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Abstract:

Data envelopment analysis (DEA) is a general tool for measuring the relative efficiency 

of homogeneous decision-making units (DMUs). DEA models usually deal with crisp data and 

do not consider the conditions in which the inputs and outputs are uncertain. Many researchers 

have focused their research on these types of conditions, in which they assumed fuzzy data, 

interval data, and probabilistic data, as well as other expressions of uncertainty in the dataset. 

Various models, such as mean value and variance, robust DEA, multiple criteria decision-

making (MCDM) models, and several other models, have been proposed. This paper deals 

with instances in which uncertainty in the dataset is expressed by several alternative scenarios. 

The first presented model for problems with several alternative scenarios in their inputs and 

outputs is derived directly from the definition of the relative efficiency formula similar as those 

in traditional DEA models. This model is not linear and cannot be linearized. Due to this, we 

modify this model and derive a new model that is linear and can be solved easily. The proposed 

models have none of the common drawbacks attending other methods commonly applied to 

this set of issues. They are always feasible; moreover, they are able to generate a complete 

ranking of all DMUs using a computationally efficient procedure. Both models are illustrated 

using a numerical example with 10 DMUs and three scenarios for input and output values, and 

their results are compared and discussed.
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1. Introduction

Data envelopment analysis (DEA) is a method for evaluating efficiency and performance of a 

set of homogenous decision-making units (DMUs) by solving linear programming problems. 

DEA models evaluate the relative efficiency of a set of DMUs that use multiple resources 

(inputs) for the production of multiple effects (outputs). The first DEA model was proposed by 

Charnes et al. (1978); since then, it has been developed by many other researchers. This model 

– often denoted as the Charnes, Cooper and Rhodes (CCR) model – is a generalisation of a 

single-input and single-output concept of efficiency, as introduced by Farell (1957). CCR 

models assume constant returns to scale in the definition of the production possibility set. Its 

generalization was proposed by Banker et al. (1984). The Banker, Charnes and Cooper (BCC) 

model considers variable returns to scale. Decision-makers must decide on the assumption of 

constant or variable returns to scale in the applications of this kind of DEA models and choose 

the most appropriate model. Both CCR and BCC models assign efficiency scores equal to 1 to 

the units expressing the efficient frontier, as defined by the model. The other inefficient units 

have efficiency scores lower than 1. The efficiency score allows ranking of inefficient DMUs, 

however, the efficient ones cannot be ranked due to their maximum identical score. As such, 

various methods and models have been proposed in the past in order to allow the ranking of 

originally efficient units. Many researchers have developed the DEA theory since the 

mentioned pioneering works. More information about progress in the theory and its practice 

can be found in Cooper et al. (1999), Seiford (1990), Seiford and Thrall (1990) and other 

publications. 

Traditional DEA models, such as the CCR and BCC models, assume an expression of the 

dataset as crisp values, however, the observed values of inputs and outputs in real problems are 

often uncertain, fuzzy, interval-based, or scenario-based. To study this issue, various 

approaches have been proposed in the literature. O’Neal et al. (2002) suggested excluding those 

DMU(s) with missing or vague data to calculate efficiency. This approach affects the relative 

efficiency score of other DMUs of the set. That is why it is not acceptable for general 

applications. Several approaches to overcome the problem of missing or vague data use various 

imputation techniques, e.g. data averaging for the DMUs. Using this simplification in DEA 

models may cause misleading results since the efficiency scores of other DMUs of the set may 

be significantly over- or underestimated. Thus, it does not seem to be a reliable tool for the 

application of DEA models. 



A stochastic approach has also been applied for uncertain data in DEA. Stochastic 

programming has undergone significant theoretical developments since the 1950s, starting with 

the pioneering works of Dantzig (1955) and Beale (1955). Nevertheless, this approach also 

suffers from its drawbacks. One of them concerns the determination of the probability 

distribution function in the absence of reliable empirical evidence. Another approach, proposed 

by Kuosmanen (2009), applies dummy variables instead of missing data. The missing output 

values are set to zero and the missing input data are considered as relatively large numbers. 

