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Abstract

A column-weight £ LDPC code with the parity-check matrix /7 is called decomposable if
there exists a permutation 77 on the rows of /7, such that 77 (/7) can be decomposed into
£ column-weight one matrix. In this paper, some variations of edge coloring of graphs are
used to construct some column-weight three decomposable LDPC codes with girths at
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gi‘;k T least six and eight. Applying the presented method on several known classes of bipartite
T graphs, some classes of column-weight three decomposable LDPC codes ate derived hav-
ing flexibility in length and rate. Interestingly, the constructed parity-check matrices based
on the proper edge coloring of graphs can be considered as the base matrix of some high
rate column-weight three quasi-cyclic (QC) LDPC codes with maximum-achievable girth
20. The paper also leads to a simple characterization of elementary trapping sets of the
decomposable codes based on the chromatic index of the corresponding normal graphs.
This characterization corresponds to a simple search algorithm finds all possible existing
elementary trapping sets in a girth-6 or girth-8 column-weight 3 LDPC code which are lay-
ered super set of a short cycle in the Tanner graph of the code. Simulation results indicate
that the QC-LDPC codes with large girths lifted from the constructed base matrices have

good performances over AWGN channel.

1 | INTRODUCTION An LDPC code is described by its (sparse) parity-check

matrix [4]. Such a matrix can be efficiently represented by a

Low-density parity-check (LDPC) codes were first introduced
by Gallager [1] in his thesis in 1961 and have emerged as
one of the top contenders for near-channel capacity error
correction. LDPC codes are being considered in numerous
applications including digital communication systems and mag-
netic recording channels [2]. Ever since their rediscovery, a great
deal of research effort has been expended in the design and
construction of these codes.

The design of LDPC codes can be categorized into two
types of methods called random-like methods and structured
methods. Although randomly constructed LDPC codes of large
length give excellent bit-error rate (BER) performance [3],
the memory required to specify the nonzero elements of a
random matrix can be a major challenge for hardware imple-
mentation. Structured LDPC codes can lead to much simpler
implementations, particulatly for encoding;

bipartite graph, called Tanner graph [5]. To each patity-check
matrix /7 of an LDPC code, the Zanner graph TG (H ) is assigned
which collects variable nodes and check nodes associated with
the rows and the columns of /7, respectively, and each edge con-
nects a variable node to a check node if the intersection of the
corresponding row and column of / has a nonzero entry.
LDPC codes perform well with iterative decoding based on
belief propagation, such as the sum-product algorithm (SPA)
or the min-sum algorithm (MSA) [6]. However, with iterative
decoding, most LDPC codes have a common severe weakness,
known as the error-floor. The error-floor of an LDPC code is
characterized by the phenomenon that as the SNR continues
to increase, the error probability suddenly drops at a rate much
slower than that in the region of low to moderate SNR. The
error-floor may preclude LDPC codes from applications where
very low error rates are required, such as high-speed satellite
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communications, optical communications, hard-disk drives, and
flash memories. Ever since the phenomenon of the error-floors
of LDPC codes with iterative decoding became known [7], a
great deal of research efforts has been expended in finding its
causes and methods to resolve or mitigate the error-floor prob-
lem [7—13]. For the AWGN channel, the error-floor of an LDPC
code is mostly caused by an undesirable structure, known as
trapping sets, in the Tanner graph of the code. Extensive studies
and simulation results show that most trapping sets that cause
high error-floors of LDPC codes are trapping sets of small sizes.
While the knowledge of trapping sets is most helpful in the
design and analysis of LDPC codes, attaining such knowledge
is generally a hard problem. Much research has been devoted to
devising efficient search algorithms for finding small trapping
sets, (see [7-20]).

One of the important parameters affecting the performance
and determining the efficiency of iterative decoding algorithms
for LDPC codes is the girth which determines the number
of independent iterations [5]. It is well-known that the itera-
tive sum-product decoding algorithm converges to the optimal
solution provided that the Tanner graph of the code is free of
short cycles. The effect of cycles on the practical performance
of LDPC codes was demonstrated by simulation experiments
when LDPC codes were rediscovered by MacKay and Neal [21]
in the mid-1990%s and the beneficial effects of using graphs free
of short cycles were shown in [3]. Therefore, large girth Tan-
ner graphs lead an increase in the number of correlation-free
iterations and improve the convergence of the decoder. In addi-
tion, the performance in the error-floor region is predetermined
by the girth, because trapping sets contain cycles in the Tanner
graph [22], and so trapping sets containing short cycles are elim-
inated when the girth is increased. It is worth noting that the
lower bound on the sizes of the minimum trapping sets grows
exponentially with the girth for codes with column-weight at
least three (see [23]).

Tanner [5] showed that the code’s girth can be used as the
lower bound of the minimum distance 4,,;, of the code. In fact,
Tanner determined a lower bound on the minimum distance
that grows exponentially with the girth of the code. Specifi-
cally, for any regular LDPC code with girth g and variable node
degree d,,

1+ 4,(2}51‘ A4 1)"‘1) if o/2 s odd,
> — .
in 211 4 d,,(Z}fl 24 g~ 1)7—1) if g/2 is even.
+(d, — 1)le2/4

Accordingly, the design of large-girth LDPC codes is of
great interest. Random and algebraic methods ate two famous
approaches for the constructions of LDPC codes with large
girth. Among the random-like approaches, the progressive edge
growth (PEG) algorithm [24] builds a Tanner graph by connect-
ing the graph nodes edge-by-edge provided the added edge has
minimal impact on the girth of the graph. Except for the PEG
algorithm and its evolved construction algorithms, algebraic

structured constructions of large-girth LDPC codes have been
considered. Among the well-known structured LDPC codes,
finite geometry LDPC codes and LDPC codes constructed
from combinatorial designs [25-30] are adequate for high-rate
LDPC codes. The error-correcting performance of these LDPC
codes is verified under proper decoding algorithms but they
have severe restrictions on flexibly choosing the code rate and
length. Also, since finite geometry LDPC codes usually have
much redundancy and large weights in their parity-check matri-
ces, they are not suitable for a strictly power-constrained system
with iterative message-passing decoding,

In an effort toward the algebraic constructions of LDPC
codes, a quasi-cyclic (QC) LDPC code (see [4]) is getting
more attention due to its linear-time encodability and small
size of required memory. A QC-LDPC code can be viewed
as a protograph code [31] whose parity-check matrix contains
blocks of circulant matrices. Constructing families of QC-
LDPC codes with large girth has been investigated by several
authors (see [25-28, 32, 33]). For example, Steiner triple systems
(STS) [29] and voltage-graphs [34] were used to construct some
QC-LDPC codes with maximum girths 18 and 20, respectively.

The focus of the paper is on a class of LDPC codes called
decomposable codes. A column-weight £ LDPC code with the
parity-check matrix /7 is called decomposable if there exists
a permutation on the rows of /7, such that under this per-
mutation, /7 can be decomposed into £ column-weight one
matrix. In this paper, some well-structured block designs are
presented whose incidence matrices can be considered as the
parity-check matrix of some column-weight three decompos-
able LDPC codes with girths 6 or 8. The approach is based on
the variations of edge coloring of graphs and the class of con-
structed LDPC codes has flexibility in code length and rate, as
shown by several examples (see sections 3 and 4). Interestingly,
in some cases, the constructed girth-6 LDPC codes have better
lengths and minimum distances compared to the constructed
girth-6 LDPC codes by Bocharava et al. [35]. In addition, it is
shown that the constructed parity-check matrices can be consid-
ered as the mother matrices of some QC-LDPC codes having a
maximum achievable girth 20 or 24. Moreover, trapping sets of
decomposable codes will be analyzed.

