will be variables x, depending on the optimization problem.

3.5 Interpolation - Implementation

The class for interpolation converts the units and interpolates the data imported from the well-model.
This is a necessary step to be able to use the data for optimization. The class consists of the methods
”dict conversion”, ”convert points”, ”get points”, ”convert to tup”, ”get data” and ”do interpolation”.

The method ”dict conversion” returns a dictionary where the keys are ”Free Variable i” where i is the
well-number. The corresponding value is a string describing the type of the variable, e.g. pressure or
GLIR. The list describing what type of value it is must be defined by the user within the method. The
list have the same length as number of free variables and the order from left to right is the same as
how the free variables are presented from top to bottom in the well-model. This means that for the
well-model used in this master’s thesis the list looks like this: [’Rate values’, ’GL rate’, ’WC’, ’GOR’,
’Pressure’].

”convert points” takes a list and different values for multiplication and addition as input, and return a
list where the units are converted. The converting of a value x follows the formula in equation 3.3.

res = (x+ α) · β + γ (3.3)

where the constants α, β and γ are inputs to the method decided by the list in ”dict conversion”.
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The method ”get points” performs unit conversion of the points using ”dict conversion” and ”con-
vert points”, resulting in a list of 1-dimensional arrays. The method uses if-statements to choose what
conversion-values to use before importing the free variables from the dictionary and converting and flat-
ten the array. Then these are stored in a list and returned. The points are picked up with the last item
in the dictionary first, so the interpolation gets correct. This is because the TPD-results are obtained
with a combination of the free variables where the free variable varies from top to bottom, in the well-
model-file. In scipy.interpolate.RegularGridInterpolator it is the last item in the tuple-input that vary
first, and hence this procedure provides correct results.

The following values for α, β and γ are used for the different types of values:

• Rate values: BBL/day to m3/day: α = 0, β = 0.159, γ = 0

• Gas lift rate: MMSCF/day to m3/day: α = 0, β = 28173.974, γ = 0

• WC: No convertion done

• GOR: SCF/STB to Sm3/Sm3: α = 0, β = 0.178, γ = 0

• Pressure: PSI to bar: α = 0, β = 0.069, γ = 1

Because of the requirements of the regular grid interpolater, a method called ”convert to tup” is made
to convert the points in ”get points”, from a list to a tuple.

”get data” imports the data-values that represents the combination of points from ”get points” and
converts it. The data is the columns in the TPD-results. Hence the method takes column-number as
input (e.g. if one wants WHP as data one should have 0 as column number input) and returns a numpy
array, with shape dependent of number of free variables and its lengths.

A conversion of the data is done first within the method, where it converts the two first columns, WHP
and WHT (these are the only ones of interest in this master’s thesis) with the following values:

• Column number 0 (WHP): PSI to bar: α = 0, β = 0.069, γ = 1

• Column number 1 (WHT): °F to °C: α = −32, β = 0.556, γ = 0

Because the shape of the resulting array is dependent on the number of free variables and its length
there are if and elif-statements to make the correct shape. This code only accounts for 0-6 number of
free variables. If the TPD-file have more free variables the message ”The number of free variables is not
between 1 and 6. The code needs adjustment in the file ’interpolation’ within the method ’get data” is
returned.

The final method ”do interpolation” imports the points from ”convert to tup” and ”get data” and use
them in the the multi-dimensional interpolator ”Regular grid interpolator”, with a linear interpolation
method. The method has column number as input and returns the interpolation result. However, to
get a number out of the interpolation it is necessary to define an array of input values for the free
variables/points.

3.6 Optimization Problems - Mathematical Formulation

In this master thesis there are three main optimization problems that are solved to answer the problem
description in 1.1.1 in the best way possible. The last and most relevant optimization problem builds on
the two presented first. In this section the mathematical formulations of the optimization problems are
presented.

3.6.1 Minimize Gas Lift Injection Rate

An optimization problem where the goal is to minimize GLIR with constraint on minimum WHP is
defined like this:
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min
{x}

f(x)

s.t. c(x) ≥ 0

where lb ≤ x ≤ ub

(3.4)

where x is the gas lift injection rate, f(x) = 1 ∗ x and c(x) = g(x, θ)− ymin where
θ = (BHP,GOR,WC, x,LR) as described in section 3.4. ymin is the minimum required WHP and lb
and ub are lower- and upper bounds.

3.6.2 Minimize More Complex Objective Function for One Well

This optimization problem was done to find the optimal GLIR and oil rate (OR) to minimize a more
complex object function for one well. This objective function is more useful and forms the basis for
extending the problem to multiple wells. Here there are two free variables in the optimization problem
and in the interpolation. The optimization problem is described like this mathematically:

min
{x}

f(x)

s.t. c(x) ≥ 0

where lb ≤ x ≤ ub

where x = [x0, x1] = [OR, GLIR]

(3.5)

The objective function is given by:

f(x) = ω1 ∗ (x0 − α)2 + ω2 ∗ (x1 − β)2 (3.6)

α = ORtarget and β = GLRtarget. c(x) is the same as in 3.6.1, but θ is different due to two variables
instead of one:

θ = (BHP,GOR,WC, x1, LR)

where LR =
x0

1− WC
100

(3.7)

The objective function for this minimization problem is more complex than the one discussed in the
previous section. This is made to minimize the deviation between the OR and the OR target plus the
deviation between GLIR and GLIR target. There are also added two weights ω1 and ω2 so the user can
prioritize which deviation to penalize the most.

3.6.3 Minimize More Complex Objective Function for Multiple Wells

This optimization case is similar to the one presented in 3.6.2, but with some adjustments on the objective
function and the constraints. The optimization case for N number wells is given by the following formula,
where n = N − 1 (because of 0-indexing in Python):
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min
{x}

f(x)

s.t. c1(x) ≥ 0

c2(x) ≤ GLR Totalmax

where lb ≤ x ≤ ub

where x = [x0, x1, ..., xn·2, xn·2+1] = [OR0, GLR0, ..., ORn, GLRn]

(3.8)

The objective function is given by:

f(x) =

i=N−1∑
i=0

ω1i · (ORi − αi)
2 + ω2i · (GLRi − βi)

2 (3.9)

and the pressure constraints c1(x) for every well i in total number of wells N are given by:

c1(x) = [c11(x), c12(x), ..., c1N (x)]

c1i(x) = g(x, θi)− ymini

where θi = (BHPi,GORi,WCi, x2·i+1,LRi)

where LRi =
x2·i

1− WCi

100

(3.10)

where the constraint on total allowed GLIR c2(x) is:

c2(x) =

i=n∑
i=1

x(2·i−1) (3.11)

3.7 Optimization Problems - Implementation

The Python code for solving the optimization cases presented in 3.6.1 to 3.6.3 are done in a class called
”optimize”. This class separates the code for each optimization case with a line of comment describing
it. The three optimization cases used in this thesis are Opt 1, Opt 3 and Opt 4 in the class. Opt 2 is
another optimization which will not be described here.

Common for all the optimization problems is that they have one method for defining the objective
function, one method for defining the constraint(s) and one method for running the optimization. By
describing the code for the last and most complicated optimization problem the other two are covered
by this. The optimization problem presented in 3.6.3 have six methods in the code, ”obj dec mult”,
”presscons dev mult”, ”glr tot cons”, ”calc jac”, ”calc hess” and ”min dev multiplewells”. The first
takes x, OR target, GLR target, w1, w2 and number of wells as input and returns the objective function.
The second method takes x, BHP, GOR, WC, minimum WHP and a counter as input and returns a
constraint describing minimum WHP for one well.

The method ”glr tot cons” defines the constraint for maximum total GLIR. It takes the value of the
limit and number of wells as input and returns the constraint.

The next two methods returns the jacobian and hessian for the specific objective function defined in
the method ”obj dev mult”. The jacobian and hessian are calculated by hand for the specific objective
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function and then inserted to these methods. It is important to notice that these does not change
automatically by changing the objective function.

The last method called ”min dev multiplewells” uses the previous methods to define the optimization
problem. This adds constraints for minimum WHP dependent on number of wells. At last the opti-
mization problem is defined by using the minimizer from Scipy.optimize. The setup of this method is
done in a way so the user can choose most of the values outside of the class. However, the method for
approximating the jacobian and hessian have to be defined within this method.