Two other approaches to vague data use the fuzzy methodology and interval data. They were 

developed by Sengupta (1992) and Cooper et al. (1999), respectively. Cooper et al. (1999) 

developed an interval method by converting the DEA model to the form of linear programming, 

allowing the combination of crisp and non-crisp data. Being able to assess the upper and lower 

bounds of the relative efficiency of DMUs is one of the difficulties that arises in applying the 

interval method. Despite this difficulty, some researchers (Despotis & Smirlis,2002; Entani et 

al., 2002; Kao, 2006; Kao & Liu, 2000; Smirlis et al., 2006; Wang & Yang, 2005) have 

developed numerous interval methods. 

In fuzzy approaches, several mathematical programming methods, including probabilistic 

planning and -cut approaches, are applied to evaluate the relative efficiency of DMUs. 

Although there are circumstances where there is a sharp growth in the complexity of the fuzzy 

method, many researchers (Guo & Tanaka, 2001; Hatami-Marbini & Saati, 2009; Jahanshahloo 

et al. 2009; Le, 2003; Lertworasirikul et al., 2003; Liu, 2008; Liu & Chuang, 2009; Saati et al., 

2002; Soleimani-Damaneh, 2009; Soleimani-Damaneh et al., 2006; and Wang et al., 2009) 

have studied fuzzy DEA and proposed their own models.

A new cost-efficiency data envelopment analysis (CE-DEA) approach with price uncertainty 

and an assumption that only the upper and lower bounds of input prices for all units are 

available has been developed by Toloo and Ertay (2014). Sadjadi and Omrani (2008) proposed 

a robust DEA model considering uncertainty in outputs and applying the model for 

performance evaluation of electricity distribution companies. Shokouhi et al. (2010)  

introduced an approach based on a robust optimisation model, in which input and output 

parameters are constrained to be within an uncertainty set under the assumption of a worst case 

efficiency (as defined by the uncertainty set), and supporting constraints. Hafezalkotob et al. 

(2015) proposed a robust DEA model to evaluate the Iranian electricity companies by using 

discrete robust optimisation approaches as introduced by Mulvey et al. (1995). Their model 

uses probable scenarios to capture the effect of ambiguous data in the presented case study. A 



possible infeasibility is the most significant problem attending this model. Arabmaldar et al. 

(2017) published a new framework based on the robust optimisation approach. According to 

their construct, evaluation of the efficiency of DMUs – in the presence of uncertainty – has 

been accomplished in fewer steps than when applying other models. They introduced two linear 

robust super-efficiency models based on the Andersen and Petersen (1993) model and verified 

the proposed approach on a real dataset. Wu et al. (2017) transformed the DEA optimisation 

model into a robust second-order cone – the effect was equivalent to immunising it against 

output perturbation in an uncertainty set. Zahedi-Seresht et al. (2016) formulated a robust DEA 

model that allows complete ranking of all DMUs with S alternative scenarios. The main 

disadvantage of their model is its computational complexity. It does not allow solving problems 

with higher numbers of DMUs and/or scenarios. Vaez-Ghasemi (2016) analysed the problem 

of supplier selection under the assumption of different scenarios. His study is one example of 

a real-world application of the DEA models with alternative scenarios. Zahedi-Seresht et al. 

(2017) formulated an original method to rank DMUs with alternative scenarios based on the 

Monte Carlo simulation and Mulvey’s model. 

From the overview above, only a few studies following dealt with the analysis of efficiency in 

cases where the DMUs are described by several alternative scenarios. This case is easiest for 

decision-makers to understand. The assumption of alternative scenarios can widely be used in 

practice, e.g. when the decision-maker is able to estimate and describe a future development of 

the system under evaluation by pessimistic, most likely, and optimistic values of variables 

(inputs and/or outputs). These three-point estimates are often used in practice. A good example 

is the PERT method (that works with three-time estimates for lengths of the activities in critical 

path analysis). Three-point estimates can be used in general, as approximations of continuous 

probabilistic distributions as discussed in detail in Keefer and Bodily (1984). In this paper, we 

assume a general case with S alternative scenarios. Performance analysis with the uncertainty 

defined by S alternative scenarios can find many real-world applications. They can assume 

several controllable crisp inputs and several uncertain input variables are defined using 

alternative scenarios. Future outputs of the DMUs are uncertain and described as discrete 

alternative scenarios that occur with certain probabilities. The following two examples 

illustrate the possible cases:

1. Performance evaluation of departments (DMUs) within a university. The number of 

employees may be considered as a crisp input. Alternative scenarios may describe 



operating costs as inputs of the department, and the number of graduated and number 

of publications in journals as outputs. 