The outline of the paper is organized as follows. In Section 2,
we give the preliminaries and constructions and in Sections 3
and 4, we give some examples of the constructed decomposable
codes. In Section 5, the trapping sets of the decomposable codes
will be analyzed, and finally, in Sections 6 and 7, the QC-LDPC
codes based on the constructed codes are considered and some
performance comparisons are provided between the proposed
QC-LDPC codes with different girths.

2 | PRELIMINARIES AND
CONSTRUCTIONS

Let »>4£>2 and 4 > 1 be given. In combinatorial math-
ematics [36], a (v, 4, A)-packing is a pair (X, B), where X
is a »-set of elements (points) and B is a collection of £-
subsets of X (blocks), such that every 2-subset of points
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FIGURE 1

occurs in at most 4 blocks of B. A (v, £ 4)-BIBD (Bal-
anced Incomplete Block Design) is a (v, £, 1)-packing in which
every 2-subset of points occurs in exactly 4 blocks of B.
As in this paper, we just consider (v, 3, 1)-packings, for sim-
plicity, by a (,/)-packing, we mean a (», 3, 1)-packing with /
blocks. The zncidence matrix of a (v, /)-packing is a » X / binary
matrix H = ();;) in which the rows and columns correspond
to the points and blocks, respectively, such that /;; =1 if the
i-th point belongs to the j-th block and 4;; = 0, otherwise.
For example, if b =1{1,2,4}, b, =1{2,3,5}, b5 = 1{3,4,6}, by =
{4,5,7} bs =1{1,5,6}, by = 12,6, 7and by = {1,3, 7}, then B =
{61, by, ..., b7} is a (7,7)-packing with the following incidence
matrix.

1 0 0 0 1 0 1
1 1.0 0 0 1 O
01 1 0 0 0 1
H =
1 01 1 0 0 O
01 0 1 1 0 O
o0 1 0 1 1 0
o0 0 1 0 1 1

To go through the details of the construction, we need some
basic definitions from graph theory [37]. Let G = (17, E) be
a graph with vertex and edge sets 17 and £, respectively. The
degree of a vertex » € 17 is the number of edges incident with »
and G is called &-regular if all vertices have degree 4. The max-
imum degree of vertices of a graph G is denoted by A(G),
or simply by A. Two vertices # and » are adjacent if there
is an edge between # and ». For a subgraph /A of G and
v € V(G)\ IV (H), we use deg,,(v) to denote the number of
vertices in /7 which are adjacent to ».

We say that vertex » and edge e are zncident if v is an endpoint
of e. Also, two edges of G are incident if they have a vertex in
common. Two edges are of distance at most two if they either shatre
an endpoint or an endpoint of one is joined to an endpoint of
the other by an edge. A ¢yeleina graph G = (17, ) is a sequence
of connected vertices and edges in the graph which starts and
ends at the same vertex and contains each vertex no more than
once. The /length of a ¢ycle is the number of edges it contains and

(a), (b) Proper edge colorings of K; 5 and (3, (c), (d) Strong edge colorings of 0y and Gi4(1, 5, 13), respectively.

the girth of a graph G' = (17, E) is the length of the shortest
cyclein G.

A graph G is bipartite if the set of its vertices can be patti-
tioned into two disjoint sets [} and 1/ such that no two vertices
within either I} or 1, are connected by an edge. A bipartite
graph G with partite sets [] and 1} is denoted by G = (17, 15).
A bipartite graph G = (1], 15) is called complete bipartite graph if
there is an edge between each vertex of 1] and each vertex of
1. A complete bipartite graph G = (117, 1) with |1]| = #nand
[V5] = m is denoted by K, ,,. For example, K5 5 is depicted in
Figure 1a.

In graph theory, a proper edge coloring or briefly edge coloring [38)
of a graph is an assignment of colors to the edges of the graph
so that no two adjacent edges have the same color. For example,
a proper edge coloring of the Peterson graph with 4 colors is
depicted in Figure 2a. The minimum required number of colors
for the edge coloring of a given graph G is called the chromatic
index of G and denoted by ' (G). By the Vizing’s theorem [39],
the number of colors needed to color the edges of a simple
graph is either its maximum degree A or A + 1. For bipartite
graphs, the number of colors is always A [38]. If G is a graph
with maximum degree A and ¥/ (G) = A, then G is called type
I graph and if ¥/ (G) = A + 1, then G is called type 11 graph.

Many variations of the edge coloring problem, in which an
assignment of colors to edges must satisfy other conditions
than non-adjacency, have been studied. One of these colorings
is the strong edge coloring of graphs [40]. A strong edge coloring
[38] assigns colors to edges such that every two edges of dis-
tance at most two have different colors. For example, a strong
edge coloring of the Peterson graph with 5 colors is depicted
in Figure 2b. The strong chromatic index, X' (G), is the minimum
number of colors in a strong edge coloring of G.

A low-density parity-check (LDPC) code is a linear block
code for which the parity-check matrix /7 contains only a few
1’s in compatison to the amount of 0’s. An LDPC code with
the parity-check matrix /7 is called r-row-regular (r-column-
regular) if each row (column) of 7 has weight . An LDPC code
is known as a irregular code if its parity-check matrix is not row-
regular or column-regular. Also, by a (7, &)-regular LDPC code
we mean a code whose parity-check matrix is £-row-regular and
J-column-regular. For an LDPC code with a /4 X # parity-check

. . b . .
matrix /7, the code rate R is defined as 1 — = (this assumes 77 is
n
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FIGURE 2 (a) Proper edge coloring, (b) strong edge coloring of the Peterson graph.

full rank) which is equal to 1 — é, if H is (/, k&)-regular. The girth
of an LDPC code C with the parity-check matrix /7, denoted
by g(H) or g(C), is defined as the length of the shortest cycle in
TG(H).

Let H = (b; ;) ,x, be an arbitrary matrix and ), denote the
set of all permutations on » points. For a permutation 77 € ,,,
we use 77 (/7) to denote the matrix obtained from /7 by applying
the permutation 77 on the rows of H, that is, T (H) = (br(,/)-
Now, let / be the parity-check matrix of a column-weight ¢
LDPC code. We say that / is decomposable if and only if there
exists a permutation 77 on the rows of /7, such that 77 (/) can

be decomposed into ¢ column-weight 1 matrix 77, ..., /7, that
H

is, H = i | A column-weight ¢ LDPC code with the parity-
H,

¢
check matrix # is called decomposable if // is decomposable.

Example 2.1. Consider a column-weight three LDPC code
with the following parity-check matrix.