The input to the optimizer are the variables: algorithm, num wells, x0, BHP, GOR, WC, presscons val,
glr max limit, OR target, GLR target, w1, w2, lb and ub. Here, algorithm is a string, num wells and
glr max limit are integers and the rest are lists. The length of x0, lb var and ub var are 2 · num wells
and the length of BHP, GOR, WC, presscons vals, OR target, GLR target, w1 and w2 are equal to
num wells.

3.8 Plotting

In the code built there is a class called ”plotting”, which consists of different methods for making different
plots. These methods are made specific for each plot, with one method for plotting WHP versus GLIR
or LR for one constant (of GLIR/LR) and one method for plotting the same but for multiple constants
of GLIR/LR. The third and fourth plot uses methods for plotting oil rate versus GLIR for one or
multiple WC values, while the fifth and last method plots the running time. All these plots are used in
the results, presented later in this master thesis. The code in this class is not presented in detail.

3.9 Structure of the System

In this part of the thesis the structure of the system previously presented will be described using class-
and flowchart diagram. This is done make give an overview of the system and so it is easier to understand
the different connections.

3.9.1 Class Diagram

A Class Diagram in Unified Modeling Language (UML) is used in software engineering to describe a
systems structure by showing classes, their attributes (including datatype) and method. A Class Dia-
gram also shows the relationship between the different classes, including inheritance, simple association,
aggregation, composition or dependency [35]. The Class Diagram representing the python-code used to
solve the optimization case is shown i figure 3.6.
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Main

Input data: integer or list

Run optimization case

interpolate_unit_convert

dict: dictionary

df: pandas (pd) dataframe

df_columns: list

new_dim: numpy ndarray

dict_conversion

convert_points

get_points

convert_to_tup

get_data

do_interpolation

read_model

file_name: string

file_location: string

row_numbers: list

free_variable_name: string

TPD_res_name: string

TPD_results: pd.dataframe

df_fv_dict: dictionary

read_line

read_free_variables

read_TPD_results

read_all

optimizer

file: interpolation_unit_convert

wells_def: dictionary

Opt1: objective

Opt1: pressure_constraint

Opt1: min_GLR

Opt3: obj_deviation

Opt3: presscons_deviation

Opt3: min_deviation

Opt4: obj_dev_mult

Opt4: presscons_dev_mult

Opt4: glr_tot_cons

Opt4: calc_jac

Opt4: calc_hess

Opt4: min_dev_multiplewells

Use

Use Use .txt-file
(well model)

Data: CSV

Figure 3.6: Class diagram of the optimization system showing the different classes and their attributes
(and data type), and methods

As figure 3.6 shows, the optimization system consists of five classes; main, optimizer,
interpolate unit convert, unit model and the .txt-file. The four first have a dependency-relationship,
while the relationship between read model and .txt-file is that read model is composition of the .txt-file.

The sixth class called ’plotting’ is not shown in these diagrams because it is not that relevant to the
optimization.

3.9.2 Flowchart Diagram

A flowchart is a diagram that presents the sequential order of different steps in a process. Different bodies
(rectangles, ovals, diamonds etc.) represents various types of meanings, like starting point, operations,
decisions, data etc. Flowcharts help visualizing a complex processes [34]. A flowchart diagram for the
code solving the optimization problem is presented in figure 3.7.



CHAPTER 3. IMPLEMENTATION AND SYSTEM OVERVIEW Page 28

Start of
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defined?

Define file-location 
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"interpolation_unit_convert"

Call on the method "read_all"
in the class "read_model"

Read the well model in the
.txt-file

No

Figure 3.7: Flowchart diagram of the optimization system showing the different activities in the opti-
mization process
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The flowchart diagram shows that the steps needed before running the code for optimization, is to
define the file location (and name), and define all input-data. The input data includes number of wells,
WC-values for each well, max-limit for gas lift injection rate, weights and many more.



Chapter 4

Results

In this part of the thesis the results are presented to answer the problem formulation described in section
1.1.1 and the objectives presented in section 1.2. Firstly, the results about importing data to Python
and interpolating it are presented with the code for calculation of derivatives. The optimization results
are presented in two main parts describing different optimization cases for one and multiple wells. In the
first part some characteristics for one well are presented in addition to the optimization results. For the
second part the optimization results for multiple wells are described, with some results regarding running
time and different weights. In every optimization case there are different parameters that represent the
wells, and these are presented for each case. The two last sections in this chapter presents results on the
different methods in scipy.optimize and the GUI. The results presented in this chapter are discussed in
the next chapter.

4.1 Import Well-Model, Interpolate Data and Calculate Deriva-
tives

The reading of the data from the well-model to Python is working as intended. The importing of data
handles as many free and calculated variables as needed as long as the well-model have a structure like
the file used in this master’s thesis. This is mainly about having a search-word that occurs at each free
variable and one word next to the calculated variables. The code for reading data have not been tested
for other types of well-models as input, but should work as long as the file contain of comma separated
values. Because this is not tested it is not possible to conclude that the reading is modular.

The class made for interpolation of the data points is working as desired. This is verified by testing with
input points from the table and checking that input between two points results in a value between the
values in the TPD-results in the well-model. To show that the interpolation done is correct one example
will be presented. The first two lines in the TPD-results have the values:

Line 1: WHP = 1.15 bar

Line 2: WHP = 2.3 bar
(4.1)

The following combination of free variables gives the BHP presented above.

Line 1: BHP = 119.99 bar, GOR = 90.46, WC = 0, GLIR = 0, LR = 50 Sm3/day

Line 2: BHP = 119.99 bar, GOR = 90.46, WC = 0, GLIR = 0, LR = 63.71 Sm3/day
(4.2)

30
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This shows that the only variable that changes for the two lines is LR. Note that the values presented
here are not the same as shown in figure 3.4 because these values are converted to correct unit. For the
interpolation to work correctly, an interpolation using BHP = 119.99, GOR = 90.46, WC = 0, GLIR =
0 and LR = 52 as input should give a WHP between 1.15 and 2.3 bar. When running the interpolator
this gives 2.28 bar which indicates that the interpolation performed is correct.

4.2 Optimization for One Well

There are two different optimization cases for one well, as described in 3.6. The first optimization case is
the simplest, where the goal is to find the minimum GLIR needed to obtain a minimum limit for WHP.
The second optimization case has the aim of minimizing a more complex objective function as presented
in 3.6.2. The latter makes the basis for solving the end goal with an optimization case for multiple wells.
To understand the behaviour of the well-models and the optimization results, some characteristics for
one well are presented in the following section.

4.2.1 Characteristics for One Well

The behaviour of the well-model is presented in the form of multiple plots. The following plots that are
presented:

• WHP versus GLIR at different constants of liquid rate

• WHP versus LR at different constants of GLIR

• Oil rate versus GLIR at constant WHP

The first two plots (4.1 - 4.2) shows how the well perform with constant values on BHP, WC and GOR
and varying GLIR and LR. The next three plots (4.3 - 4.5) presented have different combinations of
BHP, WC and GOR for varying GLIR and LR. These constant values are used in the plots 4.1 - 4.2:

• BHP = 120 bar

• WC = 50 %

• GOR = 91 Sm3/Sm3
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Figure 4.1: Wellhead pressure versus gas lift rate for different constants of liquid rate and the required
pressure at 20 bar

The red dotted line in figures 4.1 and 4.2 represents the minimum WHP. Figure 4.1 presents that with
increased gas lift rate the WHP increases. Higher LR gives lower WHP, and for LR = 3923.79 Sm3/day
there is not enough GLIR available (in the well-model) for the well to obtain WHP = 20 bar.

The plot in figure 4.2 can be divided into two parts with pivot at the stationary points (for the ones that
have it) for each curve (different point for each function). The first part shows that increased LR gives
increased WHP. For the second part it is the opposite, where increased LR gives decreased WHP. The
figure also presents that increased GLIR gives increased WHP, as figure 4.1 also indicated.
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Figure 4.2: Wellhead pressure versus liquid rate for different constants of gas lift injection rate

The figures 4.3 - 4.5 shows oil rate versus GLIR for three different combinations of BHP, GOR and WC.
In these plots, WHP = 20 bar. These plots are made by solving the optimization problem described
in equation 3.4 for different values of the constant LR. For each iteration, the optimization problem is
solved where the optimal GLIR, to achieve the minimal required WHP (the constraint), is returned.
This is done with different LR at each iteration. By doing this, the connection between LR (thus oil
rate) and GLIR is obtained.
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Figure 4.3: Oil rate versus gas lift injection rate for the constant values BHP = 120 bar, GOR = 91,
WC = 50
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Figure 4.4: Oil versus gas lift injection rate for BHP = 150 bar, GOR = 91, WC = 50
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Figure 4.5: Oil rate versus gas lift injection rate for the constant values BHP = 150 bar, GOR = 91,
WC = 70

Figure 4.3 shows that GLIR ≥ 20000 (approximately) is necessary to produce oil for this combination
of BHP, GOR and WC and obtain WHP of 20 bar. When increasing BHP to 150 bar as in figure 4.4,
the well is able to reach WHP of 20 bar without the use of gas lift until the oil rate becomes higher than
approximately 1500 Sm3/day. For the plot presented in figure 4.5 the BHP is 140 bar, GOR is 91 and
WC is 60. For this combination of input there are required some gas lift to reach the required pressure
at the beginning, and increased GLIR gives increased oil rate in the well.

