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Abstract

A column-weight k LDPC code with the parity-check matrix H is called decomposable if
there exists a permutation 𝜋 on the rows of H , such that 𝜋(H ) can be decomposed into
k column-weight one matrix. In this paper, some variations of edge coloring of graphs are
used to construct some column-weight three decomposable LDPC codes with girths at
least six and eight. Applying the presented method on several known classes of bipartite
graphs, some classes of column-weight three decomposable LDPC codes are derived hav-
ing flexibility in length and rate. Interestingly, the constructed parity-check matrices based
on the proper edge coloring of graphs can be considered as the base matrix of some high
rate column-weight three quasi-cyclic (QC) LDPC codes with maximum-achievable girth
20. The paper also leads to a simple characterization of elementary trapping sets of the
decomposable codes based on the chromatic index of the corresponding normal graphs.
This characterization corresponds to a simple search algorithm finds all possible existing
elementary trapping sets in a girth-6 or girth-8 column-weight 3 LDPC code which are lay-
ered super set of a short cycle in the Tanner graph of the code. Simulation results indicate
that the QC-LDPC codes with large girths lifted from the constructed base matrices have
good performances over AWGN channel.

1 INTRODUCTION

Low-density parity-check (LDPC) codes were first introduced
by Gallager [1] in his thesis in 1961 and have emerged as
one of the top contenders for near-channel capacity error
correction. LDPC codes are being considered in numerous
applications including digital communication systems and mag-
netic recording channels [2]. Ever since their rediscovery, a great
deal of research effort has been expended in the design and
construction of these codes.

The design of LDPC codes can be categorized into two
types of methods called random-like methods and structured
methods. Although randomly constructed LDPC codes of large
length give excellent bit-error rate (BER) performance [3],
the memory required to specify the nonzero elements of a
random matrix can be a major challenge for hardware imple-
mentation. Structured LDPC codes can lead to much simpler
implementations, particularly for encoding.
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An LDPC code is described by its (sparse) parity-check
matrix [4]. Such a matrix can be efficiently represented by a
bipartite graph, called Tanner graph [5]. To each parity-check
matrix H of an LDPC code, the Tanner graph TG(H ) is assigned
which collects variable nodes and check nodes associated with
the rows and the columns of H , respectively, and each edge con-
nects a variable node to a check node if the intersection of the
corresponding row and column of H has a nonzero entry.

LDPC codes perform well with iterative decoding based on
belief propagation, such as the sum-product algorithm (SPA)
or the min-sum algorithm (MSA) [6]. However, with iterative
decoding, most LDPC codes have a common severe weakness,
known as the error-floor. The error-floor of an LDPC code is
characterized by the phenomenon that as the SNR continues
to increase, the error probability suddenly drops at a rate much
slower than that in the region of low to moderate SNR. The
error-floor may preclude LDPC codes from applications where
very low error rates are required, such as high-speed satellite
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communications, optical communications, hard-disk drives, and
flash memories. Ever since the phenomenon of the error-floors
of LDPC codes with iterative decoding became known [7], a
great deal of research efforts has been expended in finding its
causes and methods to resolve or mitigate the error-floor prob-
lem [7–13]. For the AWGN channel, the error-floor of an LDPC
code is mostly caused by an undesirable structure, known as
trapping sets, in the Tanner graph of the code. Extensive studies
and simulation results show that most trapping sets that cause
high error-floors of LDPC codes are trapping sets of small sizes.
While the knowledge of trapping sets is most helpful in the
design and analysis of LDPC codes, attaining such knowledge
is generally a hard problem. Much research has been devoted to
devising efficient search algorithms for finding small trapping
sets, (see [7–20]).

One of the important parameters affecting the performance
and determining the efficiency of iterative decoding algorithms
for LDPC codes is the girth which determines the number
of independent iterations [5]. It is well-known that the itera-
tive sum-product decoding algorithm converges to the optimal
solution provided that the Tanner graph of the code is free of
short cycles. The effect of cycles on the practical performance
of LDPC codes was demonstrated by simulation experiments
when LDPC codes were rediscovered by MacKay and Neal [21]
in the mid-1990’s and the beneficial effects of using graphs free
of short cycles were shown in [3]. Therefore, large girth Tan-
ner graphs lead an increase in the number of correlation-free
iterations and improve the convergence of the decoder. In addi-
tion, the performance in the error-floor region is predetermined
by the girth, because trapping sets contain cycles in the Tanner
graph [22], and so trapping sets containing short cycles are elim-
inated when the girth is increased. It is worth noting that the
lower bound on the sizes of the minimum trapping sets grows
exponentially with the girth for codes with column-weight at
least three (see [23]).

Tanner [5] showed that the code’s girth can be used as the
lower bound of the minimum distance dmin of the code. In fact,
Tanner determined a lower bound on the minimum distance
that grows exponentially with the girth of the code. Specifi-
cally, for any regular LDPC code with girth g and variable node
degree dv ,

dmin ≥

⎧⎪⎪⎨⎪⎪⎩

1 + dv

(∑⌊(g−2)∕4⌋
i=1 (dv − 1)i−1

)
if g∕2 is odd,

1 + dv

(∑⌊(g−2)∕4⌋
i=1 (dv − 1)i−1

)
if g∕2 is even.

+ (dv − 1)⌊g−2∕4⌋

Accordingly, the design of large-girth LDPC codes is of
great interest. Random and algebraic methods are two famous
approaches for the constructions of LDPC codes with large
girth. Among the random-like approaches, the progressive edge
growth (PEG) algorithm [24] builds a Tanner graph by connect-
ing the graph nodes edge-by-edge provided the added edge has
minimal impact on the girth of the graph. Except for the PEG
algorithm and its evolved construction algorithms, algebraic

structured constructions of large-girth LDPC codes have been
considered. Among the well-known structured LDPC codes,
finite geometry LDPC codes and LDPC codes constructed
from combinatorial designs [25–30] are adequate for high-rate
LDPC codes. The error-correcting performance of these LDPC
codes is verified under proper decoding algorithms but they
have severe restrictions on flexibly choosing the code rate and
length. Also, since finite geometry LDPC codes usually have
much redundancy and large weights in their parity-check matri-
ces, they are not suitable for a strictly power-constrained system
with iterative message-passing decoding.