1001 0O01TO0O0O0O0O0
1 00 0 O0O1 01T 01 0O
o1 001 0O0O0O0T1O00O0
01 01 00O0O0OT1TTO0T1T0
001 00O0O0OT1TO0O0T10
H=|j0 6 1 0 1. 01 0 0 0 0 1
00 0 00 1O0O0OT1TO0O01
111000 O0O0O0O0OO0OO
000111 O0O0O0O0O00O0
o0 00O0O0OT1 11000
000 O0O0O0OO0OO0OTO0OT1TI1I1

Applying the permutation 7 = (2 5 3)(4 6 7) € 5;; on the
rows of H, we have

1001 00 1TO0O0O0O0O
01 001 0O0O0OO0T1TO00O0
o0 100O0O0T1O0O0T1T0O0
00 00 O0T1TO0O0OT1TO0O01
100001 01010 O0
n(H)y=]10 1 0 1. 0 0 0 0 1 0 1 0}
001010100001
1 110 0 0 0 0 0 0 0 O
000111 0O0O0O0O0O0
00 0O0O0OO0OT1TT1TT1TO0O00O0
00 0 0O0O0O0O0OO0OT1TTI11

which shows that /7 is the parity-check matrix of a decompos-
able code.

Now, we go through the details of our method which con-
structs a girth-6 (girth-8) column-weight three LDPC code
from an arbitrary proper (strong) edge colored graph. For this
purpose, let G = (17, E) be a graph with 17 = {v, 1, ..., ,}
and let ¢ be an arbitrary edge coloring of G with # colors
1,2,...,¢. For each 4, 1 < £ < ¢, let By denote the family of
all triples {7, j, n+ £}, where ¢ = y»; is an edge of G with
color £. For instance, for the Peterson graph in Figure 2a, we
have:

By = {1,2,11},{3, 4, 11}, {6, 10, 11}},

B, = {{1,5,12},{2,3,12},{6,7,12},{9, 10, 12}, {4, 8, 12}},
By =1{{2,7,13},{3,10,13},{8,9, 13}, {4, 5, 13}},

B, =1{{7,8,14},{5,6,14},{1,9, 14}}.
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Set By(G) = U[_ B;. It is clear to see that B,(G) contains
=1 ¢

n+ tpoints{1,2, ..., n + ¢}, where {1, 2, ... #} is the set of indices
of vertices of G and {# + 1, # + 2, ... n + ¢} is the set of colors in
the edge coloring of G. In addition, each edge of G is contained
in exactly one block of B,(G) and By(G) has m = |E(G))|
blocks and so By (G) is a (# + ¢, m)-packing. Let Hy(G) denote
the (#+#) X m incident matrix of By (G). It is easy to see that

H,(G) is the parity-check matrix of a column-weight 3 LDPC

code, with length w7 and rate R = 1 — 2 We denote by o (G)

the constructed column-weight 3 LDPC code with the parity-
check matrix Hy(G) and we call it as the (G, @)-code. In the
rest (see Theorems 1 and 2), we prove that the girth of the con-
structed column-weight 3 LDPC code with parity-check matrix
H,(G) is fully dependent on the type of the edge coloring ¢. It
is easy to see that H,(G) is the parity-check matrix of a decom-
posable code if and only if G is a bipartite graph. Hereafter, if
@ is a proper (resp. strong) edge coloring of G, we use H,(G)
(resp. H(G)) to denote the parity-check matrix H,y (G).

3 | LDPC CODES FROM PROPER EDGE
COLORED GRAPHS

In this section, we just concentrate on the proper edge color-
ing of simple graphs (graphs without loops and parallel edges)
and we examine the constructed codes by several examples.
First, for a given simple graph G, we prove that H,(G) is the

1111100000
1000010000
000001 1111
010000100 0
0000000000
0010000100
00000O0O0O0O0 0

M, (Ks)=]0 00 1.0 00 0 1 0
00000O0O0O0O0 0
0000100001
1000001000
0001000001
010000010 0
000011000 0
0010000010

parity-check matrix of a 4-cycle free column-weight three LDPC
code.

Theortem 1. Let G be a simple graph with an arbitrary edge coloring
. Then Hy(G) is free of 4-cycles if and only if @ is proper.

O O O =, O O O O O O =, O O = O

Proof. Let |V (G)| = n, |E(G)| = m and # be the number of
colors used in ¢. Since G'is a simple graph, g(H,(G)) = 4 if
and only if there are blocks (triples) B, B’ € By (G) such that
BnB = {iyn+ R}, forsome 1 <7/ < nand 1 < £ < ¢. But this
is equivalent to the existence of two edges ¢ and ¢/ having vertex
#; in common and both edges ¢ and ¢ have the same color 4,
means that @ is not proper. Therefore, g(H,(G)) 2 6 if and only
if ¢ is a proper edge coloring; |

In the rest of this section, we examine the constructed codes
by several examples. As decomposable codes are considered in
this paper, we just consider bipartite graphs. In the following
examples, a graph G with a proper edge coloring p is presented
and then, this coloring is used to construct a column-weight
three LDPC code having parity-check matrix H ,(G).

Example 3.1 (Complete bipartite graphs). Let / >4 and
K;; be the complete bipartite graph with partite sets 1] =
{1,3,...,2/ =1} and 15 ={2,4,...,2/}. Coloring each edge
{20 = 1,2/}, 1 < 4,7 </, by color 2(j —7) + 1 (mod /) yields
a proper edge coloring of K ; with / colors. For example, for
/ =5 such a coloring is given in Figure la. Therefore, if p is
the mentioned edge coloring of X; ;, then H (K] ) is the parity-
check matrix of a girth-6 column-weight three LDPC code with

3 1
rate R = 1 — - + —. For example, the code constructed based

on the proper edge coloring of K; 5 has the parity-check matrix
H (K 5), rate 0.44 and length 25.

o0 00O0O0O0OO0OO0OO0OO0OO0OO0OTO0°O0
000O0OT1TTO0OO0OO0OO0OT1TO0O0OO0OGO
00 0O0O0OO0OO0OO0OO0OTO0OTO0OO0OTO0OTO0O
1 00001 O0O0O0OO0OT1TO0O0O0
1111000 O0O0OO0OOO0O0OO0
01 000O0O1O0O0O0OO0OT1TO0O0
000017111 100O0O0O0
oo0100O0O0T1TO0OO0O0O0OT1O0
o0 00O0O0OO0ODO0OO0OT1TTI1TT1TT1:1
0001TO0O0O0OO0OT1TTO0OO0OO0OO01
01 00O0O0OO0OT1TO0O0O0OO0OTO01
000O0O0T1O0O0O0TO0OO0OT1TO0O0
o0100O0O0OO0OT1TT1TO0OGO0O0O0
1 00 0001 O0O0OO0OO0OGO0OT1TO0
000110O0O0OO0OO0OT11TO0O0O0

Clearly R rapidly tends to 1 when # enlarges, as shown in
Table 1. Since the degree of each vertex in K, is /, H (K} )
is the parity-check matrix of a (3,/)-regular code. Compared
to the constructed girth-6 (3, /)-tegular codes in [35], the con-
structed codes based on K;,; have smaller lengths for each
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TABLE 1  Codes based on the proper edge coloring of complete bipartite graphs and hypercubes with rate R and length 7.
Complete bipartite / 3 4 5 6 7 8 9 10 11 12 13 14 16
graph K, n 9 16 25 36 49 64 81 100 121 144 169 196 256

R 0.11 0.31 0.44 0.53 0.59 0.64 0.68 0.71 0.74 0.76 0.78 0.80 0.81
Hypetcube graph Q) / 3 4 5 6 7 8 9 10 11 12 13 14 15

n 12 32 80 192 448 1024 2304 5120 11264 24576 53248 114688 245760

R 0.17 0.41 0.55 0.64 0.70 0.74 0.77 0.80 0.82 0.83 0.85 0.86 0.87
TABLE 2 Constructed codes based on edge coloring of G having mother matrix Hy (G).
Parity-check matrix H,(G) Regularity Girth Length Minimum distance QC
H(K,,,) (1 odd) n 6 i 6(4, [35]) -
H (K, ) (n even) n 6 (0% + 1, [35)) 6(4, [35]) -
H,(G14(1,5,13)) 3 6 21 6 -
H, (G (1,5,17,25)) 4 6 52 10 B
H,(Oy) 4 8 32(36, [35]) 6 -
H, (G (1,5,17,25)) 4 8 52 12 -
H, (Gyp(1,11,15,35,41)) 6 8 186 12 -
Hy(Ky4) 4 20 164128(1296000, [35]) - *
H, (G (1,5,17,25)) 4 20 312416(1296000, [35]) - *

even / and have better minimum distances for each / (see
Table 2).