4.2.2 Minimize Gas Lift Injection Rate

The first optimization case, presented in 3.6.1, was done to check that the results corresponds to the plot
shown in figure 4.3. One optimization case with specific input values and corresponding optimization
result is summarized in table 4.1. This optimization case is done with the goal of minimizing the GLIR
with constraint on minimum WHP. GLIR is also the objective function and the variable.
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Input values Value/name Unit

Variable x = Gas lift injection rate Sm3/day
Bounds (0, 119 880) Sm3/day

x0 40 000 Sm3/day
BHP 120 bar
GOR 91 Sm3/Sm3

WC 50 %
LR 2000 Sm3/day
pmin 20 bar

Method SLSQP -

Results
f(x) 43 499 Sm3/day
x 43 499 Sm3/day

nfev 16 -
nit 7 -
njev 7 -

Execution time 0,64 seconds

Table 4.1: Input values and optimization results for optimization case presented in equation 3.4

4.2.3 Minimize Objective Function for One Well

The optimization case for minimizing an objective function for one well is presented in 3.6.2. The reason
for doing this was to check that solving this optimization case for one well worked as intended, before
adding multiple wells to the case. The results of this optimization case can be compared to figure 4.3
which shows oil rate versus GLIR.

The results of optimization case for this problem with specific input values are summarized in table 4.2:
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Input values Value/name Unit

Variables x0 = OR, x1 = GLR Sm3/day
Lower bounds (lb) [375, 25 000] Sm3/day
Upper bounds (ub) [1899, 110 000] Sm3/day

x0 [500, 50 000] Sm3/day
BHP 120 bar
GOR 91 Sm3/Sm3

WC 50 %
α [1500]
β [80 000]

ω = [ω0, ω1] [1, 1]
pmin 20 bar

Method SLSQP -

Results
f(x) 6447 (Sm3/day)2

x [1420, 80 001] Sm3/day
Jacobian [-161, 1.3] -

nfev 23 -
nit 7 -
njev 7 -

Execution time 0,68 seconds

Table 4.2: Input values and optimization results for optimization case presented in 3.6.2

4.3 Optimization for Multiple Wells

The optimization problem that includes multiple wells use a similar objective function as used in the
results in section 4.2.3. The difference is that it adds more wells to the objective function and has
constraint on total gas lift used in addition. For this master’s thesis the same input file is used for each
well, but the wells are separated by different values for WC. The code is built so one can choose as many
wells as wanted before running the optimization case.

The results from two specific optimization cases are presented first, before some results on running time
for different number of wells and different weights are presented.
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4.3.1 Optimization Case

An example of running this optimizer for five wells with specific inputs and the corresponding result is
summarized in table 4.3. In this case the constraint on maximum total GLIR is above the sum of the
GLIR target for each well, implying that the constraint should not be active. The optimization results
returned from scipy.optimize includes the jacobian, which in this case is:

[∂f/∂OR0, ∂f/∂GLR0, ∂f/∂OR1, ...] (4.3)

because the variables are ordered in this way. To be able to compare these results with the theory
presented in 2.4 where the jacobian is ∂OR/∂GLIR it is necessary to do some algebra to get the results
on the desired shape:

∂f/∂xi+1

∂f/∂xi
=

∂xi

∂xi+1
=

∂OR

∂GLIR
(4.4)

And these are the result presented in table 4.3 and 4.4. For the two optimization cases presented in these
tables, the WC-values varies from 40-60 for the five wells. The behaviour of the different wells and how
oil rate changes with GLIR is presented in figure 4.6.
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Figure 4.6: Oil vs. gas lift rate for BHP = 120 bar, GOR = 91 and different values for WC
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Input values Value/name Unit

Variables x = [x0, x1, ..., x9] = [OR0, GLR1, ..., GLR4] Sm3/day
Lower bounds (lb) [40, 0, 40, 0, 40, 0, 40, 0, 40, 0] Sm3/day
Upper bounds (ub) [1899, 110000, 1899, 110000, 1899, 110000, 1899, 110000, 1899, 110000] Sm3/day

x0 [500, 30000, 500, 30000, 500, 30000, 500, 30000, 500, 30000] Sm3/day
BHP [120, 120, 120, 120, 120] bar
GOR [91, 91, 91, 91, 91] Sm3/Sm3

WC [40, 45, 50, 55, 60] %
α [1600, 1400, 1400, 1400, 1400] Sm3/day
β [35000, 35000, 35000, 35000, 35000] Sm3/day
ω1 [1, 1, 1, 1, 1] -
ω2 [1, 1, 1, 1, 1] -
pmin [20, 20, 20, 20, 20] bar

GLRmax 200 000 Sm3/day
Method SLSQP -
Jacobian ’2-point’ -

Results
f(x) 1 898 119 (Sm3/day)2

x [ 1418, 35004, 1107, 35006, 851, 35011, 633, 35016, 457, 35021] Sm3/day
Jacobian [ -363.7, 7.3, -586.9, 12.8, -1097.0, 22.5, -1533.7, 31.5, -1885.9, 41.2] -

(∂xi+1)/(∂xi) [-0.02, -0.02, -0.02, -0.02, -0.02] -
nfev 68 -
nit 10 -
njev 6 -

Total oil production 4466 Sm3/day
Execution time 10.5 seconds

Table 4.3: Input values and optimization results for optimization case presented in section 3.6.3

Table 4.3 shows that the wells that have the lowest oil rate (and highest WC) are prioritized when it
comes to GLIR. The optimal values of GLIR are higher for the wells with highest WC. The derivatives
(∂xi+1)/(∂xi) are equal for each well.

By testing the optimizer with the same input values as presented in table 4.3 except one value, the value
for maximum total gas lift injection rate, the following results presented in table 4.4 are obtained.

Input values Value/name Unit

GLRmax 150 000 Sm3/day

Results
f(x) 1 27 645 453 (Sm3/day)2

x [ 1309, 29986, 993, 29989, 737, 29996, 515, 30006, 318, 30022] Sm3/day
Jacobian [ -582, -10027, -815, -10022, -1326, -10007, -1770, -9988, -2164, -9955] -

(∂xi+1)/(∂xi) [17.2, 12.3, 7.5, 5.6, 4.6] -
nfev 77 -
nit 11 -
njev 7 -

Total oil production 3871 Sm3/day
Execution time 12.8 seconds

Table 4.4: Optimization results for case with same input as in table 4.3 except GLR max is changed

In table 4.4 the GLIR used on each well is reduced because the constraint is tighter. It is still the well
with highest WC that recieves most GLIR. For this optimization case the derivatives (∂xi+1)/(∂xi) are
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not equal for each well. The number of function evaluations are increased and therefore the execution
time as well.

4.3.2 Running Time

Running time for the optimization case is presented for two situations. One for different jacobian as
input and one for how the running time varies with varying number of wells.

Different Jacobian

By running the same test as presented in table 4.3 with different inputs for the jacobian the resulting
values where equal but the running time was different:

• Jacobian: ’2-point’ = 10,5 seconds

• Jacobian: ’3-point’ = 196 seconds

• Jacobian: Callable function as input to optimizer: 145 seconds

• Jacobian: None = 52 seconds

The callable function is the jacobian of the objective function, calculated by hand and inserted to a
callable function in Python. The jacobian Jf of the objective function f presented in section 3.6.3 is
given by:

Jf (x) =

[
∂f

∂x0
,
∂f

∂x1
, ...,

∂f

∂x2·i
,

∂f

∂x2·i+1

]
(4.5)

where i = N - 1 and N is the number of wells. When the objective function for N number of wells is:

f(x) =

i=N−1∑
i=0

ω1i · (x2·i − αi)
2 + ω2i · (x2·i+1 − βi)

2 (4.6)

The resulting jacobian equals:

Jf (x) = [2 · ω10 · (x0 − α0), ω20 · (x1 − β0), ... , 2 · ω1i · (x2·i − αi), ω2i · (x2·i+1 − βi)] (4.7)

This jacobian is the one used as input to the optimzer when using the ”callable function”.