2. Performance evaluation of a branch network of a bank (branches of the bank are 

DMUs). The number of employees of the branch and the number of accounts may be 

defined as crisp inputs. The number of transactions and the various financial indicators 

of the branch may be uncertain and described by alternative scenarios.        

As discussed, many approaches were proposed for dealing with uncertainty in DEA models 

(interval data, fuzzy inputs/outputs, stochastic DEA, etc.) but almost none of them dealt with 

the assumption of alternative scenarios. The method introduced by Zahedi-Seresht et al. (2017) 

is quite complicated and computationally complex. It is a robust DEA model that combines 

optimization and the Monte Carlo approach to derive robust ranking of all DMUs under the 

assumption of alternative scenarios. The combination of these two approaches almost renders 

the model inapplicable for non-expert users. The aim of this paper is to fill a research gap in 

this area and propose a computationally efficient algorithm for evaluating DMUs under this 

assumption. The advantage of the approach proposed in this paper compared with other non-

crisp models lies in its computational easiness (which allows solving instances with a high 

number of DMUs and variables). The computational easiness of our model is given by the 

necessity to solve just one linear program for each DMU to derive efficiency and/or super-

efficiency scores.    

The paper is organised as follows. The next section provides a brief formulation of traditional 

DEA models, as used further in this paper. Section 3 presents the mathematical details of the 

proposed model for ranking of DMUs in the case of alternative scenarios in inputs and/or 

outputs. Section 4 consists of a numerical illustration of the model’s advantages, and the last 

section of our paper summarises the main points and findings of the study and discusses 

recommendations for future research.

2. Traditional DEA models

DEA is a mathematical programming method for evaluating and measuring the performance 

of DMUs. Let us consider n DMUs with nonnegative row vectors  and 1 2, , ,j
j j sjx x x x 

T

, , of inputs and outputs respectively, where represents the  1 2, , ,j
j j rjy y y y 

T
1, ,j n  ijx



value of the i-th input and  is the value of the k-th output for DMUj, . The kjy 1, ,j n 

efficiency score of the DMUp can be expressed as the ratio

,  ,
p

p p

u ye u v
v x


T

T

i.e. the weighted sum of outputs divided by the weighted sum of inputs with positive column 

vectors of weights u and v, respectively. Podinovski and Athanassopoulos (1998) and 

Podinovski (2001) formulated the relative measure of the efficiency of the DMUp  as  ,pf u v

follows:

 (1)
   

  
,

, ,
max ,

, , 1, , ,

p
p

jj

e u v
f u v

e u v

u v j n


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where ε is an infinitesimal constant. Obviously   does not exceed one for any DMU. It  ,pf u v

is possible to show that the optimal solution for the model (1) is identical to the CCR DEA 

model, introduced by Charnes et al. (1978). The fractional form of this model is formulated as 

follows:

 (2)

 Maximize ,

subject to 1,  1, , ,

, .

p

p p

j

j

u yf u v
v x

u y j n
v x
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 

 

T

T

T
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Model (2) is not linear in its objective function but can be easily linearized using Charnes-

Cooper transformation. The input-oriented formulation of this model is as follows:

 (3)

 Maximize ,

subject to 0,  1, , ,
1,

, .

p
p

j j

p

f u v u y

u y v x j n
v x
u v 


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
 

T

T T

T



Models (2) and (3) assume the availability of a crisp input and output dataset. The following 

section generalises these models for the case of several scenarios.