Example 3.2 (Hypercubes). The hypercube 0, is a graph whose
vertex set is all /-sequences x = xyx7 ... x; with entries from
{0, 1}, and two vertices are adjacent if they differ in exactly one
coordinate. Clearly, (0, is a /-regular graph on 2/ vertices. For
example, (5 is denoted in Figure lc. Now, color each edge
xy € O, by color 7 if x and y differs in the /-th coordinate,
1 <7< /. Itis easy to see that this coloring is a proper color-
ing of O, with / colors. For example, for / = 3 such a coloring
is given in Figure 1b. Therefore, if p is the above edge color-
ing of O, then the constructed code with parity-check matrix
H(Q)) is a column-weight three LDPC code with girth 6 and

2/ 41 2 1 .
rate R=1- il el s For /=3, H,(0;) is the

parity-check matrix of a code with rate 0.17 and length 12 with
the following parity-check matrix.

Hp(Q3) =

- 0O 0 0O 0 0 O O O = =
O -, 00 00 OO =~ O =
OO - OO0 0 =, OO0 O =
O -, 00 00 O =, O = O
I R I e R ===
- 0O 0 0 0O 0 O = =, O O
S = = =R = T R
S N === = R
- 0O 0 0 O = = O O O O
S = == =R
O —m O =, O =, OO0 0 OO
- 0O O =, = 0O 0 0 o O O

Since the degree of each vertexin O is /, H ;,(0)) has 2/ rows of
weight / and / rows of weight 2/~!. Therefore, the constructed
code with the parity-check matrix H,(Q)) is irregular.

4 | LDPC CODES FROM STRONG EDGE
COLORED GRAPHS

In this section, the strong edge coloring of some known bipar-
tite graphs is used to construct some classes of column-weight
three decomposable LDPC codes with girth 8. First, we prove
that H,(G) is the parity-check matrix of a girth-8 column-weight
three LDPC code, provided that G is free of triangles.

Theorem 2. Let G be a triangle-free graph with an arbitrary edge
coloring @. Then g(Hy(G)) = 8 if and only if @ is a strong edge coloring.

Progf. Let ¢ be the number of colors in the edge coloring ¢,
V()| = n, |E(G)| = m and By(G) be the (n+ #, m)-packing
associated with H,(G). By Theorem 1, g(H,(G)) = 4 if and
only if ¢ is proper. Since any strong edge coloring of G is a
proper edge coloring, it is sufficient to prove that H,(G) is free
of 6-cycles. Since G is triangle-free, Hy(G) contains a 6-cycle
if and only if there are some distinct blocks B, B, B” € B, (G)
such that for some vertices #;, and »;,, 1 < #; # 7 < n,and color
c=n+i, 1< <t we have BNB" ={i}, B nB" ={,}
and BN B’ = {n + #}. But, this means that vertices v, and v;,
are adjacent in G (via block B"") and also edges ¢ and ¢ (differ-
ent from the edge #; 7)) corresponding to the blocks B and B
are incident with vertices #; and »;), respectively, such that both
¢ and ¢ have the same color i;. Therefore, Hy(G) is free of

95LB01 T SUOLULLOD A0 3[cedldde U Ag peusenob ae S VO ‘85N JO Sa|nJ o Akeuqi8UlJUO A8]IM UO (SUONIPUOD-PUE-SWLBI 0D A | IMARed 1[Bu 1 UO//SdIY) SUONIPUOD pue SIS 1 8L 89S *[620z/2T/£Z] Uo ARiqiauluo A8 (1M ‘(ouleAnde ) sanopesy Ad 29.2T ZnNWo/6r0T OT/I0p/Loo 48] im Ake.q 1 pul|uo yoJessaie /SNy Woij pepeoiumod ‘6 ‘v20Z '9898TS.LT



RAEISI and GHOLAMI 589
TABLE 3  Some odd transformation modular Golomb Ruler & with & marks modulo 27 [42, 43].

2n k d = (a;,...,a;e)

26 4 (1,5,17,25)

42 5 (1,11,15,35,41)

62 6 (1,15,21,25,33,61)

96 7 (1,29,51,71,85,89,95)

114 8 (1,25,29,41,47,61,105,113)

146 9 (1,13,21,69,95,101,105,129,145)

182 10 (1,3,13,21,47,53,69,83,107,111)

240 11 (1,93,105,125,155,159,181,195,223,233,239)

266 12 (1,5,13,49,59,81,87,111,137,151,153,171)

336 13 (1,39,61,69,75,93,127,171,175,191,217,325,335)

366 14 (1,31,99,103,109,143,157,169,185,193,231,249,345,365)

510 15 (1,23,27,71,79,109,167,183,233,243,297,391,491,497,509)

510 16 (1,21,23,63,67,117,141,147,155,173,245,255,303,315,331,367)

546 17 (1,11,31,69,71,85,147,151,173,179,197,269,303,311,355,367,403)

614 18 (1,5,21,45,107,113,165,167,179,197,261,297,307,335,377,385,411,433)

720 19 (1,7,63,65,83,135,173,189,221,233,257,267,369,397,411,419,485,511,515)

762 20 (1,49,61,87,111,143,151,179,209,251,255,325,335,379,413,431,545,551,565,567)

6-cycles if and only if each two edges ¢ and ¢ with distance two
receive distinct colors, means that ¢ is a strong edge coloring.
This observation completes the proof of the theorem. O

Example 4.1 (Hypercubes). Let ¢, be the hypercube graph
introduced in Example 3.2. It is proved [41] that a strong edge
coloring of O, needs at most 2/ colors. To see this, represent
a vertex x of O, by a 0-1 vector »(x) of length / and let £;
be the set of all edges xy in which »(x) and »(y) differ in the
i-th coordinate, 1 <7 < /. A refinement E; = Ezl U EZ,Z of this
edge partition is obtained in the following way: an edge xy € £;
belongs to £/, (1 < i < /,1 < j < 2),if and only if the sum of
all coordinates of »(x) (or »(y)) except for the /-th one, is con-
gruent to j (mod 2). Obviously, assigning color 7 X j to each
edge in E;‘/ yields an strong edge coloring of {; by 2/ colors.
For example, for / = 4 such a coloring is given in Figure lc. In
this figure, the 0-1 vector associated with each vertex #; is the
representation of 7 — 1 in base 2. Therefore, if s is the above
strong edge coloring of ¢, then H,(Q;) can be considered as

the parity-check matrix of a column-weight three LDPC code

S 2/ 42/-1
with girth 8 and rate R =1 —
/21

with the parity-check matrix H (Q,) has rate 0.28 and length 32.