Different Number of Wells

The complexity of the optimization problem increases as the number of wells increase. The various
running times for different number of wells are presented here where the optimization case is as presented
in section 3.6.3. The results presented here is made by using Jacobian = ’2-point’ because this was the
fastest solver as presented in the previous section. In addition, the constraint is chosen so it is not an
active constraint. The reasoning behind this is that when comparing running time for different wells, it
is more likely to show the difference in a good way if this constraint does not impact the result different
for each test, when number of wells changes. The different running times for different number of wells is
as follows:

• 1 well: 0.5 seconds

• 2 wells: 1.5 seconds

• 3 wells: 5 seconds
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• 4 wells: 10 seconds

• 5 wells: 13 seconds

• 6 wells: 26 seconds

• 7 wells: 47 seconds

• 8 wells: 71 seconds

WC for the test ran above had the following values:

WC = [WC1,WC2,WC3,WC4,WC5,WC6,WC7,WC8] = [45, 47, 49, 51, 53, 55, 57, 59] (4.8)

For many of the cases the running time vary a lot depending on the WC-values and the constraint on
GLIR. In this case the GLR max is changed based on what β · (number of wells) are, and the constraint
is set just above this number so the constraint is not active. The different running times are presented in
figure 4.7. The figure presents the running time for this data-set compared to an actual quadratic running
time. The running time looks quadratic with respect to number of wells. There are some differences for
the two but this is expected. The running time can vary a lot depending on the different input values
and sometimes the solver do not converge to a solution and needs to be stopped by the user.
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Figure 4.7: Running time for the optimization case presented in 3.6.3 for different number of wells
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4.3.3 Use of Different Weights in the Objective Function

As presented in the mathematical formulation in section 3.6.3 there are some weights α and β that can
be chosen to prioritize which difference to penalize the most. The differences are the difference in OR
and OR target decided by α, and difference in GLIR and GLIR target decided by β. When running
the the same optimization case as presented in table 4.3 but with α = 50 instead of 1, the oil production
in well 1 goes from 1418 to 1421 Sm3/day and the GLIR is increased from 35 004 to 35 177 Sm3/day.
It is worth noting that the GLRmax in this case is 200 000 Sm3/day so it is not active and there are
more gas lift ”available” to the field of wells.

4.4 Different Methods in Scipy.optimize

This section presents the different methods in scipy.optimize.minimize, and how they fit the optimization
problem for multiple wells. Some methods are expected not to work for our problem because they cannot
handle bounds or constraints. Some of these methods were presented in the theory in section ??. All
methods was tested as input to the optimizer, and the warning returned by running the code is presented
in the following list, with some explanation.

• Nelder-Mead: Cannot handle constraints

• Powell: Cannot handle constraints

• CG: Cannot handle constraints

• BFGS: Cannot handle constraints

• Newton-CG: Jacobian required, cannot handle bounds/constraints

• Nelder-Mead: Cannot handle constraints

• L-BFGS-B: Cannot handle constraints

• TNC: Cannot handle constraints

• COBYLA: Cannot handle bounds

• SLSQP: This method works

• trust-constr: Have to define constraint-input to the optimizer in another way than for COBYLA
or SLSQP here. Was not able to get the constraints on correct form for this type so could not
compare trust-constr to SLSQP

• Dogleg: Jacobian required, cannot handle bounds/constraints

• trust-ncg: Jacobian required, cannot handle bounds/constraints

• trust-exact: Jacobian required, cannot handle bounds/constraints

• trust-krylov: Jacobian required, cannot handle bounds/constraints

For every method where the jacobian is required, these where tested with the callable function presented
in section 4.3.2. All of these methods could not handle bounds or constraints so they do not fit the
optimization case for multiple wells.

4.5 Graphical User Interface (GUI)

The work with implementing a GUI was not prioritized due to lack of time in the end of the master’s
thesis. After discussion with the supervisors it was concluded that it was more important to work on
the development of the optimizer.



Chapter 5

Discussions

The results presented in chapter 4 are discussed with basis in the theory presented in chapter 2 in this
part of the thesis. After the results are discussed the strengths, weaknesses and limitations of the results
are presented. At last the opportunities of the work are introduced.

5.1 Discussing the Results

The first part in the chapter is the discussion of the results and how it corresponds to the theory, including
characteristics for one well, minimization of GLIR for one well and minimization of the more complex
objective function for one and multiple wells.

5.1.1 Characteristics for One Well

Before discussing the optimization results for one well the characteristics of the well presented in figures
4.1 - 4.5 are explained. The characteristics of the well used in the optimization problem are explained
using plots of WHP versus GLIR, WHP versus liquid rate and lastly oil rate versus GLIR.

Wellhead Pressure Versus Gas Lift Rate for Constants of Liquid Rate

Figure 4.1 showsWHP versusGLIR for multiple values of liquid rate where the red dotted line represents
the required pressure of 20 bar. The plot shows that with increased liquid rate in the well more gas lift is
necessary to reach the required WHP. This corresponds to the theory of head loss presented in chapter
1.1.1.

Wellhead Pressure Versus Liquid Rate for Different Constants of Gas Lift Rate

Plot of wellhead pressure versus liquid rate for different constants of GLIR is presented in figure 4.2.
This figure shows that if the gas lift injection rate is 20 000 Sm3/day or lower the WHP will never
reach the required pressure of 20 bar. The plot also shows that increased GLIR gives increased WHP.
This corresponds with figure 4.1 discussed in the previous part. Figure 1.1 shows that increased GLIR
eventually reduce net oil production rate which implies reduced WHP. For this theory to correspond
with figure 4.2 the WHP would eventually decrease when increasing GLIR. This do not happen, where
increased GLIR increase WHP for the whole plot. This have to do with the well-model used in this
master thesis and will be explained further in the next part discussing oil rate versus GLIR.

43
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Oil Rate Versus Gas Lift Injection Rate

The figures 4.3 - 4.5 all shows oil rate versus GLIR, for different combinations of BHP, GOR and WC,
at WHP = 20 bar. There are some discussion points that are equal for all three, and something that is
special for each plot. The differences between them are discussed first, before some common points are
presented.

Figure 4.3 shows that for the combination BHP = 120 bar, GOR = 91 and WC = 50 there are needed
approximately 21 000 Sm3/day of gas lift to produce oil. When oil rate is between approximately 400 and
1700 Sm3/day the plot shows behavior that corresponds with the first part of the gas lift performance
curves in figure 1.1, where increased GLIR gives increased oil rate. However, the last data point breaks
this pattern. This happens because when the oil rate is above approximately 1500 Sm3/day the well
is not able to reach the limit of WHP = 20 bar with the GLIR available in the well-model. This can
be understood by looking at figure 4.1 where it is shown that for LR = 3923.79 Sm3/day there is not
enough gas lift to reach the limit.

The next plot shown in figure 4.4 have the combination of inputs BHP = 150 bar, GOR = 91 and WC
= 50, so the BHP is increased by almost 30 bar. This makes the well reach WHP = 20 bar without
use of gas lift, until the production reaches approximately 1500 Sm3/day. After this, there is required
gas lift to increase the production and maintaing WHP = 20 bar. The well can produce almost 2500
Sm3/day of oil with approximately 50 000 Sm3/day of gas lift, while the first well was not close to this
with doubled amount of GLIR. This shows that increased BHP makes it possible to produce more oil
and still reaching the required pressure, as expected when increasing BHP.

The last plot of oil rate versus GLIR is presented in figure 4.5, and is made with the values BHP = 150
bar, GOR = 91 and WC = 70. The BHP and GOR is equal to the last plot, and WC is increased.
Here it is shown that the well almost always needs gas lift injection to reach the pressure limit. The
well is also able to reach the pressure limit for every combination of GLIR and OR (unlike the first
combination of input-values).

Common for the the three plots is that there are two values of GLIR that gives two different values of
oil rate (for some interval of GLIR). This corresponds to figure 4.2 which have two values for gas lift
injection rate that gives WHP = 20 bar for the functions with gas lift injection rates between 20 000
and 30 000 Sm3/day.