3. A DEA model with alternative scenarios

Let us consider the set of n DMUs with s inputs and r outputs. Instead of crisp data, which is 

not available, the decision-maker has several alternative scenarios for the inputs and outputs, 



and is able to estimate their probabilities of occurrence. Table 1 shows the complete dataset, 

with n DMUs and S scenarios. Each scenario has the probability of its occurrence pi, i = 1,…, S, 

i pi = 1. Let us denote vectors of inputs and outputs for the DMUj and the i-th scenario as  j
ix

and , , , respectively. j
iy 1, ,j n  1,...,i S

Table 1: A set of n DMUs with s inputs, r outputs and S scenarios

Scenarios I1 ... Is O1 ... Or

1 1
11x 1

1sx 1
11y 1

1ry

…DMU1

S 1
1Sx 1

sSx 1
1Sy 1

rSy

1 2
11x 2

1sx 2
11y 2

1ry

…DMU2

S 2
1Sx 2

sSx 2
1Sy 2

rSy

...

1 11
nx 1

n
sx 11

ny 1
n
ry

…DMUn

S 1
n
Sx n

sSx 1
n
Sy n

rSy

Model (1) for evaluation of DMUp with S alternative scenarios can be re-written as follows:

(4)
 

1 1
1

1 1

1 1
1

1 1

...
Maximize , ,

max ...

, ,  1, , .

pp
S S

Sp p
S S

p i i jj
S S

Sj jj
S S

i i

u yu yp p
v x v xf u v

u yu yp p
v x v x

u v i S 

 


 
  

 
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where ui, i = 1,..., S, is the row weight vector attached to the outputs in the i-th scenario, and vi, 

i = 1,..., S, is the row weight vector attached to the inputs in the i-th scenario. Model (4) can be 

reformulated based on model (2) as follows:



(5)

  1 1
1

1 1

1 1
1

1 1

Maximize , ... ,

subject to ... 1, 1,..., ,

, ,  1, , .

pp
S S

p i i Sp p
S S
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j
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We will move model (5) using Charnes-Cooper transformation to a model with a linear 

objective function. Let us put , , and multiply the nominator and 
1 0i p

i i

q
v x

  1,...,i S

denominator of all ratios in the constraints by this variable:

 (6)

  1 1 1 1

1 1 1
1

1 1 1
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... 1, 1,..., ,
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, .
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

Now we put  and , . The final version of the model for efficiency i i iu q u  i i iv q v  1,...,i S

evaluation of the DMUs with S alternative scenarios is as follows: 

 (7)

  1 1 1

1 1
1

1 1

Maximize , ... ,

subject to

... 1, 1,..., ,

1,  1, , ,
, . 

     
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v x v x

v x i S
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Model (7) can be re-written in a more compact way as model (8):

                                             (8)

 
1

1

Maximize , ,

subject to

1,  1, , ,

1,  1, , ,
, . 





  


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
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
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S
p

p i i i i i
i

jS
i i

i j
i i i

p
i i

i i

f u v p u y

u yp j n
v x

v x i S
u v

The following properties of model (8) are obvious and need not be proved:

a) Model (8) is always feasible.



b) The optimal objective function of model (8) is lower than or equal to 1.

c) At least one of the DMUs under evaluation is efficient, i.e. at least for one DMU, the 

optimal objective function of model (8) equals 1.

d) Model (8) has the same optimal solution as model (4).

An important property of model (8) that express the relation between the results of traditional 

CCR models and the results of model (8) is formulated in the following theorem. 

Theorem 1. If a unit under evaluation is efficient in one of the scenarios, then it is always 

efficient in model (8).

Proof.

Let us consider DMUp and  the optimal solution for model (3) for its q-th scenario. * *( , )q qu v

Assume that DMUp is efficient in this scenario, i.e.
* *

* *1, and 1, 1,..., .
p j

q q
p j

q q

u y u y
j n

v x v x
  

Let , where pq is the probability of the q-th scenario. Then the following 
*

* * *,q
q q q

q

u
u v v

p
  

relations hold

*

1, 1,

*

*

1,

1,  1, , ,

S S
p p p

p i i i q q q i i i
i i q i i q

j
q q

q j
q q

f p u y p u y p u y

u y
p j n

v x

   

   
        

   


 


 



and at least one of these relations is binding. For  = 0, all weights and the optimal 0, ,iu i q  

objective function fp = 1.