Cleatly R rapidly tends to 1 when / enlatrges. Since the degree
of each vertex in O is /, H,(Q;) have 2/ rows of weight / and
2/ rows of weight 2/72. In particular, H,(Q,) is a (3,4)-regular
code with length 32. Interestingly, the constructed code based
on H (Q,) has smaller length than the (3,4)-QC-LDPC codes
with girth 8 constructed in [35].

. For example, the code

Example 4.2 (Graphs based on Golomb rulers). By a length-
# Modular Golomb Ruler modulo # [42], we mean a set of &

residues a1, a9, ...
all distinct modulo 7. Note that each pair generates two differ-

, a; such that the differences a; — aj, i # J,are

ences: ; — a; and a; — a;, which are both considered in modulo
n. For example {0, 2,6} is a Modular Golomb ruler modulo
7. In [42], the author proved that the set @ = {4, a5, ..., 4z}
is a modular Golomb Ruler modulo # if and only if the odd
transformation & = {24; + 1,2a, + 1, ..., 2a; + 1} is a modu-
lar Golomb Ruler modulo 27. In [42, 43], the authors present
some odd transformation modular Golomb rulers modulo 27,
shown in Table 3, and they used these odd transformation
modular Golomb rulers to construct some regular graphs with
girth 6, in the following sense. Let a = {a,ay, ..., 4.} be a
modular Golomb Ruler modulo # and let 4’ be the odd trans-
formation of a. Let G),(d') be the graph with vertex set I/ =
{1,2,...,2n} and edge set E = Ul/.ilBl-, where B; = {{2/,2; + g;
(mod 2n)} : 1 <;< ny, 1<i<k Itis proved [43] that if
a=1{ay,ay,...,a;} is a modular Golomb Ruler modulo 7 with
odd transformation &, then G,,(d') is a k-regular bipartite
graph with girth 6. As an example, for modular Golomb Ruler
a = {0,2,6} with odd transformation & = {1, 5,13}, Gj4(d’) is
a 3-regular graph with girth 6 on 14 vertices, as shown in
Figure 1d.

Now, one can easily check that coloting each edge {7, /} of
Gy,(d") by color i + j (mod ) gives a strong edge coloring of
Gy, (d) with # colors. As an example, a strong edge coloring
of Gj4(1,5,13) with 7 colors is shown in Figure 1d. There-
fore, if s is such a strong edge coloring of Gj4(1,5,13), then
H (G4(1,5,13)) is the parity-check matrix of a column-weight
three code with girth 8.

Therefore, if s is such a strong edge coloring of G,,(d),
then H (G, (<)) is the parity-check matrix of a girth-8 column-

weight three LDPC code having rate R =1 — 2, which tends
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590 RAEISI and GHOLAMI
TABLE 4  Codes based on the strong edge coloring of hypercube and Golomb ruler graphs with rate R and length ».
Hypercube graph O, / 4 5 6 7 8 9 10 11 12 13 14 15
n 32 80 192 448 1024 2304 5120 11264 24576 53248 114688 245760
R 0.28 0.49 0.61 0.69 0.74 0.77 0.80 0.82 0.83 0.85 0.86 0.87
I-Regular Golomb / 3 4 5 6 7 8 9 10 11 12 13 15
ruler graph " 21 52 105 186 336 456 657 910 1320 1596 2184 3825
R 0.0 0.25 0.40 0.50 0.57 0.62 0.67 0.70 0.73 0.75 0.77 0.80
v Definition 5.1. Let § and 5’ be two ETS in T of size a and
Vv, O " o, respectively, such that § C §" and a < a’. We say that §’
¢ is a layered superset (LSS) of S if there exists a nested sequence
of ETSs S = 5O ¢ s ¢ ... € $@ =% = §’ such that SO € ©
has size a + 7, fori = 0,...,a' — a.
Y V3\J Vs
(b) Example 5.2. The (6,6)-trapping set S’ ={r,..., 7} in

FIGURE 3

(a) A (6,0) trapping set and (b) its normal graph.

to 1 when £ enlarges, as shown in Table 4. Note that
H (G5, (d)) can be considered as the parity-check matrix of a
(3, £)-regular code.

5 | TRAPPING SETS OF
DECOMPOSABLE LDPC CODES

The aim of this section is to characterize and analyze the
trapping sets of decomposable LDPC codes. Let / be the
patity-check of an LDPC code C and G = 7G/(H) be the Tan-
ner graph of C with vertex set I = 1] U 15, where 1] and 15
are the sets of vatiable nodes and check nodes of C, respec-
tively. For a subset S of 17, let V() be the check nodes in
1 adjacent with some vertices in § and let G[S] be the sub-
graph of G induced by the vertices of S, that is, the graph
containing nodes S UN(S) and edges fe=m € E(G) : n €
S, v € N(5}. Moreover, let N,(S) and N,(S) be the sets of
check nodes in V() with odd and even degtees in G[S], tespec-
tively. By a (a, b)-trapping setin G, we mean a size-a subset S € 1/
such that |N,(5)| = b. A (a, b)-trapping set S is called elementary
if all nodes in N(5) have degrees one or two. Elementary trap-
ping sets (ETSs) are known to be the main cause of error floor
in LDPC coding schemes [18, 19].

An ETS § is called regular if the degtee of all nodes of S
in G[S] is the same. The normal graph of a regular (a, b)-ETS §
is a graph on a vertices and obtained by removing all degree-1
check nodes and their edges from G[S], and by replacing each
degree-2 check node with an edge. In Figure 3, a (6,6)-trapping
set and its associated normal graph is presented. Here, we use
the notation 7 to denote the set of all trapping sets § in a Tanner
graph G whose induced subgraph G|[S] is connected and for
which every node » € § is connected to at least two nodes in
N, (), that is, the degree of each vertex in the normal graph of
G is at least two.

Figure 3 is an LSS of § = {v3, 24, 155, 5}, because of the existence
of the following nested LSS in 7:

S=850cs® = {v1, 03, 04, 15,5} C 5@ =g,

However, 5" can’t be considered as an LSS of 8" = {»|, 1, 3},
because for i=5,6, 5" U{s} & 1. Morecover, S =5"u
{myet,bur SO U} &1, fori=5,6.

Definition 5.3. Let G be the given graph and / be a proper
subgraph of G with |/ (H)| > 2. We say G is H-generate of
order # if the vertices of V' (G)\ V' () can be ordered as
Uy, tyy e, thy, such thatif ) = H and H; (7 > 2) is the subgraph
of G induced by V' (H) U {wy, ..., #;_1}, then deg,, () 2 2, for
each 7, 1 <7< ¢. In fact, G can be constructed from / by
adding vertices #, #y, ... , #; sequentially such that each vertex
u; has at least two endpoints belong to the eatlier subgraph

spanned by V' () U {uy, ..., #;_1}.

Example 5.4. Let G be the graph shown in Figure 3b
and let H = Glvs, vy, v5,75] be the subgraph of G induced
by the vertices 3,2y, 15, 75. Cleatly G is a FH-generate graph,
because G can be constructed from // by adding vertex #;
to H; = H and then », to H, = H,[r] such that deng (n) =
2 and degHz (1) = 3. However, G is not a /{-generate for
H = Gln, vy, 3], because in any ordering of the remaining
vertices vy, s, 75, some conditions of Definition 5.3 are not sat-
iﬁsﬁeg. gor example, deg,, (24) = 3 but degHW] () =1<2, for
7=15,0.