The last important point to discuss about these plots is that none of them have a stationary point
representing a maximum. This would be expected, as presented in figure 1.1, where the oil production
first increases before it is reduced with increased GLIR. The plots are made using the well-model from
the .TPD-file and all values are used. This means that the well-model does not show how the well reacts
to gas lift injection rates above 139 999,9 Sm3/day which is the last value of the free variable gas lift
injection rate in the model-file presented in 3.2. This limits the optimization that will be discussed later,
but it does not make it impossible. If the well-model represented behaviour as in figure 1.1 it would
be a possibility to relax the bounds and constraints and verify that the optimizer found the stationary
point (maximum) for each well. Because this is not possible with the well-model used in this thesis the
optimization is done with bounds on the OR and GLIR. It is still possible to find an optimal gas lift
injection rate with our case and constraints, but the verification of the solutions can be more difficult.

5.1.2 Minimize Gas Lift Injection Rate for One Well

By comparing the result for the minimization problem presented in table 4.1 to the plot 4.1 it indicates
that the results are correct. The optimization case is done with LR = 2000 Sm3/day. In figure 4.1 this
is a line between the lime green and green lines. It looks correct that this (imaginary) line crosses the
required pressure line (at 20 bar) at GLIR = 43 499 Sm3/day. In addition, the scipy-optimize.minimize
returns ”Optimization terminated successfully” which indicates correct results.
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5.1.3 Minimize Objective Function for One Well

As presented in table 4.2 one can see that with targets of [OR target, GLR target] = [1500, 80000]
and constraint on minimum WHP the optimal solution was x∗ = [1420, 800001]. This shows that the
deviation of GLIR is just 1 while the deviation for oil rate is 80.

It is difficult to verify that the results are correct, but one can compare the results with figure 4.3 and
see that the resulting combination of oil rate and gas lift injection rate is a point on the graph which
indicates that the optimizer gives correct values. When running this optimization the weights had the
values 1, and was not tested with different values on the weights for this case.

The conclusion for this optimization result is that it is correct and this set-up of objective function and
constraints can be used when adding multiple wells to the optimization problem.

5.1.4 Optimization for Multiple Wells

The various results for optimization for multiple wells will be discussed and compared to theory in this
section. The optimization case will be discussed first before the different running times, and factors
changing it, are examined.

Optimization Case

When discussing the optimization for multiple wells it is important to compare the results to the theory
presented in 2.4 and verify that the gradient ∂OR

∂GLR is equal for every well in the optimum (as shown in
equation 2.16).

The optimization is done with two free variables for each well, OR and GLIR. When these two are free,
it means that the other constants to the interpolating function are constants, like BHP, GOR and WC.
As mentioned in the background in section 1.1 the BHP lowers when injecting gas into a well. Because
of this it could be an idea to have the BHP as a free variable in the optimization as well, but this is not
done in this work.

For the optimization case with a constraint on total gas lift injection = 200 000 Sm3/day presented
in table 4.3 it is shown that the gradient [∂xi/∂xi+1] = −0.02 for every well i. The constraint is 200
000 Sm3/day, where the gas lift target for each well is 35 000 Sm3/day, which gives a total GLIR of
35000 · 5 = 175000 Sm3/day if the target is reached. This implies that the constraint is not active. In
this case the results corresponds with the theory saying that the gradient should be equal for each well.

When adding a constraint on total gas lift injection = 150 000 Sm3/day it is below the total gas lift
injection target, implying that the constraint is active (this is also verified when summing the results for
gas lift injection for each well where this equals 150 000 Sm3/day). For this case the gradient [∂xi/∂xi+1]
varies from 17.2 to 4.6 in the results. This is interesting because it does not correspond with the theory
presented in 2.4. It is not easy to conclude what the reason is but one explanation is that the well
models are made by using linear interpolation between the data points. This can result in different
values for the jacobian in the optimum. Another reason can be that the optimization result is wrong
when adding a constraint on total gas lift injection rate. It would be strange if this is the case because
the optimizer returns ”Optimizer terminated successfully” so the first explanation seems more correct.
A third reason for the different jacobians can be that the theory presented in chapter 2.4 are done with
a simple objective function f that represents the oil production. The objective function in this case is
more complex, so it could be that the theory is not correct any more. However, this is not a very credible
theory either, because the case with no active constraint provides same jacobian for each well.

The optimization results shows that the optimizer prioritize some wells over another. Table 4.4 shows
that the well with lowest WC-value (40) gets the smallest amount of GLIR (29 986 Sm3/day), while
well five, with highest WC-value (60), gets GLIR of 30 022 Sm3/day.

future work 
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Running Time

The results in section 4.3.2 shows that the running time increase when the number of wells in the
optimization problem increase. There is nothing strange with this as the complexity increases for each
well added. The running time seems to be quadratic as presented, but the running time for each case can
vary a lot (especially when number of wells becomes above five). Because the running time changes a lot
it seems reasonable that the changes comes from some weird input-values, rather than wrong code for the
optimization. It could also imply that the solver have convergence-issues for some combinations of input-
values. The testing done in this project has not unveiled one reason for this, but a ”bad” combination
of input-values could be the explanation when the optimizer becomes slow. The scipy.optimize.minimize
seems a bit vulnerable to some combinations of input.

Experience from running a lot of different testing of the optimizer is the background for the following
discussion. There are a lot of factors that plays a role when it comes to running time, and some of these
are presented in the list:

• Type of approximation of the Jacobian of objective function (’2-point’. ’3-point’ or callable func-
tion). This was presented in section 4.3.1 and shows that the running time can vary from 10 to
196 seconds for a case with five wells.

• The constraint on total GLIR. If this limit is too low the optimizer runs into a problem and the
optimizer either uses very long time and gives the message: ’Positive directional derivative for
linesearch’ instead of ’Optimization terminated successfully’, or runs until the program running
Python (VSCode in this case) stops working and needs restart.

• Initial guess x0. The running time decreases with better initial guess x0.

• Weights. By using different values for the weights than 1, the running time clearly increases. E.g.
by using w22 = 10 instead of 1 in the case presented in table 4.3, the running time increases to 58
seconds.

• Different WC-values. This is also a factor that have an impact on the running time. Sometimes a
specific WC-value for a well increase the running time.

• Other reasons. Sometimes the same optimization case runs in 10 seconds one time, and 8 seconds
the next time.

Use of Different Weights in Objective Function

The results presented in section 4.3.3 shows that by changing the weights, the results changes as desired.
The optimizer uses this change in input and handle it correctly. The oil production increases with
increased weight, by increasing the GLIR. This happens because it is more ”important” to increase
the oil production so the difference between OR and the OR target becomes as small as possible, to
minimize the objective function. The structure of the objective function works as intended.

5.1.5 Different Methods in Scipy.optimize

As presented in the results in section 4.4 there were only two methods that could work for our optimization
problem, with constraints and bounds; ’trust-constr’ and ’SLSQP’. Scipy.optimize.minimize demands
the constraint of ’trust-constr’ to be defined as a single object or a list of object, which differs from
the definition of constraint for COBYLA or SLSQP. After trying to make this work for a while I had
to move on without managing to get the constraint on correct format. For this reason it was not
possible to compare the two solvers against each other when it comes to convergence and running time,
unfortunately. future work 
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5.2 Strengths

One strength of the results in this master thesis is that the code developed for gas lift optimization works
good for five wells with running time around 10 seconds, and the running time increases approximately
quadratic with increased number of wells. The code is also made dynamic so it works for any number
of wells as input, and the objective function and constraints will adapt to this change. It is pretty easy
to run the optimizer, where every input-values can be inserted to the optimizer on the same page as the
code is run.

Another strength of the result is that the optimizer is able to give different gas lift injection rate to each
well based on the different WC-values. In addition, the objective function is well formulated so different
weights as input can easily change the result.

Some other strengths of the result is that many of the objectives are achieved. The reading of the model-
file can handle any number of free- and calculated variables. The table is interpolated and the units are
converted correctly by the code implemented. In addition the code solve the gas lift optimization using
scipy.optimize where number of wells can vary.

5.3 Weaknesses

A weakness of the result is that there was not much time left to test the code for various input-values
and compare the results. The reasoning behind why the running time sometimes increase a lot is not
conclusive because the different factors were not tested against each other so it is difficult to be certain.