In an effort toward the algebraic constructions of LDPC
codes, a quasi-cyclic (QC) LDPC code (see [4]) is getting
more attention due to its linear-time encodability and small
size of required memory. A QC-LDPC code can be viewed
as a protograph code [31] whose parity-check matrix contains
blocks of circulant matrices. Constructing families of QC-
LDPC codes with large girth has been investigated by several
authors (see [25–28, 32, 33]). For example, Steiner triple systems
(STS) [29] and voltage-graphs [34] were used to construct some
QC-LDPC codes with maximum girths 18 and 20, respectively.

The focus of the paper is on a class of LDPC codes called
decomposable codes. A column-weight k LDPC code with the
parity-check matrix H is called decomposable if there exists
a permutation on the rows of H , such that under this per-
mutation, H can be decomposed into k column-weight one
matrix. In this paper, some well-structured block designs are
presented whose incidence matrices can be considered as the
parity-check matrix of some column-weight three decompos-
able LDPC codes with girths 6 or 8. The approach is based on
the variations of edge coloring of graphs and the class of con-
structed LDPC codes has flexibility in code length and rate, as
shown by several examples (see sections 3 and 4). Interestingly,
in some cases, the constructed girth-6 LDPC codes have better
lengths and minimum distances compared to the constructed
girth-6 LDPC codes by Bocharava et al. [35]. In addition, it is
shown that the constructed parity-check matrices can be consid-
ered as the mother matrices of some QC-LDPC codes having a
maximum achievable girth 20 or 24. Moreover, trapping sets of
decomposable codes will be analyzed.

The outline of the paper is organized as follows. In Section 2,
we give the preliminaries and constructions and in Sections 3
and 4, we give some examples of the constructed decomposable
codes. In Section 5, the trapping sets of the decomposable codes
will be analyzed, and finally, in Sections 6 and 7, the QC-LDPC
codes based on the constructed codes are considered and some
performance comparisons are provided between the proposed
QC-LDPC codes with different girths.

2 PRELIMINARIES AND
CONSTRUCTIONS

Let v ≥ k ≥ 2 and 𝜆 ≥ 1 be given. In combinatorial math-
ematics [36], a (v, k, 𝜆)-packing is a pair (X ,), where X

is a v-set of elements (points) and  is a collection of k-
subsets of X (blocks), such that every 2-subset of points
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(d)(c)(b)(a)

FIGURE 1 (a), (b) Proper edge colorings of K5,5 and Q3, (c), (d) Strong edge colorings of Q4 and G14(1, 5, 13), respectively.

occurs in at most 𝜆 blocks of . A (v, k, 𝜆)-BIBD (Bal-
anced Incomplete Block Design) is a (v, k, 𝜆)-packing in which
every 2-subset of points occurs in exactly 𝜆 blocks of .
As in this paper, we just consider (v, 3, 1)-packings, for sim-
plicity, by a (v, l )-packing, we mean a (v, 3, 1)-packing with l

blocks. The incidence matrix of a (v, l )-packing is a v × l binary
matrix  = (hi j ) in which the rows and columns correspond
to the points and blocks, respectively, such that hi j = 1 if the
i-th point belongs to the j -th block and hi j = 0, otherwise.
For example, if b1 = {1, 2, 4}, b2 = {2, 3, 5}, b3 = {3, 4, 6}, b4 =
{4, 5, 7}, b5 = {1, 5, 6}, b6 = {2, 6, 7} and b7 = {1, 3, 7}, then  =
{b1, b2, … , b7} is a (7,7)-packing with the following incidence
matrix.

 =

b1 b2 b3 b4 b5 b6 b7⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 1

1 1 0 0 0 1 0

0 1 1 0 0 0 1

1 0 1 1 0 0 0

0 1 0 1 1 0 0

0 0 1 0 1 1 0

0 0 0 1 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
To go through the details of the construction, we need some
basic definitions from graph theory [37]. Let G = (V ,E ) be
a graph with vertex and edge sets V and E , respectively. The
degree of a vertex v ∈ V is the number of edges incident with v

and G is called k-regular if all vertices have degree k. The max-
imum degree of vertices of a graph G is denoted by Δ(G ),
or simply by Δ. Two vertices u and v are adjacent if there
is an edge between u and v. For a subgraph H of G and
v ∈ V (G ) ⧵V (H ), we use deg

H
(v) to denote the number of

vertices in H which are adjacent to v.
We say that vertex v and edge e are incident if v is an endpoint

of e. Also, two edges of G are incident if they have a vertex in
common. Two edges are of distance at most two if they either share
an endpoint or an endpoint of one is joined to an endpoint of
the other by an edge. A cycle in a graph G = (V ,E ) is a sequence
of connected vertices and edges in the graph which starts and
ends at the same vertex and contains each vertex no more than
once. The length of a cycle is the number of edges it contains and

the girth of a graph G = (V ,E ) is the length of the shortest
cycle in G .

A graph G is bipartite if the set of its vertices can be parti-
tioned into two disjoint sets V1 and V2 such that no two vertices
within either V1 or V2 are connected by an edge. A bipartite
graph G with partite sets V1 and V2 is denoted by G = (V1,V2).
A bipartite graph G = (V1,V2) is called complete bipartite graph if
there is an edge between each vertex of V1 and each vertex of
V2. A complete bipartite graph G = (V1,V2) with |V1| = n and|V2| = m is denoted by Kn,m . For example, K5,5 is depicted in
Figure 1a.

In graph theory, a proper edge coloring or briefly edge coloring [38]
of a graph is an assignment of colors to the edges of the graph
so that no two adjacent edges have the same color. For example,
a proper edge coloring of the Peterson graph with 4 colors is
depicted in Figure 2a. The minimum required number of colors
for the edge coloring of a given graph G is called the chromatic

index of G and denoted by 𝜒′(G ). By the Vizing’s theorem [39],
the number of colors needed to color the edges of a simple
graph is either its maximum degree Δ or Δ + 1. For bipartite
graphs, the number of colors is always Δ [38]. If G is a graph
with maximum degree Δ and 𝜒′(G ) = Δ, then G is called type
I graph and if 𝜒′(G ) = Δ + 1, then G is called type II graph.

Many variations of the edge coloring problem, in which an
assignment of colors to edges must satisfy other conditions
than non-adjacency, have been studied. One of these colorings
is the strong edge coloring of graphs [40]. A strong edge coloring

[38] assigns colors to edges such that every two edges of dis-
tance at most two have different colors. For example, a strong
edge coloring of the Peterson graph with 5 colors is depicted
in Figure 2b. The strong chromatic index, 𝜒′s (G ), is the minimum
number of colors in a strong edge coloring of G .