For  > 0, assume that variables are reduced to their new values and this change leads *
qu **

qu

to a reduction of  by , i.e. . To keep feasibility and maximum * p
q q qp u y * **p p

q q q q q qp u y p u y   

efficiency, the other weights of model (8) must fulfill the following relations: 

*

1,

*

*
1,

,

,  1, , .

S
p

i i i
i i q

jS
i i

i j
i i q i i

p u y
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v x

 

 
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
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



 



It is clear this set of constraints has a feasible solution considering an appropriate setting of the 

 value and  values in model (8). 

By this, it is proven that the maximum efficiency way can be reached in model (8) for the case 

where DMUp is CCR efficient in at least one of the scenarios independently on the probabilities 

of the scenarios.

Model (8) is linear in its objective function but has non-linear constraints and is rather hard to 

solve. Unfortunately, it is not possible to find a linearized problem for model (8). However, we 

can formulate a new linear model with the constraints that are derived from model (8). We 

suggest re-writing the first set of constraints in model (8) as follows:

(9)1,  1, , , 1, , ,
j

i i
i j

i i

u yp j n i S
v x


  


 

Relation (9) can be expressed as (10):

(10)1,  1, , , 1, , ,
j

ji i
i ij

i i

u yp j n i S
v x




   


 

where  In order to transform it into a linear form, we can write:1 1, 1,..., .j
i ip i S   

(11)1,  1, , , 1, , ,
j j

i i i
i j j

i i i i

u yp j n i S
v x v x
 

   
 

 

and then receive the following linearized version:

(12)0,  1, , , 1,..., ,j j j
i i i i i ip u y v x j n i S      

To summarise, the complete linear model is as follows:

 (13)
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Theorem 2. The optimal solution for model (13) is a feasible solution for model (8).

Proof.

Let us consider that  is the optimal solution for model (13). Then the following * *( , )i iu v 

relations hold:



 

* * * *

* * * * *
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0
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
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


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


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By this, the proof is completed. 

It is clear, that the set of constraints in model (13) is stronger than the set of constraints in 

model (8). It means that any feasible solution for model (13) is also a feasible solution for 

model (8) but not vice versa, i.e. a feasible solution within model (8) need not be feasible in 

model (13). This relation was proved above. The properties of model (13) are as follows:

a) The optimal objective function value (efficiency score) of model (8) is always  * ,p i if u v 

greater than or equal to the optimal value of model (13) . * ,p i iF u v 

b) The efficiency score of the unit under evaluation derived by model (13) is greater than 

or equal to the worse efficiency score of this unit over all scenarios.

c) The efficiency score of the unit under evaluation derived by model (13) is lower than 

or equal to the best efficiency score of this unit over all scenarios.

d) If a unit under evaluation is efficient in model (3) in all scenarios, then it is efficient in 

model (13) also and vice versa.

In order to find an optimal efficiency score , i.e. the solution of model (8), it is  * ,p i if u v 

necessary to solve this non-linear model using a global non-linear solver, and even if it is 

available, it is hard to obtain an optimal solution for a higher number of scenarios. The optimal 

solution of model (13) can be explained better to decision-makers because, depending on the 

probabilities of occurrences of the scenarios, the final efficiency score  is always  * ,p i iF u v 

between the worst and the best efficiency scores of all the alternative scenarios. This efficiency 

score can be regarded as a good representation of the performance of the DMU under 

evaluation. Decision-makers consider both the worst scenario (with the worse efficiency score) 

and the best scenario (with the best efficiency score) that can occur with certain probabilities. 



It is clear, the decision-maker will expect that the efficiency score of the aggregated DMU to 

be between these two extreme values. Our model (13) fulfils this expectation.    

An important conclusion of our study consists in the fact that for the identification of efficient 

units in model (8), it must be possible to solve linear programs (13) which is computationally 

efficient. It is expressed by the following corollary of Theorem 2.