The layered superset relationship between an ETS and gen-
erated subgraphs is essential to the rest of the paper. Therefore,
in the following proposition, we give a characterization for the
elementary trapping sets and generate normal graphs.

Proposition 5.5. LetS" and S, S C 8', be two E'TS int with normal
graphs H' and H, respectively. Then S" is an 1SS of S if and only if H'
is a H -generate graph.
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Proof. Let 8" be an LSS of § with the corresponding chain § =
SO cs®O .. cs@0 =g and 5O/5¢-D ={4}. Since
SO € 1, there are at least two elements x,y € N,(5?) adjacent
to #;. Then deg ) (x) = deg ) (y) = 2 and so there exist two ele-
ments x’,y € S¢=V adjacent to x,y, respectively. Hence, ', )’
are the neighbors of # in the normal graph of /7’ [§?], which
plays the same role as /7; in the definition of the /7-generate
graph. N

Now, in the following theorem, we give a characterization for
the Elementary trapping sets of a decomposable code based on
the chromatic index of the corresponding normal graph.

Theorem 3. Let G be a simple graph with maximum degree &, & > 3.
If G is a normal graph of an ETS of a 4-cycle free decomposable column-
weight k L.DPC code, then ¥' (G) = .

Progf. Since the parity-check matrix is decomposed by £ binary
mattix /7y, I, ..., H, with column-weight 1, we can label all
check nodes in /; by color 7. Thus, all check nodes are labeled
by £ colors. Now, we consider the same labeling in an ETS
which means that all check nodes in an ETS are labeled by £
colors. According to the definition of a decomposable LDPC
code, it is easy to prove that there are no two check nodes with
one variable node connected to those check nodes that have the
same label. Through constructing a normal graph from an ETS,
all 1-degree check nodes are removed and each 2-degree check
node is replaced by an edge. Now, to color the edges of the nor-
mal graph, it is sufficient to consider the same labeling we have
for check nodes. The label of each 2-degree check node is given
to its corresponding edge in the normal graph. Therefore, the
normal graph has a £-edge coloring which is proper because
the girth of the Tanner graph is at least 6. Thus, the chromatic
number is 4. O

Gallager Codes [1] and LDPC Codes constructed in Sec-
tions 3 and 4 are some classes of 4-cycle free decomposable
codes and the Elementary trapping sets of such codes can be
completely determined by Theorem 1.

Consider the case where an ETS § of size # is an LSS of an
ETS ' of size &. Cleatly, starting from §’, the successive appli-
cation of Proposition 5.5 will result in finding all ETSs which are
layered supersets of 5. In the rest of the paper, we investigate
the structures of all ETSs in column-weight three LDPC codes
with girth values 6 and 8 and then, we study all non-isomorphic
structures of different classes of (4, 4)-ETSs. In Algorithm 1,
for each class of ETSs with given values of 2 and 4, we first
find all non-isomorphic structures and then examine each of
these structures to find out whether the structure is an LSS of
any of its cycles. In this algorithm, for given even integer g, and
positive integer g, with g < a,., all /-cycles, that is, cycles of
length / with their chords, will be generated in C; and then C,
is used to construct all C,-generate graphs with at most g,

axo

vertices having girth at least g. Then, the non-isomorph rela-
tion between the constructed graphs is checked and finally, the
algorithm returns the number of all non-isomorphic (4, b)-ETS

ALGORITHM 1 Non-isomorphic Class I and Class IT ETSs which are
LSS of a Cycle.

Require: Let g be even and 4, be an integer with ¢ < a,,.;
G < 0.
for / from g to a,,,, do
Let C, be the set of all /-cycles with girth at least gand 7; < .
for / from 0 to 4, — / do
1) « {C;-generate graphs of order 7} U 7};
end for
if / = g then
G« 1
else
G <G UL 1and G« )\ Gy
end if
for / from g to a,,, do
for 7 from 0 to / do
Ji(l,1) < 0and f(/,1) < 0;
end for
end for
foral GE€G
a <~ |IV(G)|and b < 3a —2|E(G)];
if ¥'(G) = A(G) then
Si@b) < fiah+1;
else
fala, by < fo(a,b) +1;
end if
for / from g to 4, do
for 7 from 0 to / do
if £(/,#) > 0 then
The number of [/, #] ETS of Class Lis f;(/,7);
end if
if £,(/,1) > 0 then
The number of [/, 7] ETS of Class Il is f,(/,7);
end if
end for
end for

end for

which are LSS of an /-cycle. The algorithm also return the num-
ber of all type I and type II (4, b)-ETSs. For each value of 4, we
mostly consider the values of & which satisfy 4/a < 1. Having
applied Algorithm 1, the results for column-weight three LDPC
codes with girth values 6 and 8 are reported in Tables 5 and 6.
For column-weight three LDPC codes with girths 6 and 8, the
multiplicity of non-isomorphic structures are also listed in these
tables, for different classes of ETSs. In these tables, [, £]; is used
to denote a (4, b)-ETS such that # is the number of all (4, b)-
ETSs and s is the number of (g, 4)-ETSs whose normal graphs
having chromatic index 4. For a given (a, b), if all (a, b)-ETSs
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TABLE 5  All non-isomorphic [z, 4] ETS for girth-6 column-weight 3 LDPC codes which are LSS of an L-cycle.

L [a, b] Total Type II

6 (3, 311, [4, 011, [4, 211, [5, 1] 4 1

8 [4, 411, 5, 312, [6, 012, [6, 215, [7, 113 11 3

10 (5, 5115 [6, 211, [6, 412 [7, 11}, [7, 316 [8, Ol [8, 2]o, [9, 113 32 10

12 6,411, [6, 611 [7, 3135 [7, 5135 [8, 02, [8, 217, [8, 4112, [95 117, [9, 313, [10, 011, [10, 214, [11, 1130 188 60

14 (7, 511, [7, 7)1, 18, 211, [8, 4l [8, 615, [9 112, 19, 3Ly [9, Sl1os [10, 0]s, [10, 2], [10, 475, [11, 1132, 1145 391
(11, 313100 [12, 0135, [12, 213, [13, 135

16 [8,8]1,19, 34,19, 51135 9, 714, [10, 04, [10, 2];5, [10, 4]57, [10, 651, [11, 1]16 [11, 3]156, [11, 5]172, 10489 3595
[12, 0127, [12, 213 40, [12, 413, 0, [13, 1158, [13, 3118, [14, 013, [14, 215, [15, 113273

TABLE 6  Allnon-isomorphic [a, 4] ETS for girth-8 column-weight 3 LDPC codes which are LSS of an Z-cycle.