A low-density parity-check (LDPC) code is a linear block
code for which the parity-check matrix H contains only a few
1’s in comparison to the amount of 0’s. An LDPC code with
the parity-check matrix H is called r -row-regular (r -column-
regular) if each row (column) of H has weight r . An LDPC code
is known as a irregular code if its parity-check matrix is not row-
regular or column-regular. Also, by a ( j , k)-regular LDPC code
we mean a code whose parity-check matrix is k-row-regular and
j -column-regular. For an LDPC code with a h × n parity-check

matrix H , the code rate R is defined as 1 − h

n
(this assumes H is
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FIGURE 2 (a) Proper edge coloring, (b) strong edge coloring of the Peterson graph.

full rank) which is equal to 1 − j

k
, if H is ( j , k)-regular. The girth

of an LDPC code  with the parity-check matrix H , denoted
by g(H ) or g( ), is defined as the length of the shortest cycle in
TG(H ).

Let H = (hi, j )m×n be an arbitrary matrix and Sm denote the
set of all permutations on m points. For a permutation 𝜋 ∈ Sm ,
we use 𝜋(H ) to denote the matrix obtained from H by applying
the permutation 𝜋 on the rows of H , that is, 𝜋(H ) = (h𝜋(i ), j ).
Now, let H be the parity-check matrix of a column-weight c

LDPC code. We say that H is decomposable if and only if there
exists a permutation 𝜋 on the rows of H , such that 𝜋(H ) can
be decomposed into c column-weight 1 matrix H1, …, Hc , that

is, H =
⎛⎜⎜⎝
H1
⋮

Hc

⎞⎟⎟⎠. A column-weight c LDPC code with the parity-

check matrix H is called decomposable if H is decomposable.

Example 2.1. Consider a column-weight three LDPC code
with the following parity-check matrix.

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0 0 0 0

1 0 0 0 0 1 0 1 0 1 0 0

0 1 0 0 1 0 0 0 0 1 0 0

0 1 0 1 0 0 0 0 1 0 1 0

0 0 1 0 0 0 0 1 0 0 1 0

0 0 1 0 1 0 1 0 0 0 0 1

0 0 0 0 0 1 0 0 1 0 0 1

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Applying the permutation 𝜋 = (2 5 3)(4 6 7) ∈ S11 on the
rows of H , we have

𝜋(H ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 0 1 0 0 0 0 0

0 1 0 0 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 0 1 0 0 1

1 0 0 0 0 1 0 1 0 1 0 0

0 1 0 1 0 0 0 0 1 0 1 0

0 0 1 0 1 0 1 0 0 0 0 1

1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which shows that H is the parity-check matrix of a decompos-
able code.

Now, we go through the details of our method which con-
structs a girth-6 (girth-8) column-weight three LDPC code
from an arbitrary proper (strong) edge colored graph. For this
purpose, let G = (V ,E ) be a graph with V = {v1, v2, … , vn}
and let 𝜚 be an arbitrary edge coloring of G with t colors
1, 2, … , t . For each k, 1 ≤ k ≤ t , let Bk denote the family of
all triples {i, j , n + k}, where e = vi v j is an edge of G with
color k. For instance, for the Peterson graph in Figure 2a, we
have:

B1 = {{1, 2, 11}, {3, 4, 11}, {6, 10, 11}},
B2 = {{1, 5, 12}, {2, 3, 12}, {6, 7, 12}, {9, 10, 12}, {4, 8, 12}},
B3 = {{2, 7, 13}, {3, 10, 13}, {8, 9, 13}, {4, 5, 13}},
B4 = {{7, 8, 14}, {5, 6, 14}, {1, 9, 14}}.
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Set 𝜚(G ) =
⋃t

i=1 Bi . It is clear to see that 𝜚(G ) contains
n + t points {1, 2, … , n + t }, where {1, 2, … n} is the set of indices
of vertices of G and {n + 1, n + 2, … n + t } is the set of colors in
the edge coloring of G . In addition, each edge of G is contained
in exactly one block of 𝜚(G ) and 𝜚(G ) has m = |E (G )|
blocks and so 𝜚(G ) is a (n + t ,m)-packing. Let 𝜚(G ) denote
the (n + t ) × m incident matrix of 𝜚(G ). It is easy to see that
𝜚(G ) is the parity-check matrix of a column-weight 3 LDPC

code, with length m and rate  = 1 − n+t

m
. We denote by 𝜚(G )

the constructed column-weight 3 LDPC code with the parity-
check matrix 𝜚(G ) and we call it as the (G , 𝜚)-code. In the
rest (see Theorems 1 and 2), we prove that the girth of the con-
structed column-weight 3 LDPC code with parity-check matrix
𝜚(G ) is fully dependent on the type of the edge coloring 𝜚. It
is easy to see that 𝜚(G ) is the parity-check matrix of a decom-
posable code if and only if G is a bipartite graph. Hereafter, if
𝜚 is a proper (resp. strong) edge coloring of G , we use p(G )
(resp. s (G )) to denote the parity-check matrix 𝜚(G ).

3 LDPC CODES FROM PROPER EDGE
COLORED GRAPHS

In this section, we just concentrate on the proper edge color-
ing of simple graphs (graphs without loops and parallel edges)
and we examine the constructed codes by several examples.
First, for a given simple graph G , we prove that p(G ) is the

parity-check matrix of a 4-cycle free column-weight three LDPC
code.

Theorem 1. Let G be a simple graph with an arbitrary edge coloring

𝜚. Then 𝜚(G ) is free of 4-cycles if and only if 𝜚 is proper.

Proof. Let |V (G )| = n, |E (G )| = m and t be the number of
colors used in 𝜚. Since G is a simple graph, g(𝜚(G )) = 4 if
and only if there are blocks (triples) B,B′ ∈ B𝜚(G ) such that
B ∩ B′ = {i, n + k}, for some 1 ≤ i ≤ n and 1 ≤ k ≤ t . But this
is equivalent to the existence of two edges e and e′ having vertex
vi in common and both edges e and e′ have the same color k,
means that 𝜚 is not proper. Therefore, g(𝜚(G )) ≥ 6 if and only
if 𝜚 is a proper edge coloring. □

In the rest of this section, we examine the constructed codes
by several examples. As decomposable codes are considered in
this paper, we just consider bipartite graphs. In the following
examples, a graph G with a proper edge coloring p is presented
and then, this coloring is used to construct a column-weight
three LDPC code having parity-check matrix p(G ).