Another weakness of the result is the fact that I was not able to test the method ’trust-constr’ against
the method ’SLSQP’. It would be interesting to see the differences in performance of the two methods,
but no such result was obtained.

The fact that the results for the optimization do not optimize five different wells, only the same well
with different constants of WC is also a weakness. The most important was to make an optimizer that
worked, and this was prioritized. Because of this the values of the results presented is not that interesting
because there are not different wells as in real life. The resulting values can show if the optimizer works
(as it seems to).

A GUI was not made in this master thesis due to lack of time. This was part of the objectives but had
to be down prioritized to get the optimizer complete.

Another possible weakness of the result is that I am not that experienced when it comes to coding, and
this was my first large coding-project. With this reservation the code is maybe not as efficient as it could
have been. However, the skills were developed throughout the spring and the results should not been
affected much by this.

5.4 Limitations

Most of the limitations of the results are presented previously in this thesis, but they are summarized in
the following list:

• The code only accounts for up to six free variables in the model-file when interpolating the data
points in Python.

• The wells are separated with different WC-value, and not with different model-files for each well
as an optimization case of a real well-network would have.

• The well-model does not have a stationary point (a maximum) with the GLIR used in the model.
This makes verification of the results harder and not as credible as it could have been.

future work 

future work 
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5.5 Opportunities

The opportunities for for further development of this work is large. There are not much change needed
to make the code ready to optimize the wells with one well-model for each well so it can represent a real
case. When this is done, it will be possible to run the optimization case for different combinations of
input-values that corresponds with different well-behavior over time. One could e.g. run the optimizer
with different values of BHP to model how the well will produce oil in the years to come.



Chapter 6

Conclusions and Further Work

The last chapter of this master’s thesis is divided into two main parts, summary and conclusions, and
further work. The first part provides a list of the main results achieved in the work and some discussion
on them, while the second part gives an overview over the remaining tasks and further work. These
are tasks that are a natural extension of the work done. Both the conclusion and the further work are
mainly presented in lists to make it easier to separate the different results, discussion points and future
tasks.

6.1 Summary and Conclusion

To sum up the work done in this master’s thesis some points are presented:

• The well-model was efficiently read into Python with the use of Python Pandas. The code worked
well for any number of free- and calculated variables.

• The code for importing data searches for some keywords to find the correct data. Therefore the
code makes some demands to the structure of the model-file (e.g. that the same word is present in
the headline for all the free variables).

• The class for interpolation worked very well for for the data imported from the well-model. The
multi-dimensional interpolation works good for any number of calculated variables, but the code
only accounts for 0-6 number of free variables. This number can be increased by adding if-
statements to the code.

• The production of a solver that calculates the derivative for any function has not been prioritized in
this work. The class ”Optimize” has a method that returns the jacobian for the specific objective
function used for the optimization case for multiple wells.

• The work have provided three optimization cases, two for one well and one for multiple wells,
where the latter is of greatest interest. The optimizer for multiple wells performs good for 1-5
wells, with running time around 10 seconds for five wells and approximately quadratic running
time for increased number of wells. The different inputs, including BHP, GOR, WC, weights,
oil rate-target, GLIR-target, min WHP-limit for each well and total GLIR-limit for all wells are
defined before running the optimizer. All optimization cases returns optimal production rates and
GLIR which seems correct with the verification methods used in this master’s thesis.

• For some combination of input-values the running time suddenly increases drastically. The reason
for this is not conclusive, but it is assumed that it is some combination of input that does not fit
with the well-model used.

49
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• The other methods scipy.optimize.minimize provide are not compared to SLSQP which is the one
used in the results in this work. The only other method that can work for our case with constraints
and bounds is the method ’trust-constr’. The definition of constraints for this are defined as a
single object or a list of objects, which is different than for SLSQP. I was not able to make this
work so the methods are not compared against each other.

6.2 Recommendations for Further Work

The recommendations for further work consists of two parts. One main part of further work, and one
part for smaller code improvements that have been noted during the work. These code improvements
are mostly for making the code smarter and more efficient.

6.2.1 Further Work

The work with this optimization problem is not finished for Lundin Energy, and there are multiple tasks
that needs to be solved before implementing the results. For further work I recommend the following
tasks (where the order can be changed depending on Lundin Energy’s priorities):

• Have different wells as inputs to the optimizer, and not only different WC. The code for optimization
needs to be changed a bit to make this possible, but the reading and interpolation works for different
wells already.

• Test with realistic and different values for BHP, GOR, WC, oil rate target, GLIR-target and
GLIR-total limit.

• Test for more than eight wells and different (more realistic) values to figure out if the running time
improves with this measure.

• Run the optimization problem with BHP as a free variable instead of as a constant.

• Run the case for different values that represents future well-conditions. By making a loop that
runs the optimizer for these different values it would be possible to see how much gas lift and oil
production that are needed in the future to minimize the objective function. One could also plot
this result.

• Make a GUI to make the optimization easier to manage for the user

6.2.2 Smaller Code Improvements

The tasks presented in this section are points that I have noted during the work and wanted to finish if
there was time in the end. The time was spent on other tasks, hence the list still exists. The following
list presents the different tasks:

• Class ’read model’: The lines in the document to be read can be ”wrapped”. This means that the
values on a line can continue on the next line for the free variables. The code does not account
for this as it is, and only reads one line beneath the desired line. One could make the code more
robust by accounting for this issue.

• Class ’read model’: Make a code that converts the .TPD-file to a .txt-file automatically when
reading it. As it is now, the user have to manually open the file and save it as a .txt-file.

• Class ’interpolate unit convert’: Make a method that calculates the bounds for the free variables
after the conversion of the units are done. E.g. returns maximum and minimum value of the free
variables (values above or below these are not usable as input to the interpolator).

• Class ’optimizer’: The second optimization problem for one well can be made smarter, by putting
all defining values as input to the method so the user can define them outside the class when
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running the optimizer. However, this is not that important because the optimizer for multiple
wells also works for one well, so this can be used in this case (and all the variables are input to the
function).



Acronyms

BBL Barrels of crude oil per day. 23

BHP Bottom hole pressure. 1, 2, 4, 20, 22, 24–26, 30, 31, 33, 35, 44, 45, 48–50

CSV Comma separated values. 21

DFO Derivative free optimization. 11, 12

GLIR Gas lift injection rate. VI, 1, 2, 4, 13, 18, 22–26, 30–33, 35, 36, 38, 39, 41–47, 49, 50

GOR Gas-oil ratio for a stream: GOR = Gas rate
Oil rate . 4, 19, 22–26, 30, 31, 33, 35, 44, 45, 49, 50

GUI Graphical user interface. 5, 30, 42, 47, 50

KKT Kusher-Kuhn-Tucker. 13, 14

LP Linear Programming. 12

LR Liquid rate. 2, 4, 22, 24–26, 30–33

MMSCF Million standard cubic feet. 23

NTNU Norges Tekniske- og Naturvitenskapelige Universitet. I

OR Oil rate. 24, 38, 42, 44–46

PSI Pounds per square inch. 23

SCF/STB Cubic foot per barrel. 23

SQP Sequential Quadratic Programming. 5, 12, 13

UML Unified Modeling Language. 26

WC Water cut of a stream: WC = Water rate
Water rate + oil rate . VI, 4, 19, 22–26, 29–31, 33, 35, 37–39, 41, 44,

45, 47, 49, 50

WHP Wellhead pressure. VI, 1, 2, 20, 22–26, 30–33, 35, 43–45, 49

WHT Wellhead temperature. 2, 23
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Appendix A

Python Code

This appendix provides the code used to solve the problem. This includes a ”main” file where the
optimization problem is run, a class called ”Read Model” for importing the data from the well-model to
Python and a class called ”interpolation” that converts units and interpolates the imported data. The
class for the different optimization problems called ”optimize” is also included in this appendix. The
appendix is divided into one part for each class.