Corollary 1. If a DMU under evaluation is efficient in model (13) then it is efficient in model 

(8) also. 

Proof.

The optimal objective function of model (8) is greater than or equal to the optimal  * ,p i if u v 

objective function  of model (13). i.e. if  then , and the  * ,p i iF u v   * , 1p i iF u v    * , 1p i if u v  

unit DMUp is efficient in both models.

The number of efficient DMUs identified by model (13), i.e. the DMUs with  = 1,  * ,p i iF u v 

may be higher than 1. To rank the efficient units, we propose a super-efficiency model derived 

from that suggested by Andersen and Petersen (1993). This model removes the unit under 

evaluation from the set of DMUs, then its super-efficiency score is greater than 1 (which allows 

the complete ranking of all units). The mathematical formulation of this super-efficiency model 

is as follows:

  (14)
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There have been a few studies published that deal with efficiency analysis in the case of 

alternative scenarios. The proposed approaches in these studies have various drawbacks that 

do not allow their broader applications. In this study, a new model, formulated as an alternative 

to solution of nonlinear model (8), is used as a computationally friendly way of deriving 

efficiency and/or super-efficiency scores of DMUs.  



The presented models eliminate most drawbacks of the previous models and methods dealing 

with alternative scenarios in efficiency analyses – Zahedi-Seresht et al. (2016, 2017). The most 

significant among them can be summarized as follows:

1. Infeasibility.  One of the major problems of previous approaches with multi-scenario 

inputs and outputs is the possible infeasibility of the models (see Zahedi-Seresht et al., 

2016). Model (13) is always feasible.

2. Computational complexity. The presented linear model (13) has only   2 1S n 

constraints, where n is the number of DMUs and S the number of scenarios. The number 

of variables  is quite low also (s and r are the number of inputs and outputs,  S n s r  

respectively). In contrast, the time complexity of the algorithm introduced in Zahedi-

Seresht et al. (2016) is , which is much worse.    3O S s r n

3. Complete ranking of the DMUs. The models introduced in previous studies can offer a 

complete ranking of the DMUs, but the efficiency score of the best DMUs is not 

necessarily equal to 1 (Zahedi- Seresht et al., 2017). That is why they cannot distinguish 

among the efficient and inefficient DMUs. In the proposed models (8) and (13), at least 

one of the DMUs is efficient, i.e. its efficiency score is equal to 1. Moreover, a super-

efficiency model (14) has been proposed to rank the originally efficient units.

4. Podinovski et al. (2017) proposed nonparametric production technology with multiple 

technologies as different scenarios. They worked on multi-hybrid returns to scale 

(MHRS) as a new model, based on returns-to-scale technology. However, our non-

linear and linear models can be modified for any type of technology.

4. A numerical example

Zahedi-Seresht et al. (2017) studied robust DEA with alternative scenarios and introduced a 

case study from a large engineering company. We use the same dataset for illustrative purposes 

and comparison of results for the method presented in this paper. The company has 10 branches 

(DMUs); two inputs and one output are considered:

 Input 1 - Engineering manpower measured by the number of employees.

 Input 2 - Tangible and intangible assets in millions of LCY (local currency).

 Output - The volume of invoices in local or foreign currencies (Payments) received in 

millions of LCY. 



Table 2: Dataset for all scenarios

Manpower

Input 1

Assets

Input 2

Output - Payments

        Scenario 1       Scenario 2      Scenario 3

DMU1 606 293 3054 2974 2455

DMU2 797 569 897 948 862

DMU3 247 614 777 836 760

DMU4 376 126 987 829 860

DMU5 876 553 644 670 3852

DMU6 2766 365 2814 2999 2360

DMU7 245 715 2305 2009 2196

DMU8 145 147 128 109 127

DMU9 136 14054 5070 5370 5828

DMU10 141 1559 3000 2900 2756

The company authorities decided that two real scenarios for output variable (Payments) must 

be considered for the future analysis. These two scenarios are complemented by the third, rather 

hypothetical scenario. This last scenario was added for the illustrative purposes of the presented 

algorithms only. The probabilities of the scenarios are 0.57, 0.42, and 0.01, respectively. The 

probability of the last scenario is very low as it is for experimental purposes only. The inputs 

of all scenarios are identical. They differ only in the values of the output. The complete dataset 

is presented in Table 2. A detailed description of the example is not necessary for our 

illustrative purposes; it can be found in Zahedi-Seresht et al. (2017).