Example 3.1 (Complete bipartite graphs). Let l ≥ 4 and
Kl ,l be the complete bipartite graph with partite sets V1 =
{1, 3, … , 2l − 1} and V2 = {2, 4, … , 2l }. Coloring each edge
{2i − 1, 2 j }, 1 ≤ i, j ≤ l , by color 2( j − i ) + 1 (mod l ) yields
a proper edge coloring of Kl ,l with l colors. For example, for
l = 5 such a coloring is given in Figure 1a. Therefore, if p is
the mentioned edge coloring of Kl ,l , then p(Kl ,l ) is the parity-
check matrix of a girth-6 column-weight three LDPC code with

rate  = 1 − 3

l
+ 1

l 2
. For example, the code constructed based

on the proper edge coloring of K5,5 has the parity-check matrix
p(K5,5), rate 0.44 and length 25.

p(K5,5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Clearly  rapidly tends to 1 when n enlarges, as shown in
Table 1. Since the degree of each vertex in Kl ,l is l , p(Kl ,l )
is the parity-check matrix of a (3, l )-regular code. Compared
to the constructed girth-6 (3, l )-regular codes in [35], the con-
structed codes based on Kl ,l have smaller lengths for each
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588 RAEISI and GHOLAMI

TABLE 1 Codes based on the proper edge coloring of complete bipartite graphs and hypercubes with rate  and length n.

Complete bipartite
graph Kl ,l

l 3 4 5 6 7 8 9 10 11 12 13 14 16

n 9 16 25 36 49 64 81 100 121 144 169 196 256

 0.11 0.31 0.44 0.53 0.59 0.64 0.68 0.71 0.74 0.76 0.78 0.80 0.81

Hypercube graph Ql l 3 4 5 6 7 8 9 10 11 12 13 14 15

n 12 32 80 192 448 1024 2304 5120 11264 24576 53248 114688 245760

 0.17 0.41 0.55 0.64 0.70 0.74 0.77 0.80 0.82 0.83 0.85 0.86 0.87

TABLE 2 Constructed codes based on edge coloring of G having mother matrix 𝜚 (G ).

Parity-check matrix 𝝔(G) Regularity Girth Length Minimum distance QC

p(Kn,n )(n odd) n 6 n2 6(4, [35]) -

p(Kn,n )(n even) n 6 n2(n2 + n, [35]) 6(4, [35]) -

p(G14(1, 5, 13)) 3 6 21 6 -

p(G26(1, 5, 17, 25)) 4 6 52 10 -

s (Q4 ) 4 8 32(36, [35]) 6 -

s (G26(1, 5, 17, 25)) 4 8 52 12 -

s (G42(1, 11, 15, 35, 41)) 6 8 186 12 -

p(K4,4 ) 4 20 164128(1296000, [35]) - *

s (G26(1, 5, 17, 25)) 4 20 312416(1296000, [35]) - *

even l and have better minimum distances for each l (see
Table 2).

Example 3.2 (Hypercubes). The hypercube Ql is a graph whose
vertex set is all l -sequences x = x1x2 … xl with entries from
{0, 1}, and two vertices are adjacent if they differ in exactly one
coordinate. Clearly, Ql is a l -regular graph on 2l vertices. For
example, Q3 is denoted in Figure 1c. Now, color each edge
xy ∈ Ql by color i if x and y differs in the i-th coordinate,
1 ≤ i ≤ l . It is easy to see that this coloring is a proper color-
ing of Ql with l colors. For example, for l = 3 such a coloring
is given in Figure 1b. Therefore, if p is the above edge color-
ing of Ql , then the constructed code with parity-check matrix
p(Ql ) is a column-weight three LDPC code with girth 6 and

rate  = 1 − 2l +l

l 2l−1
= 1 − 2

l
− 1

2l−1
. For l = 3, p(Q3) is the

parity-check matrix of a code with rate 0.17 and length 12 with
the following parity-check matrix.

p(Q3) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0 0 0 0 0
0 0 0 1 0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 0 1 1
0 0 1 0 1 0 0 1 0 0 0 0
0 1 0 1 0 0 1 0 0 1 1 0
1 0 0 0 0 1 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since the degree of each vertex in Ql is l , p(Ql ) has 2l rows of
weight l and l rows of weight 2l−1. Therefore, the constructed
code with the parity-check matrix p(Ql ) is irregular.

4 LDPC CODES FROM STRONG EDGE
COLORED GRAPHS

In this section, the strong edge coloring of some known bipar-
tite graphs is used to construct some classes of column-weight
three decomposable LDPC codes with girth 8. First, we prove
thats (G ) is the parity-check matrix of a girth-8 column-weight
three LDPC code, provided that G is free of triangles.

Theorem 2. Let G be a triangle-free graph with an arbitrary edge

coloring 𝜚. Then g(𝜚(G )) ≥ 8 if and only if 𝜚 is a strong edge coloring.

Proof. Let t be the number of colors in the edge coloring 𝜚,|V (G )| = n, |E (G )| = m and B𝜚(G ) be the (n + t ,m)-packing
associated with 𝜚(G ). By Theorem 1, g(𝜚(G )) ≥ 4 if and
only if 𝜚 is proper. Since any strong edge coloring of G is a
proper edge coloring, it is sufficient to prove that 𝜚(G ) is free
of 6-cycles. Since G is triangle-free, 𝜚(G ) contains a 6-cycle
if and only if there are some distinct blocks B,B′,B′′ ∈ B𝜚(G )
such that for some vertices vi1

and vi2
, 1 ≤ i1 ≠ i2 ≤ n, and color

c = n + i3, 1 ≤ i3 ≤ t , we have B ∩ B′′ = {i1}, B′ ∩ B′′ = {i2}
and B ∩ B′ = {n + i3}. But, this means that vertices vi1

and vi2
are adjacent in G (via block B′′) and also edges e and e′ (differ-
ent from the edge vi1

vi2
) corresponding to the blocks B and B′

are incident with vertices vi1
and vi2

, respectively, such that both
e and e′ have the same color i3. Therefore, 𝜚(G ) is free of
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RAEISI and GHOLAMI 589

TABLE 3 Some odd transformation modular Golomb Ruler a′ with k marks modulo 2n [42, 43].