L [a, b] Total Type II

8 (5,311, [6, 011, [6, 211, [7, 11! 5 1

10 [6,411,(7, 3], 8,011, [8, 2]3, [9, 1] 11 3

12 7,311, [7, 51, [8, 011, [8, 211, [8, 416, [9 111, 19, 311, [10, 011, [10, 211, 11, 1719 71 23

14 [8, 412, [8, 615 [9, 314 [9, 51105 [10, 0]y, [10, 2], [10, 4]54, [11, 114, [11, 311, [12, 016, [12,2] ., 420 133
(13,1113

16 [9, 517,19, 715, [10, 2],, [10, 4]51, [10, 6]19, [11, 3]29, [11, 5]gg, [12, 0], [12, 2]47,[12 4]%24, [13, 1]33, 3869 1248
(13, 33055 [14 Olgg [14, 215040 [15 111305

18 [10, 4]y, [10, 6] 14, [0, 83, [11, 36, [11, 5o, [11, Tla7, [12, 2011, [12, 41145, [12, 6l1s, [13, 113, [13, 3125, 42719 3942

[13, 515515 [14, 01145 [14, 2135 [14, 41311 (15, 113155 [15, 3150460 116, 012450 [16, 213550 [17, 117552,

2122

have chromatic index 3, we just write [, 4],. For example, in the
first row of Table 5, [4,2]; means that there is just one (4,2)-
ETS whose normal graph has a chromatic index 3 and [5, 1]1
means that there is just one (5,1)-ETS whose normal graph has
a chromatic index 4. In these tables, by type IT we mean an ETS
whose normal graph has chromatic index 4. Note that by The-
orem 3, a (a, b)-ETS of Type 11 is avoidable in a decomposable
LDPC code.

6 | QC-LDPC CODES WITH GIRTHS 20
AND 24

In this section, we prove that the parity-check matrices of the
constructed column-weight 3 LDPC codes can be considered
as the mother matrix of some column-weight three QC-LDPC
code with girth at most 20 or 24, depending on G and edge
coloring ¢ of G.

For given positive integers s and IV, 0 < s < IV — 1, we use
1, to denote the /N X /N matrix obtained from N X /N identity
matrix T 5 by shifting each column s positions to the left. In the
other words, IR‘ =ZTandforl1 <s< N -1,

(" L
N If\]—.f O .

)-slope vector is a length-2» vector § such that each
, N — 1}. Now, consider an

A (m, N
component of S belongs to {0, 1, ...

n-vertex graph G on  edges and let ¢ denote proper or strong
edge coloring of G with 7 colors.

For the (m,IN)-slope vector S = (s1,%,...,%,), let
Ho(G, (m,N),8) be the binary (z+7#)N XmN matrix
obtained from Hy(G) by replacing the non-zero elements
in the j-th column, 1 < j <, from top to bottom in order
of placement, by permutation matrices I, I%~! and I'%,
tespectively. Clearly, Hy (G, (m,N),S) is the partity-check
matrix of a column-weight 3 QC-LDPC code, denoted by
Co(G, (m,N), 8), with design rate R = 1 — ”—*’

In [33], Kim et al. proved that the maximum achievable girth
of the QC-LDPC codes based on the mother matrix // with
g(H) 2 g is at least 3g. It is worth notice that the maximum
achievable girth means the maximum of the girth that can be
achieved from the QC-LDPC codes with mother matrix /.
Therefore, Co (G, (m, N), 5) can achieve girth 18 if ¢ is a proper
edge coloring of G and Cy (G, (m, IN), S) can achieve girth 24 if
¢ is a strong edge coloring and g(H,(G)) = 8. In the sequel, we
prove that if G is a triangle-free graph with a proper edge col-
oring p, then the constructed QC-LDPC code C, (G, (m, N), S)
has maximum achievable girth 20. Interestingly, the constructed
codes with girth 20 have smaller lengths rather than the QC-
LDPC codes with the same girths used by Bocharova [35]. To
determine the maximum achievable girth of C,(G, (m, N), S),
we need the following theorem.

Theotem 4 [33]. Let H be a binary matrix and let § be
the cass of QC-LDPC codes having H as the mother matrix. If
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&) 1= maxceg 4(C), then g(F) = 20, if H does not contain any
row-column permutation of the following matrices and also their transposes
(o(F) is the maximum achievable girth of the QC-LDPC codes with

mother matrix H):

11 1 111 1
11 1
Po=(, , )ne=| 0B =1 1 0 of,
10 1 00 1 1
111 0
111 0
P 11 0 1}2 broo
162 = S S Eal PR |
00 1 1
00 1 1
1110
. 100 1
2710 1 0 1
00 1 1

Theotem 5. Let G be an n-vertex graph and let p be a proper edge
coloring of G with t colors. If G is triangle-free, then the constructed
QC-LDPC codes with the mother matrix H (G have the maxinmm
achievable girth of at least 20.

Progf. Let g denote the maximum achievable girth of the QC-
LDPC codes with the base matrix H,(G). To show g > 20, by
Theotrem 4, it is sufficient to prove that H,(G) dose not contain
Pio, P, Pig.1, Pis2, Pis,1, Pisp nor their transposes. Since pis a
proper edge coloting of G'and H,(G) is free of 4-cycles, H ,(G)
cannot contain any row-column permutation of Py, Py, P15
Py 2, Pg and also their transposes.

On the other hand, H,(G) contains g ,, or PlYE;,Z’ if and only
if there exist some blocks By, By, B; and B, of B,(G) such that
By N B, N By = {i} for some »; € IV, and if By = {/, &, 4} then
{i, j} C By, {i, &} C By and {i, b} C B;.Now,ifi > nandi = n+
i (le. 7 is a color), then j, &,h < n (ie. v;, 1,1, correspond
to some vertices of G), because each of blocks By, B, and B;
contains exactly one element greater than 7 Thus, all elements
of By are less than 7+ 1, a contradiction. So, let 7 < 7. As, By
have one element greater than #,let j, & < mand h > n,h = n+
by (i-e. by is a color and v, 1 are vertices of G). Then, »;7; is an
edge of G with color 4;. This means that vertices 2;,7;, 7 form
a triangle in G, which is impossible. This contradiction shows
that g > 20 and this completes the proof. [l

In [30], the authors provided a deterministic algorithm gener-
ating all (7, IN)-slope vectors S, such that Co (G, (, N), §) has
girth at least 2g, ¢ > 3. Applying the proposed algorithm in [30],
for graphs Qs, Ks, Ky 4, G14(1,5,13), O4 and Gy(1, 5,17, 25)
with 7 = 12,15,16, 21, 32, 52 edges, respectively, and /N cho-
sen by a computer search, Tables 7 and 8 presents some
(m, N)-slope vectors § such that the corresponding codes
Co(G, (m,N),S) have girths g=8,10,12,14,16,18,20. As
shown in Table 2, in some cases, the constructed codes have
better lengths and minimum distances compared to the codes

QC-LDPC codes based on proper edge coloting of graph G having mother matrix H,(G).