Table 3 contains efficiency and super-efficiency scores and rankings of all DMUs obtained by 

traditional DEA models. Efficiency scores for all three scenarios are computed by CCR model 

(3) for all scenarios independently. Super-efficiency scores are derived by the Andersen and 

Petersen model. Inefficient units have efficiency scores lower than 1. Efficient units have 

super-efficiency scores higher than 1. The results show that the rankings of the units obtained 

for the scenarios are not identical.



Table 3: Scenario analysis – efficiency (super-efficiency) scores and ranking of DMUs

The results of the models proposed in this paper are included in Table 4. The first two columns 

of this table contain efficiency scores and ranking of DMUs obtained by non-linear model (8). 

The results were computed using the global non-linear solver included in the LINGO modelling 

system. The last two pairs of columns show the same information for linear model (13) and 

super-efficiency model (14). As expected, the efficiency scores of all DMUs computed using 

linear model (13) are always between the worst and the best CCR efficiency scores over all 

scenarios. An extreme situation occurs for DMU5 that is very far from the efficient frontier in 

evaluation by considering the first two scenarios, but it is efficient in the last scenario. Even 

though this scenario has a very low probability, DMU5 is identified as efficient in model (8). 

This example demonstrates one of the properties of this model that was proved in the paper. 

Model (13) and its super-efficiency version (14) returns for this unit the efficiency score 

corresponding to expectations of decision-makers. Due to this property, it is hardly estimating 

deviations between efficiency scores of both models (8) and (13). Model (8)’s return results 

may be quite far from the results from model (13), as demonstrated on the case of DMU5 in 

our example. Model (13) reflects the probabilities of the scenarios in a more suitable way. 

CCR 

model 

scen. 1  

Rank CCR 

model 

scen. 2 

Rank CCR 

model 

scen. 3 

Rank

DMU1 1.672 3 1.925 1 1.203 3

DMU2 0.206 8 0.227 8 0.237 9

DMU3 0.364 7 0.430 7 0.380 8

DMU4 0.752 5 0.648 6 0.815 6

DMU5 0.139 10 0.149 9 1.011 5

DMU6 0.740 6 0.809 5 0.772 7

DMU7 1.072 4 0.963 4 1.161 4

DMU8 0.147 9 0.132 10 0.170 10

DMU9 1.752 2 1.920 2 2.192 1

DMU10 1.824 1 1.916 3 1.669 2



Table 4: Scenario analysis – results of the proposed models

Eff. score 

Model (8)  

Rank Eff. score 

Model (13)

Rank Eff. score 

Model (14)

Rank

DMU1 1.000 1 1.000 1 1.773 3

DMU2 0.239 9 0.215 8 0.215 8

DMU3 0.431 8 0.392 7 0.392 7

DMU4 0.815 6 0.709 6 0.709 6

DMU5 1.000 1 0.152 9 0.152 9

DMU6 0.809 7 0.769 5 0.769 5

DMU7 1.000 1 1.000 1 1.027 4

DMU8 0.171 10 0.141 10 0.141 10

DMU9 1.000 1 1.000 1 1.825 2

DMU10 1.000 1 1.000 1 1.861 1

In order to obtain efficiency scores of all DMUs for all scenarios using the traditional CCR 

model, it is necessary to solve model (3)  times, where n is the number of DMUs and S is n S
the number of scenarios. Model (13) is linear and has the same computational complexity as 

the traditional DEA model (3). To obtain the results for all n DMUs, this model must be solved 

n times only. This means that its computational complexity is independent of the number of 

scenarios involved. The efficiency scores of all units obtained by this model are always lower 

than or equal to 1. Super-efficiency scores obtained by model (14) allow ranking of originally 

efficient DMUs. 