2n k a′ = (a′
1
, … , a′

k
)

26 4 (1,5,17,25)

42 5 (1,11,15,35,41)

62 6 (1,15,21,25,33,61)

96 7 (1,29,51,71,85,89,95)

114 8 (1,25,29,41,47,61,105,113)

146 9 (1,13,21,69,95,101,105,129,145)

182 10 (1,3,13,21,47,53,69,83,107,111)

240 11 (1,93,105,125,155,159,181,195,223,233,239)

266 12 (1,5,13,49,59,81,87,111,137,151,153,171)

336 13 (1,39,61,69,75,93,127,171,175,191,217,325,335)

366 14 (1,31,99,103,109,143,157,169,185,193,231,249,345,365)

510 15 (1,23,27,71,79,109,167,183,233,243,297,391,491,497,509)

510 16 (1,21,23,63,67,117,141,147,155,173,245,255,303,315,331,367)

546 17 (1,11,31,69,71,85,147,151,173,179,197,269,303,311,355,367,403)

614 18 (1,5,21,45,107,113,165,167,179,197,261,297,307,335,377,385,411,433)

720 19 (1,7,63,65,83,135,173,189,221,233,257,267,369,397,411,419,485,511,515)

762 20 (1,49,61,87,111,143,151,179,209,251,255,325,335,379,413,431,545,551,565,567)

6-cycles if and only if each two edges e and e′ with distance two
receive distinct colors, means that 𝜚 is a strong edge coloring.
This observation completes the proof of the theorem. □

Example 4.1 (Hypercubes). Let Ql be the hypercube graph
introduced in Example 3.2. It is proved [41] that a strong edge
coloring of Ql needs at most 2l colors. To see this, represent
a vertex x of Ql by a 0-1 vector v(x ) of length l and let Ei

be the set of all edges xy in which v(x ) and v(y) differ in the
i-th coordinate, 1 ≤ i ≤ l . A refinement Ei = E1

i ∪ E2
i of this

edge partition is obtained in the following way: an edge xy ∈ Ei

belongs to E
j

i , (1 ≤ i ≤ l , 1 ≤ j ≤ 2), if and only if the sum of
all coordinates of v(x ) (or v(y)) except for the i-th one, is con-
gruent to j (mod 2). Obviously, assigning color i × j to each
edge in E

j

i yields an strong edge coloring of Ql by 2l colors.
For example, for l = 4 such a coloring is given in Figure 1c. In
this figure, the 0-1 vector associated with each vertex vi is the
representation of i − 1 in base 2. Therefore, if s is the above
strong edge coloring of Ql , then s (Ql ) can be considered as
the parity-check matrix of a column-weight three LDPC code

with girth 8 and rate  = 1 − 2l +2l−1

l 2l−1
. For example, the code

with the parity-check matrix s (Q4) has rate 0.28 and length 32.
Clearly  rapidly tends to 1 when l enlarges. Since the degree

of each vertex in Ql is l , s (Ql ) have 2l rows of weight l and
2l rows of weight 2l−2. In particular, s (Q4) is a (3,4)-regular
code with length 32. Interestingly, the constructed code based
on s (Q4) has smaller length than the (3,4)-QC-LDPC codes
with girth 8 constructed in [35].

Example 4.2 (Graphs based on Golomb rulers). By a length-
k Modular Golomb Ruler modulo n [42], we mean a set of k

residues a1, a2, … , ak such that the differences ai − a j , i ≠ j , are
all distinct modulo n. Note that each pair generates two differ-
ences: ai − a j and a j − ai , which are both considered in modulo
n. For example {0, 2, 6} is a Modular Golomb ruler modulo
7. In [42], the author proved that the set a = {a1, a2, … , ak}
is a modular Golomb Ruler modulo n if and only if the odd
transformation a′ = {2a1 + 1, 2a2 + 1, … , 2ak + 1} is a modu-
lar Golomb Ruler modulo 2n. In [42, 43], the authors present
some odd transformation modular Golomb rulers modulo 2n,
shown in Table 3, and they used these odd transformation
modular Golomb rulers to construct some regular graphs with
girth 6, in the following sense. Let a = {a1, a2, … , ak} be a
modular Golomb Ruler modulo n and let a′ be the odd trans-
formation of a. Let G2n(a′ ) be the graph with vertex set V =
{1, 2, … , 2n} and edge set E = ∪k

i=1Bi , where Bi = {{2 j , 2 j + a′i
(mod 2n)} ∶ 1 ≤ j ≤ n}, 1 ≤ i ≤ k. It is proved [43] that if
a = {a1, a2, … , ak} is a modular Golomb Ruler modulo n with
odd transformation a′, then G2n(a′ ) is a k-regular bipartite
graph with girth 6. As an example, for modular Golomb Ruler
a = {0, 2, 6} with odd transformation a′ = {1, 5, 13}, G14(a′ ) is
a 3-regular graph with girth 6 on 14 vertices, as shown in
Figure 1d.

Now, one can easily check that coloring each edge {i, j } of
G2n(a′ ) by color i + j (mod n) gives a strong edge coloring of
G2n(a′ ) with n colors. As an example, a strong edge coloring
of G14(1, 5, 13) with 7 colors is shown in Figure 1d. There-
fore, if s is such a strong edge coloring of G14(1, 5, 13), then
Hs (G14(1, 5, 13)) is the parity-check matrix of a column-weight
three code with girth 8.

Therefore, if s is such a strong edge coloring of G2n(a′ ),
then s (G2n(a′ )) is the parity-check matrix of a girth-8 column-

weight three LDPC code having rate  = 1 − 3

k
, which tends
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590 RAEISI and GHOLAMI

TABLE 4 Codes based on the strong edge coloring of hypercube and Golomb ruler graphs with rate  and length n.

Hypercube graph Ql l 4 5 6 7 8 9 10 11 12 13 14 15

n 32 80 192 448 1024 2304 5120 11264 24576 53248 114688 245760

 0.28 0.49 0.61 0.69 0.74 0.77 0.80 0.82 0.83 0.85 0.86 0.87

l-Regular Golomb
ruler graph

l 3 4 5 6 7 8 9 10 11 12 13 15

n 21 52 105 186 336 456 657 910 1320 1596 2184 3825

 0.0 0.25 0.40 0.50 0.57 0.62 0.67 0.70 0.73 0.75 0.77 0.80

2v 4v
6v

1v 3v 5v

2v 4v
6v

1v 3v 5v
( )a ( )b

FIGURE 3 (a) A (6,6) trapping set and (b) its normal graph.

to 1 when k enlarges, as shown in Table 4. Note that
s (G2n(a′ )) can be considered as the parity-check matrix of a
(3, k)-regular code.