A.1 Main

### This is the main file for the masters thesis

import time

from optimizer import optimize

start = time.time()

## Run optimizer from this script

# Define object

opt_case1 = optimize ()

# Input to optimizer

numberofwells = 5 #If this value is less than number of inputs below the result for

these values in the results are x = x0

x0 = [500 , 30000 , 500 , 30000 , 500 , 30000 , 500 , 30000 , 500 , 30000]

BHP = [120 , 120 , 120 , 120 , 120]

GOR = [91, 91, 91, 91, 91]

WC = [40 , 45 , 50, 55, 60]

presscons_val = [20, 20, 20, 20 , 20]

glr_max_limit = 200000

OR_target = [1600 , 1400 , 1400 , 1400 , 1400]

GLR_target = [35000 , 35000 , 35000 , 35000 , 35000]

w1 = [50 , 1, 1, 1, 1] #Weight on OR - OR_target for each well

w2 = [1, 1, 1, 1, 1] #Weight on GLR - GLR_target for each well

lb_var = [40, 0, 40, 0, 40, 0, 40, 0, 40 , 0]

ub_var = [1899 , 110000 , 1899 , 110000 , 1899 , 110000 , 1899 , 110000 , 1899 , 110000]

# Run optimization

res = opt_case1.min_dev_multiplewells(’slsqp’,numberofwells , x0 , BHP , GOR , WC ,

presscons_val , glr_max_limit , OR_target ,

GLR_target , w1 , w2, lb_var , ub_var)

print(res)

# Print extra information of the result

56

the purpose of Main file is to give data free variables and by solving opt problem
get the total oil + jacobian Qoil/QGLIR + total GLIR
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##Find total oil

Totaloil = 0

for i in range(numberofwells):

Totaloil = Totaloil + res.x[2*i]

print(f’Total oil production is {round(Totaloil , 2)}’)

## Find Jacobian dQoil/ dQgaslift

der = []

for i in range(numberofwells):

result = (res.jac[i*2 + 1])/(res.jac[i*2])

der.append(result)

print(f’The derivative dQoil/dQgaslift for the wells are {der}’)

## Print total gas lift injection used:

TotalGL = 0

for i in range(numberofwells):

TotalGL = TotalGL + res.x[2*i + 1]

print(f’Total gas lift injection used is {round(TotalGL , 2)}’)

end = time.time()

print(f’Execution time is {end - start}’)

A.2 Read Model

## This file is to read the .txt file to python using pandas

import pandas as pd

class Read_Model:

def __init__(self , file_name , file_location):

self.file_name = file_name

self.file_location = file_location

self.row_numbers = []

self.free_variable_name = ’values ’

self.TPD_res_name = ’variable tpd results ’

self.TPD_results = pd.DataFrame ()

self.df_fv_dict = {}

def read_line(self , search_word):

with open(f’{self.file_location}{self.file_name}’) as openfile:

i = 0

self.row_numbers.clear ()

for line in openfile:

i += 1

if search_word in line.lower():

self.row_numbers.append(i)

return self.row_numbers

def read_rows_df(self , index , rows_imported):

return pd.read_csv(f’{self.file_location}{self.file_name}’, skiprows=self.

row_numbers[index], nrows=

rows_imported , header=None) #4

Variable TPD results starts at row

214

def read_free_variables(self):

self.read_line(self.free_variable_name) # find lines with the "values" in it

and remove the first two lines

n = 2

del self.row_numbers[:n]

i = 0

for i in range(len(self.row_numbers)):

self.df_fv_dict[’Free_variable_ ’+str(i + 1)] = self.read_rows_df(i, 1)

return self.df_fv_dict
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def read_TPD_results(self):

self.read_line(self.TPD_res_name)

self.TPD_results = self.read_rows_df(0, None)

return self.TPD_results

def read_all(self):

free_var = self.read_free_variables ()

TPD_res = self.read_TPD_results ()

return free_var , TPD_res

## Inputs

text_file_1 = ’\A06_FromDHG2WH.txt’ # Has to add a \ at the start

file_location_1 = r’C:\Users\Bendik Hulloeen\Documents\Skole\Master\Masters_thesis ’

M1_file1 = Read_Model(text_file_1 , file_location_1) #Define object

file1_read = M1_file1.read_all ()

A.3 Interpolation

# This interpolator includes convertion of the units

from scipy import interpolate as irp

from read_model import file1_read

import numpy as np

class interpolation:

def __init__(self):

self.dict = file1_read[0]

self.df = file1_read[1]

self.df_columns = []

self.new_dim = []

def dict_convertion(self):

#The order of unit_list is decided after free variable in well -model from top to

bottom.

unit_list = [’Rate values ’, ’GL rate’, ’WC’, ’GOR’, ’Pressure ’] #Have to have

same length as number of free

variables .

dict_conv = {}

for i in range(len(self.dict)):

dict_conv[’Free_variable_ ’+str(i + 1)] = unit_list[i]

return dict_conv

def convert_points(self , list_2bconverted , f1_add , f2_mult , f3_add):

list = []

for i in range(np.size(list_2bconverted[0])):

res = (list_2bconverted[0][i] + f1_add)*f2_mult + f3_add #Unit for

converting Liquid rate

res_2 = round(res , 2)

list.append(res_2)

list2arr = np.array(list)

return list2arr

def get_points(self):

l = []

dict_conversion = self.dict_convertion ()

for i in range(len(self.dict)):

points_dict = []

df_to_arr = []

df_to_arr_converted = []

if dict_conversion[’Free_variable_ ’+str(len(self.dict) - i)].lower() == ’

rate values ’:
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points_dict = self.dict.get(’Free_variable_ ’+str((len(self.dict)) - i))

#Get points from the

dictionary they ’re stored in

. Have to get the last

element first in this list

for the interpolation to be

correct

df_to_arr = points_dict.to_numpy () #Converts df to numpy array

df_to_arr_converted = self.convert_points(df_to_arr , 0, 0.158987294928 ,

0) # Multiplication for rate

values unit conversion

new_arr = df_to_arr_converted.flatten ()

elif dict_conversion[’Free_variable_ ’+str(len(self.dict) - i)].lower() == ’

gl rate’:

points_dict = self.dict.get(’Free_variable_ ’+str((len(self.dict)) - i))

#Get points from the

dictionary they ’re stored in

. Have to get the last

element first in this list

for the interpolation to be

correct

df_to_arr = points_dict.to_numpy () #Converts df to numpy array

df_to_arr_converted = self.convert_points(df_to_arr , 0, 28173.

97429124846 , 0) #

Multiplication for GL rate

unit conversion

new_arr = df_to_arr_converted.flatten ()

elif dict_conversion[’Free_variable_ ’+str(len(self.dict) - i)].lower() == ’

wc’: #NO conversion for WC

points_dict = self.dict.get(’Free_variable_ ’+str((len(self.dict)) - i))

#Get points from the

dictionary they ’re stored in

. Have to get the last

element first in this list

for the interpolation to be

correct

df_to_arr = points_dict.to_numpy () #Converts df to numpy array

new_arr = df_to_arr.flatten ()

elif dict_conversion[’Free_variable_ ’+str(len(self.dict) - i)].lower() == ’

gor’:

points_dict = self.dict.get(’Free_variable_ ’+str((len(self.dict)) - i))

#Get points from the

dictionary they ’re stored in

. Have to get the last

element first in this list

for the interpolation to be

correct

df_to_arr = points_dict.to_numpy () #Converts df to numpy array

df_to_arr_converted = self.convert_points(df_to_arr , 0, 0.

17810760667903525 , 0) #

Multiplication for GOR unit

conversion

new_arr = df_to_arr_converted.flatten ()

elif dict_conversion[’Free_variable_ ’+str(len(self.dict) - i)].lower() == ’

pressure ’:

points_dict = self.dict.get(’Free_variable_ ’+str((len(self.dict)) - i))

#Get points from the

dictionary they ’re stored in

. Have to get the last

element first in this list

for the interpolation to be

correct

df_to_arr = points_dict.to_numpy () #Converts df to numpy array

df_to_arr_converted = self.convert_points(df_to_arr , 0, 0.0689475729 , 1)

# Multiplication for top

node pressure unit

beta
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conversion (and addition of

1)

new_arr = df_to_arr_converted.flatten ()

l.append(new_arr)

return l

def convert_to_tup(self):

list_input = self.get_points ()

self.convert_tuple = tuple(list_input)

return self.convert_tuple

def get_data(self , col_numb): #Get data to the points defined: Columns in TPS Res.