An interesting task in the analysis of efficiency of DMUs with alternative scenarios is 

sensitivity analysis with respect to the probabilities of scenarios. It is clear that, in case of 

maximum probability for the i-th scenario (pi = 1), the efficiency (super-efficiency) scores are 

identical to those obtained by the traditional CCR model (3) for this scenario. Table 5 contains 

results for p1 = 0.2, 0.4, 0.6, and 0.8, including the rankings of all DMUs. The probability for 

the third scenario remains unchanged (p3 = 0.01). In our example, this analysis shows that the 

final ranking is identical for all values of probabilities. Of course, it is given by a high level of 

similarity of all scenarios, and it is not a general conclusion.



Table 5: Sensitivity analysis for model (14)

p1 = 0.2    Rank p1 = 0.4  Rank p1 = 0.6 Rank p1 = 0.8 Rank

DMU1 1.867 3 1.817 3 1.958 3 1.715 3

DMU2 0.223 8 0.219 8 0.237 8 0.211 8

DMU3 0.416 7 0.403 7 0.433 7 0.377 7

DMU4 0.671 6 0.691 6 0.777 6 0.733 6

DMU5 0.156 9 0.154 9 0.166 9 0.149 9

DMU6 0.795 5 0.781 5 0.848 5 0.753 5

DMU7 0.987 4 1.009 4 1.127 4 1.052 4

DMU8 0.135 10 0.139 10 0.155 10 0.145 10

DMU9 1.887 2 1.853 2 2.011 2 1.786 2

DMU10 1.895 1 1.877 1 2.050 1 1.840 1

The example presented in this section was quite simple and the efficiency scores obtained by 

traditional CCR model for all scenarios independently are close in number. That is the reason 

why the experiments presented in Table 5 are very similar and rankings of the DMUs are 

identical. Of course, in general, the number of scenarios may be relatively high and the results 

(efficiency scores) may differ significantly. In this case, the sensitivity analysis of results with 

respect to the probabilities is of a higher importance. One of the ways in which to perform a 

deeper analysis is by using the Monte Carlo simulation.

5. Conclusions

This paper contains a contribution to the DEA theory for the case in which uncertainty in the 

dataset is expressed using multiple alternative scenarios. This situation may occur frequently 

in cases where the decision-maker is focused on an analysis of future development of a system 

under control, i.e. how the efficiency of the units under evaluation will change under the 

assumption of several directions of a future development. 

The main contribution of this paper is the formulation of models for efficiency evaluation under 

the assumption of multiple alternative scenarios with a given probability of their occurrence. 

At first, a model that is derived from traditional CCR is introduced. This model assumes an 

aggregated DMUs defined as the weighted sum of all alternative scenarios. Unfortunately, this 

first model is not linear and cannot be linearized. Its solution is not easy to obtain and has some 

other negative properties. The second model for dealing with alternative scenarios is a 



modification of the first one. This model is linear and is computationally efficient. Like other 

traditional DEA models, this model can result in a conclusion where more than one DMU is 

efficient (but at least one of them is always efficient). To distinguish among several efficient 

DMUs, a super-efficiency modification of this model was introduced. The properties of both 

efficiency and super-efficiency models have been derived and discussed. They have been 

illustrated on a small example with ten DMUs and three scenarios.  

Future research directions in this field can consist of a verification of properties of the model 

on large-scale examples or more extensive case studies in a real economic context. For future 

studies, we are going to analyze a relation between the efficiency scores of linear and non-

linear models proposed in this paper for non-efficient DMUs. Also, properties of non-linear 

model (8) and its relation to the results of the analysis for independent scenarios may be 

interesting to investigate. Further, the research can be focused on deriving feasibility conditions 

for super-efficiency model (14) and the sensitivity analysis of results for all models presented. 
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Highlights

 An original model for ranking of DMUs in data envelopment analysis models with 

alternative scenarios in the dataset is introduced.

 The properties of the new model are derived and mathematically proved.

 Comparing to the conventional models, the proposed approach ensures feasibility and is 

computationally efficient.

 The model is illustrated on an example with 10 DMUs and 3 scenarios.