5 TRAPPING SETS OF
DECOMPOSABLE LDPC CODES

The aim of this section is to characterize and analyze the
trapping sets of decomposable LDPC codes. Let H be the
parity-check of an LDPC code  and G = TG (H ) be the Tan-
ner graph of  with vertex set V = V1 ∪V2, where V1 and V2
are the sets of variable nodes and check nodes of , respec-
tively. For a subset S of V1, let N (S ) be the check nodes in
V2 adjacent with some vertices in S and let G [S ] be the sub-
graph of G induced by the vertices of S , that is, the graph
containing nodes S ∪ N (S ) and edges {e = uv ∈ E (G ) ∶ u ∈
S , v ∈ N (S )}. Moreover, let No(S ) and Ne (S ) be the sets of
check nodes in N (S ) with odd and even degrees in G [S ], respec-
tively. By a (a, b)-trapping set in G , we mean a size-a subset S ⊆ V

such that |No(S )| = b. A (a, b)-trapping set S is called elementary

if all nodes in N (S ) have degrees one or two. Elementary trap-
ping sets (ETSs) are known to be the main cause of error floor
in LDPC coding schemes [18, 19].

An ETS S is called regular if the degree of all nodes of S

in G [S ] is the same. The normal graph of a regular (a, b)-ETS S

is a graph on a vertices and obtained by removing all degree-1
check nodes and their edges from G [S ], and by replacing each
degree-2 check node with an edge. In Figure 3, a (6,6)-trapping
set and its associated normal graph is presented. Here, we use
the notation 𝜏 to denote the set of all trapping sets S in a Tanner
graph G whose induced subgraph G [S ] is connected and for
which every node v ∈ S is connected to at least two nodes in
Ne (S ), that is, the degree of each vertex in the normal graph of
G is at least two.

Definition 5.1. Let S and S ′ be two ETS in 𝜏 of size 𝛼 and
𝛼′, respectively, such that S ⊆ S ′ and 𝛼 < 𝛼′. We say that S ′

is a layered superset (LSS) of S if there exists a nested sequence
of ETSs S = S (0) ⊂ S (1) ⊂ … ⊂ S (𝛼′−𝛼) = S ′, such that S (i ) ∈ 𝜏
has size 𝛼 + i, for i = 0, … , 𝛼′ − 𝛼.

Example 5.2. The (6,6)-trapping set S ′ = {v1, … , v6} in
Figure 3 is an LSS of S = {v3, v4, v5, v6}, because of the existence
of the following nested LSS in 𝜏:

S = S (0) ⊂ S (1) = {v1, v3, v4, v5, v6} ⊂ S (2) = S ′.

However, S ′ can’t be considered as an LSS of S ′′ = {v1, v2, v3},
because for i = 5, 6, S ′′ ∪ {vi} ∉ 𝜏. Moreover, S (1) = S ′′ ∪
{v4} ∈ 𝜏, but S (1) ∪ {vi} ∉ 𝜏, for i = 5, 6.

Definition 5.3. Let G be the given graph and H be a proper
subgraph of G with |V (H )| ≥ 2. We say G is H -generate of
order t if the vertices of V (G ) ⧵V (H ) can be ordered as
u1, u2, … , ut , such that if H1 = H and Hi (i ≥ 2) is the subgraph
of G induced by V (H ) ∪ {u1, … , ui−1}, then deg

Hi
(ui ) ≥ 2, for

each i, 1 ≤ i ≤ t . In fact, G can be constructed from H by
adding vertices u1, u2, … , ut sequentially such that each vertex
ui has at least two endpoints belong to the earlier subgraph
spanned by V (H ) ∪ {u1, … , ui−1}.

Example 5.4. Let G be the graph shown in Figure 3b
and let H = G [v3, v4, v5, v6] be the subgraph of G induced
by the vertices v3, v4, v5, v6. Clearly G is a H -generate graph,
because G can be constructed from H by adding vertex v1
to H1 = H and then v2 to H2 = H1[v1] such that deg

H1
(v1) =

2 and deg
H2

(v2) = 3. However, G is not a H -generate for
H = G [v1, v2, v3], because in any ordering of the remaining
vertices v4, v5, v6, some conditions of Definition 5.3 are not sat-
isfied. For example, deg

H
(v4) = 3 but deg

H [v4](vi ) = 1 < 2, for
i = 5, 6.

The layered superset relationship between an ETS and gen-
erated subgraphs is essential to the rest of the paper. Therefore,
in the following proposition, we give a characterization for the
elementary trapping sets and generate normal graphs.

Proposition 5.5. Let S ′ and S , S ⊆ S ′, be two ETS in 𝜏 with normal

graphs H ′ and H , respectively. Then S ′ is an LSS of S if and only if H ′

is a H -generate graph.
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RAEISI and GHOLAMI 591

Proof. Let S ′ be an LSS of S with the corresponding chain S =
S (0) ⊂ S (1) ⊂ … ⊂ S (𝛼′−𝛼) = S ′ and S (i )∕S (i−1) = {ui}. Since
S (i ) ∈ 𝜏, there are at least two elements x, y ∈ Ne (S

(i ) ) adjacent
to ui . Then deg

S (i ) (x ) = deg
S (i ) (y) = 2 and so there exist two ele-

ments x′, y′ ∈ S (i−1) adjacent to x, y, respectively. Hence, x′, y′

are the neighbors of ui in the normal graph of H ′[S (i )], which
plays the same role as Hi in the definition of the H -generate
graph. □

Now, in the following theorem, we give a characterization for
the Elementary trapping sets of a decomposable code based on
the chromatic index of the corresponding normal graph.

Theorem 3. Let G be a simple graph with maximum degree k, k ≥ 3.

If G is a normal graph of an ETS of a 4-cycle free decomposable column-

weight k LDPC code, then 𝜒′(G ) = k.

Proof. Since the parity-check matrix is decomposed by k binary
matrix H1,H2, … ,Hk with column-weight 1, we can label all
check nodes in Hi by color i. Thus, all check nodes are labeled
by k colors. Now, we consider the same labeling in an ETS
which means that all check nodes in an ETS are labeled by k

colors. According to the definition of a decomposable LDPC
code, it is easy to prove that there are no two check nodes with
one variable node connected to those check nodes that have the
same label. Through constructing a normal graph from an ETS,
all 1-degree check nodes are removed and each 2-degree check
node is replaced by an edge. Now, to color the edges of the nor-
mal graph, it is sufficient to consider the same labeling we have
for check nodes. The label of each 2-degree check node is given
to its corresponding edge in the normal graph. Therefore, the
normal graph has a k-edge coloring which is proper because
the girth of the Tanner graph is at least 6. Thus, the chromatic
number is k. □

Gallager Codes [1] and LDPC Codes constructed in Sec-
tions 3 and 4 are some classes of 4-cycle free decomposable
codes and the Elementary trapping sets of such codes can be
completely determined by Theorem 1.