This data should be on the regular grid

in n dimensions (by def for interpolator

)

self.pnts = self.get_points ()

for i in range(len(self.df.columns)):

col = self.df[i].to_numpy ()

#The conversion under only works for col=0 or col=1: If not , the conversion

is not done

if col_numb == 0: #If col = 0: assumes this means pressure. The con

res = col*0.0689475729 + 1

elif col_numb == 1:

res = (col - 32)*5/9

else:

res = col

self.df_columns.append(res)

# If statement with many cases for new shapes (depending on number of free

variables ). This code accounts for:

0 <= free variables <= 6 and returns

error if above

if len(self.pnts) == 0:

return "The number of free variables needs to be at least 1"

elif len(self.pnts) == 1:

self.new_dim = np.reshape(self.df_columns[col_numb], newshape=(len(self.pnts

[0])))

return self.new_dim

elif len(self.pnts) == 2:

self.new_dim = np.reshape(self.df_columns[col_numb], newshape=(len(self.pnts

[0]), len(self.pnts[1])))

return self.new_dim

elif len(self.pnts) == 3:

self.new_dim = np.reshape(self.df_columns[col_numb], newshape=(len(self.pnts

[0]), len(self.pnts[1]), len(

self.pnts[2])))

return self.new_dim

elif len(self.pnts) == 4:

self.new_dim = np.reshape(self.df_columns[col_numb], newshape=(len(self.pnts

[0]), len(self.pnts[1]), len(

self.pnts[2]), len(self.pnts[3])

))

return self.new_dim

elif len(self.pnts) == 5:

self.new_dim = np.reshape(self.df_columns[col_numb], newshape=(len(self.pnts

[0]), len(self.pnts[1]), len(

self.pnts[2]), len(self.pnts[3])

, len(self.pnts[4])))

return self.new_dim

elif len(self.pnts) == 6:

self.new_dim = np.reshape(self.df_columns[col_numb], newshape=(len(self.pnts

[0]), len(self.pnts[1]), len(

self.pnts[2]), len(self.pnts[3])

, len(self.pnts[4]), len(self.

pnts[5])))

return self.new_dim

else:
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return "The number of free variables is not between 1 and 6. The code needs

adjustment in the file ’

interpolation ’ and function ’

get_data ’."

# Intepolate using linear interpolation

def do_interpolation(self , col_number):

self.pnts = self.convert_to_tup ()

self.data = self.get_data(col_number)

self.result = irp.RegularGridInterpolator(points=self.pnts , values=self.data ,

method="linear")

return self.result

A.4 Optimize

#This file defines the class for optimizing

from scipy import optimize as sciopt

from interpolate_unit_convert import interpolation as int

from scipy.optimize import Bounds as bnd

import numpy as np

import time

#start = time.time ()

class optimize:

def __init__(self):

self.file = int()

self.wells_def = {}

## Opt 1: Minimize GLR to reach minimum WHP

def objective(self , x):

GLrate = x[0]

return GLrate

def pressure_constraint(self , x, LR, BHP , GOR , WC , pressure_cons_val): # Constraint

on minimum 20 bar pressure

GLR = x[0]

input_val = (BHP , GOR , WC, GLR , LR) #TNP , GOR , WC and LR are set constant to

find optimal GLrate to minimize WHP.

Values: 120 , 91 , 50 , GLR , 2000

interpol = self.file.do_interpolation(0) #Col 0 = WHP

res = interpol(input_val)

cons = res - pressure_cons_val

return cons

def min_GLR(self , x0, LR, BHP , GOR , WC, pressure_cons_val):

fun = self.objective

cons_fun = self.pressure_constraint #Fix this after editing def constraint with

more inputs

bnds = [(0, 119880)] #bounds on GLR = 138 000 old bound

cons = ({’type’: ’ineq’, ’fun’: cons_fun , ’args’: [LR , BHP , GOR , WC,

pressure_cons_val]})

res = sciopt.minimize(fun , x0 , method=’slsqp ’, bounds=bnds , constraints=cons)

return res

## Opt 2: Not presented in this thesis , not relevant

## Opt 3: minimize deviation with two free variables , one well

def obj_deviation(self , x, OR_target , GLR_target , w1, w2):

OR = x[0] #Possible OR

GLR = x[1] #Possible GLR

fun = w1*((OR - OR_target)** 2) + w2*((GLR - GLR_target) **2)

return fun

in the call to minimize() pass five 
arguments
1.objective function
2.X0 initial guess;random value
3.args
4.constraints
5.bounds
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def presscons_deviation(self , x, BHP , GOR , WC , pressure_cons_val): # Constraint on

minimum WHP = X bar

OR = x[0]

GLR = x[1]

LR = OR/(1-(WC/100)) #LR expressed by OR (the free variable)

input_val = (BHP , GOR , WC, GLR , LR) #TNP , GOR , WC are constants

interpol = self.file.do_interpolation(0) #Col 0 = WHP

res = interpol(input_val)

cons = res - pressure_cons_val

return cons

def min_deviation(self , x0 , BHP , GOR , WC , presscons_val , OR_target , GLR_target , w1 ,

w2):

func = self.obj_deviation

cons_fun = self.presscons_deviation

lb = [375 , 25000]

ub = [1899 , 110000]

bnds = bnd(lb, ub)

cons = ({’type’: ’ineq’, ’fun’: cons_fun , ’args’: [BHP , GOR , WC, presscons_val]}

)

argu = (OR_target , GLR_target , w1, w2)

res = sciopt.minimize(func , x0 , args=argu , method=’slsqp ’, bounds=bnds ,

constraints=cons)

return res

## Opt 4: minimize deviation with two free variables for multiple wells

def obj_dev_mult(self , x, OR_target , GLR_target , w1, w2, num_wells): #same input as

in opt 3, but now these are lists.

fun = 0

for i in range(num_wells):

res = w1[i]*((x[2*i] - OR_target[i])** 2) + w2[i]*((x[2*i + 1] - GLR_target[i

]) **2)

fun = fun + res

return fun

def presscons_dev_mult(self , x, BHP , GOR , WC, pressure_cons_val , counter , num_wells)

: #same input as in opt 3, but here the

input are lists

LR = x[2*counter]/(1-(WC[counter]/100)) #LR expressed by OR (the free variable)

GLR = x[2*counter + 1]

input_val = (BHP[counter], GOR[counter], WC[counter], GLR , LR) #TNP , GOR , WC are

constants

interpol = self.file.do_interpolation(0) #Col 0 = WHP

res = interpol(input_val)

cons = res - pressure_cons_val[0]

return cons

def glr_tot_cons(self , x, glr_max_limit , num_wells):

glr_tot = 0

for i in range(num_wells):

glr_tot = glr_tot + x[2*i + 1]

res = glr_max_limit - glr_tot

return res

def calc_jac(self , x, OR_target , GLR_target , w1, w2, num_wells): # Calculated from

the objective function

jac_list = []

for i in range(num_wells):

der1 = 2*w1[i]*(x[2*i] - OR_target[i]) # dfun/dx[i], OR for i = 0, 2, 4, 6,

8

der2 = 2*w2[i]*(x[2*i+1]-GLR_target[i]) # dfun/dx[j], GLR for j = 1, 3, 5, 7

, 9

jac_list.append(der1)

jac_list.append(der2)

return jac_list
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def calc_hess(self , x, OR_target , GLR_target , w1, w2, num_wells): # Calculated from

the jacobian. Needs x, OR_target ,

GLR_target as inputs even if they are

not used

hess_arr = np.zeros((2*num_wells , 2*num_wells), int)

hess_list = []

for i in range(num_wells):

der1 = 2*w1[i]

der2 = 2*w2[i]

hess_list.append(der1)

hess_list.append(der2)

np.fill_diagonal(hess_arr , hess_list)

return hess_arr

def min_dev_multiplewells(self , algorithm , num_wells , x0 , BHP , GOR , WC ,

presscons_val , glr_max_limit , OR_target ,

GLR_target , w1, w2, lb, ub):

func = self.obj_dev_mult

cons_fun_press = self.presscons_dev_mult

cons_fun_glr = self.glr_tot_cons

jacobian = self.calc_jac

hessian = self.calc_hess

bnds = bnd(lb, ub)

cons1 = {’type’: ’ineq’, ’fun’: cons_fun_glr , ’args’: [glr_max_limit , num_wells]

} # Constraint on maximum GLR

cons = [cons1]

for i in range(num_wells):

counter = i

presscons = {’type’: ’ineq’, ’fun’: cons_fun_press , ’args’: [BHP , GOR , WC ,

presscons_val , counter ,

num_wells]}

cons.append(presscons)

argu = (OR_target , GLR_target , w1, w2 , num_wells)

res = sciopt.minimize(func , x0 , args=argu , method=algorithm , jac=’2-point ’, hess

=None , bounds=bnds , constraints=cons

)

return res