TABLE 7

Girth Length Slope vector

Block size

Graph

Ky

0,0,0,0,0,0,0,0,0,1,3,7,16,30,40,87,0,106,67,219,294,550,684,1209,0,1327,320,2033,910,3373,3853,7290]

164128

20

10258

0,0,0,0,0,0,0,0,0,1,3,7,12,20,30,44,0,65,35,125,167,242,335,496,0,590,82,777,279,1161,1213,2077]

18 47840

2990

[0,0,0,0,0,0,0,0,0,1,3,7,9,19,21,32,0,17,9,45,55,105,92,174,0,135,30,141,84,306,303,497]

16 5

724

[0,0,0,0,0,0,0,0,0,1,2,4,3,7,10,15,0,17,3,22,26,37,51,8,0,27,9,67,28,102,127,157]

0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,0,8,2,6,6,11,21,27,0,22,19,18,7,16,19,7]

0,0,0,0,0,0,0,0,0,1,2,3,4,5,6,7,0,3,3,7,1,5,12,9,0,10,5,10,2,9,8,4]
0,0,0,0,0,0,0,0,0,1,0,1,0,2,0,2,0,1,2,2,2,1,1,2,0,1,1,1,2,2.2,1]

14 3504

219

480
224

12
10

30
14

48

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,7,9,27,22,61,26,102,68,194,56,310,396,0,454,528,599,1250,636,2061,881,3319,1172,4981,1479,7192

203910

9710 20

Ga(1,5,13)

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,5,7,20,9,45,12,75,24,128,19,194,197,0,202,230,256,535,218,805,215,1140,262,1592,309,2203)]

18 58191

2771

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,5,7,15,11,29,17,50,20,82,22,113,23,0,115,19,55,100,70,152,94,282,78,298,60,460]

16 14154

674

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,2,3,3,5,4,8,5,16,6,15,7,19,18,0,20,25,27,61,17,66,11,95,22,129,26,147]

675

32}

14

175

10,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,2,1,4,1,6,2,9,2,10,2,13,14,0,13,5,15,12,8,15,8,9,6,26,7,18]

651
336

12

31

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,2,1,4,1,6,1,8,1,10,1,12,2,1,2,0,3,7,2,12,3,8,2,13,3,6]

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1,2,0,2,0,2,0,1,2,1,2,1,2,1,2]

10

16

63
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TABLE 8 QC-LDPC codes based on strong edge coloring of graph G having mother matrix H (G).

Graph Block size Girth Length Slope vector

Gys(1,5,17,25) 6008 20 312416 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,2,0,0,0,1,0,1,0,2,0,
0,0,1,0,1,0,2,0,2,3,8,7,16,11,23,15,32,26,51,35,63,54,74,68,108,40,85,91,143,
113,132,106,176,57,170,177,362,256,505,278,584,388,811,513,1010,578,1219,
751,1482,857,1626,873,1850,1089,1990,542,1941,1033,2618,1428 3064]

1467 18 76284 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,2,0,0,0,1,0,1,0,2,0,
0,0,1,0,1,0,2,0,2,3,8,7,13,4,16,8,23,3,21,25,36,32,52,39,46,43,57,13,28,48,54,35,
56,39,73,39,118,108,224,127,233,135,252,155,321,138,282,237,427,245 469,
286,537,193,482,315,593,345,518,445,820]

325 16 16900 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,2,0,1,0,0,0,2,0,
1,0,0,0,2,0,1,0,3,0,3,2,10,4,15,0,5,4,14,1,15,9,20,17,23,6,19,18,8,15,21,7,25,20,
35,24,59,28,69,25,64,41,90,45,78,60,126,47,95,72,140,93,166,98,154,31,140,
65,148,26,133)

70 14 3640 10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,2,0,1,0,0,0,2,0,
1,0,0,0,2,0,1,0,3,0,3,0,6,1,4,1,5,0,9,1,5,1,6,9,12,4,8,3,10,5,11,4,11,9,6,8,20,13,27,
2,22,19,16,15,36,10,26,27,42,26,48,24,45,18,42,23,37,27,47,33,13]

16 12 832 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,
0,0,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,2,2.3,1,2,2,4,1,3.2,1,1,3,2.1,2,6,3,7,2,6,1,7,
6,12,1,9,2,7,1,8,2,5,3,8,15,7,12,6,2,12]

5 10 260 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,
0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,2,0,2,0,2,1,3,0,1,1,2,0,4,0,4,0,2,3,2,1,2,3.4.2,3,
43,1,4242.431333,1,2421]

10° - - ‘ 10° : :
—&— H,(K, )igirth=20 —&6— H,(Q,); girth=16
0l _ - & — H (K, )igith=16 | ol — & —H(Q,); ginth=14 I
oSk S —k— H(K, )igirth=12 —+x— H,(Q,); girth=12
102l — & — H (K, )igirth=8 ] ~ % — H,(Q,); gith=10
—O— QPEG(12x16) 107} Yk &— QPEG(20x32) i
s — © — Rand(63495x84660) — © — Rand(47400x75840)
107 length=84660 E length=75840
5 rate=0.25 T ool Rate=0.37 1
@ Q
107 4
N
4 N
107 N 4
¥
107} 4
107} 4
10°} J
107 - i i 107 i i i ;
0.5 1.5 25 35 45 0.5 1 1.5 2 25 3
Eb/NO (dB) Eb/NO (dB)
10° - . : - 10° - -
06— H(G,(1,5,17,25)) girth=18 : . —&— H/(Q,); girth=18
107k — & — H|(G,(15,17,25)),girth=16 | 107k - & —H/(Q); girth=16
—&— H(G,(1,5,17,25)),girth=14 —+k— H,(Q,); girth=14
107} — & — H(G,4(1,5,17,25))girth=12 |3 107k — % — H,(Q,); girth=12
©— QPEG(39x52) & QPEG(24x32)
107} —O— - Rand(57213x76284) E 107k — © — Rand(44280x59040)
length=76284 length=59040
T rate=0.25 [ Rate=0.25
o 10 q & 10 -
S
5 ¥ 5 K
10 L PPV - 10 E: H N |
N S
&\ S
10°F N E 10°k e E
\
107k * E 107 E
10’8 1 1 1 1 1 1 10‘8 1 1 1 1 1
0.5 1 1.5 2 25 3 3.5 4 0.5 1 1.5 2 25 3 35
Eb/NO (dB) Eb/NO (dB)

FIGURE 4  The BER performances of the constructed codes with different girths having mother matrices H,(G) and H,(G) with maximum iteration
number 20.
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constructed in [35]. For example, the length of the constructed
girth-20 QC-LDPC code with parity-check matrix H (K, 4) is
remarkably less than the length of girth-20 voltage graph based
QC-LDPC codes [35] with the same regularity.

7 | SIMULATION RESULTS

Using software available online [44], we have obtained simula-
tion results on additive white Gaussian noise (AWGN) channel
with BPSK modulation. The decoding algorithm is the sum-
product algorithm under the constraints of a maximum of 20
iterations. The random-like MacKay codes [3] constructed by
this software, have no 4-cycles in their Tanner graphs.

In Figure 4, we used QPEG (2 X /) to denote the QC-LDPC
code obtained by applying the algorithm presented in [30] to
a a X b base matrix generated by PEG having girth at least
6. In addition, Rand (a X b) denotes a random-like code repre-
sented by a 4 X b parity-check matrix with girth of at least 6
and column-weight three. Applying the presented algorithm in
[30] on the base matrices constructed by the proper edge col-
orings of Ky and O, and the strong edge colorings of O, and
Gy6(1,5,17,25) some QC-LDPC codes with girths 12, 14, 16,
18 are constructed. In this figure for a given graph G, H,(G)
and H(G) are used to denote the parity-check matrices of the
constructed codes based on proper edge coloring p and strong
edge coloring s of G.

For a fixed graph G, a performance comparison among the
constructed QC-LDPC codes with different girths and their
random-like counterparts and QPEG are given in Figure 4. The
figure confirms the superiority of the constructed codes having
large girth with respect to the random like codes and QPEG and
also that the girth has a ditect impact on the code performance.
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