Consider the case where an ETS S of size a is an LSS of an
ETS S ′ of size a′. Clearly, starting from S ′, the successive appli-
cation of Proposition 5.5 will result in finding all ETSs which are
layered supersets of S ′. In the rest of the paper, we investigate
the structures of all ETSs in column-weight three LDPC codes
with girth values 6 and 8 and then, we study all non-isomorphic
structures of different classes of (a, b)-ETSs. In Algorithm 1,
for each class of ETSs with given values of a and b, we first
find all non-isomorphic structures and then examine each of
these structures to find out whether the structure is an LSS of
any of its cycles. In this algorithm, for given even integer g, and
positive integer amax with g < amax, all l -cycles, that is, cycles of
length l with their chords, will be generated in l and then l

is used to construct all l -generate graphs with at most amax
vertices having girth at least g. Then, the non-isomorph rela-
tion between the constructed graphs is checked and finally, the
algorithm returns the number of all non-isomorphic (a, b)-ETS

ALGORITHM 1 Non-isomorphic Class I and Class II ETSs which are
LSS of a Cycle.

Require: Let g be even and amax be an integer with g < amax;

1 ← ∅.

for l from g to amax do

Let l be the set of all l -cycles with girth at least g and Tl ← ∅.

for i from 0 to amax − l do

Tl ← {l -generate graphs of order i} ∪ Tl ;

end for

if l = g then

 ← Tl ;

else

1 ← 1 ∪ Tl−1 and  ← Tl ⧵ 1;

end if

for l from g to amax do

for t from 0 to l do

f1(l , t ) ← 0 and f2(l , t ) ← 0;

end for

end for

for all G ∈ 

a ← |V (G )| and b ← 3a − 2|E (G )|;
if 𝜒′(G ) = Δ(G ) then

f1(a, b) ← f1(a, b) + 1;

else

f2(a, b) ← f2(a, b) + 1;

end if

for l from g to amax do

for t from 0 to l do

if f1(l , t ) > 0 then

The number of [l , t ] ETS of Class I is f1(l , t );

end if

if f2(l , t ) > 0 then

The number of [l , t ] ETS of Class II is f2(l , t );

end if

end for

end for

end for

which are LSS of an l -cycle. The algorithm also return the num-
ber of all type I and type II (a, b)-ETSs. For each value of a, we
mostly consider the values of b which satisfy b∕a ≤ 1. Having
applied Algorithm 1, the results for column-weight three LDPC
codes with girth values 6 and 8 are reported in Tables 5 and 6.
For column-weight three LDPC codes with girths 6 and 8, the
multiplicity of non-isomorphic structures are also listed in these
tables, for different classes of ETSs. In these tables, [a, b]st is used
to denote a (a, b)-ETS such that t is the number of all (a, b)-
ETSs and s is the number of (a, b)-ETSs whose normal graphs
having chromatic index 4. For a given (a, b), if all (a, b)-ETSs
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592 RAEISI and GHOLAMI

TABLE 5 All non-isomorphic [a, b] ETS for girth-6 column-weight 3 LDPC codes which are LSS of an L-cycle.

L [a, b] Total Type II

6 [3, 3]1, [4, 0]1, [4, 2]1, [5, 1]11 4 1

8 [4, 4]1, [5, 3]2, [6, 0]2, [6, 2]3, [7, 1]33 11 3

10 [5, 5]1, [6, 2]1, [6, 4]2, [7, 1]11, [7, 3]6, [8, 0]3, [8, 2]9, [9, 1]99 32 10

12 [6, 4]1, [6, 6]1, [7, 3]3, [7, 5]3, [8, 0]2, [8, 2]7, [8, 4]12, [9, 1]77, [9, 3]131, [10, 0]112, [10, 2]150, [11, 1]50
50 188 60

14 [7, 5]1, [7, 7]1, [8, 2]1, [8, 4]6, [8, 6]3, [9, 1]22, [9, 3]18, [9, 5]19, [10, 0]5, [10, 2]34, [10, 4]75, [11, 1]35
35,

[11, 3]3210, [12, 0]143, [12, 2]4347, [13, 1]346
346

1145 391

16 [8, 8]1, [9, 3]4, [9, 5]13, [9, 7]4, [10, 0]1, [10, 2]15, [10, 4]57, [10, 6]31, [11, 1]16
16, [11, 3]136, [11, 5]172,

[12, 0]27, [12, 2]1249, [12, 4]1710, [13, 1]256
256, [13, 3]18

1957, [14, 0]4271, [14, 2]26
3297, [15, 1]3273

3273

10489 3595

TABLE 6 All non-isomorphic [a, b] ETS for girth-8 column-weight 3 LDPC codes which are LSS of an L-cycle.

L [a, b] Total Type II

8 [5, 3]1, [6, 0]1, [6, 2]1, [7, 1]11 5 1

10 [6, 4]1, [7, 3]2, [8, 0]1, [8, 2]3, [9, 1]33 11 3

12 [7, 3]1, [7, 5]2, [8, 0]1, [8, 2]2, [8, 4]6, [9, 1]11, [9, 3]113, [10, 0]15, [10, 2]119, [11, 1]19
19 71 23

14 [8, 4]2, [8, 6]2, [9, 3]4, [9, 5]10, [10, 0]1, [10, 2]7, [10, 4]34, [11, 1]44, [11, 3]185, [12, 0]16, [12, 2]1127,

[13, 1]127
127

420 133

16 [9, 5]7, [9, 7]3, [10, 2]2, [10, 4]21, [10, 6]19, [11, 3]29, [11, 5]88, [12, 0]6, [12, 2]147, [12, 4]1324, [13, 1]30
30,

[13, 3]5792, [14, 0]192, [14, 2]61204, [15, 1]1204
1204

3869 1248

18 [10, 4]4, [10, 6]14, [0, 8]3, [11, 3]6, [11, 5]9, [11, 7]27, [12, 2]11, [12, 4]145, [12, 6]182, [13, 1]44, [13, 3]2230,

[13, 5]1981, [14, 0]14, [14, 2]2323, [14, 4]43611, [15, 1]212
212, [15, 3]21

8948, [16, 0]2668, [16, 2]31
13663, [17, 1]3663

13663

42719 3942

have chromatic index 3, we just write [a, b]t . For example, in the
first row of Table 5, [4, 2]1 means that there is just one (4,2)-
ETS whose normal graph has a chromatic index 3 and [5, 1]11
means that there is just one (5,1)-ETS whose normal graph has
a chromatic index 4. In these tables, by type II we mean an ETS
whose normal graph has chromatic index 4. Note that by The-
orem 3, a (a, b)-ETS of Type II is avoidable in a decomposable
LDPC code.

6 QC-LDPC CODES WITH GIRTHS 20
AND 24

In this section, we prove that the parity-check matrices of the
constructed column-weight 3 LDPC codes can be considered
as the mother matrix of some column-weight three QC-LDPC
code with girth at most 20 or 24, depending on G and edge
coloring 𝜚 of G .

For given positive integers s and N , 0 ≤ s ≤ N − 1, we use
s

N
to denote the N × N matrix obtained from N × N identity

matrix N by shifting each column s positions to the left. In the
other words, 0

N
=  and for 1 ≤ s ≤ N − 1,

s
N

=
(

0 s

N−s 0

)
.

A (m,N )-slope vector is a length-2m vector S such that each
component of S belongs to {0, 1, … ,N − 1}. Now, consider an

n-vertex graph G on m edges and let 𝜚 denote proper or strong
edge coloring of G with t colors.

For the (m,N )-slope vector S = (s1, s2, … , s2m ), let
𝜚(G , (m,N ), S ) be the binary (n + t )N × mN matrix
obtained from 𝜚(G ) by replacing the non-zero elements
in the j -th column, 1 ≤ j ≤ m, from top to bottom in order
of placement, by permutation matrices , 

s2 j−1 and 
s2 j ,

respectively. Clearly, 𝜚(G , (m,N ), S ) is the parity-check
matrix of a column-weight 3 QC-LDPC code, denoted by
𝜚(G , (m,N ), S ), with design rate  = 1 − n+t

m
.

In [33], Kim et al. proved that the maximum achievable girth
of the QC-LDPC codes based on the mother matrix H with
g(H ) ≥ g, is at least 3g. It is worth notice that the maximum
achievable girth means the maximum of the girth that can be
achieved from the QC-LDPC codes with mother matrix H .
Therefore, 𝜚(G , (m,N ), S ) can achieve girth 18 if 𝜚 is a proper
edge coloring of G and 𝜚(G , (m,N ), S ) can achieve girth 24 if
𝜚 is a strong edge coloring and g(𝜚(G )) ≥ 8. In the sequel, we
prove that if G is a triangle-free graph with a proper edge col-
oring p, then the constructed QC-LDPC code p(G , (m,N ), S )
has maximum achievable girth 20. Interestingly, the constructed
codes with girth 20 have smaller lengths rather than the QC-
LDPC codes with the same girths used by Bocharova [35]. To
determine the maximum achievable girth of p(G , (m,N ), S ),
we need the following theorem.

Theorem 4 [33]. Let H be a binary matrix and let 𝔉 be

the class of QC-LDPC codes having H as the mother matrix. If
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g(𝔉) ∶= max∈𝔉 g( ), then g(𝔉) ≥ 20, if H does not contain any

row-column permutation of the following matrices and also their transposes

(g(𝔉) is the maximum achievable girth of the QC-LDPC codes with

mother matrix H):

P12 =
(

1 1 1

1 1 1

)
, P14 =

⎛⎜⎜⎜⎝
1 1 1

1 1 0

1 0 1

⎞⎟⎟⎟⎠
, P16,1 =

⎛⎜⎜⎜⎝
1 1 1 1

1 1 0 0

0 0 1 1

⎞⎟⎟⎟⎠
,

P16,2 =
⎛⎜⎜⎜⎝
1 1 1 0

1 1 0 1

0 0 1 1

⎞⎟⎟⎟⎠
, P18,1 =

⎛⎜⎜⎜⎜⎝

1 1 1 0

1 1 0 0

1 0 0 1

0 0 1 1

⎞⎟⎟⎟⎟⎠
,

P18,2 =

⎛⎜⎜⎜⎜⎝

1 1 1 0

1 0 0 1

0 1 0 1

0 0 1 1

⎞⎟⎟⎟⎟⎠
Theorem 5. Let G be an n-vertex graph and let p be a proper edge

coloring of G with t colors. If G is triangle-free, then the constructed

QC-LDPC codes with the mother matrix p(G ) have the maximum

achievable girth of at least 20.

Proof. Let g denote the maximum achievable girth of the QC-
LDPC codes with the base matrix p(G ). To show g ≥ 20, by
Theorem 4, it is sufficient to prove that p(G ) dose not contain
P12, P14, P16,1, P16,2, P18,1, P18,2 nor their transposes. Since p is a
proper edge coloring of G and p(G ) is free of 4-cycles, p(G )
cannot contain any row-column permutation of P12, P14, P16,1,
P16,2, P18,1 and also their transposes.

On the other hand, p(G ) contains P18,2, or PT
18,2, if and only

if there exist some blocks B1, B2, B3 and B4 of p(G ) such that
B1 ∩ B2 ∩ B3 = {i} for some vi ∈ V , and if B4 = { j , k, h} then
{i, j } ⊂ B1, {i, k} ⊂ B2 and {i, h} ⊂ B3. Now, if i > n and i = n +
i1 (i.e. i1 is a color), then j , k, h ≤ n (i.e. v j , vk, vh correspond
to some vertices of G ), because each of blocks B1,B2 and B3
contains exactly one element greater than n. Thus, all elements
of B4 are less than n + 1, a contradiction. So, let i ≤ n. As, B4
have one element greater than n, let j , k ≤ n and h > n, h = n +
h1 (i.e. h1 is a color and v j , vk are vertices of G ). Then, v j vk is an
edge of G with color h1. This means that vertices vi , v j , vk form
a triangle in G , which is impossible. This contradiction shows
that g ≥ 20 and this completes the proof. □

In [30], the authors provided a deterministic algorithm gener-
ating all (m,N )-slope vectors S , such that 𝜚(G , (m,N ), S ) has
girth at least 2g, g ≥ 3. Applying the proposed algorithm in [30],
for graphs Q3, K6, K4,4, G14(1, 5, 13), Q4 and G26(1, 5, 17, 25)
with m = 12, 15, 16, 21, 32, 52 edges, respectively, and N cho-
sen by a computer search, Tables 7 and 8 presents some
(m,N )-slope vectors S such that the corresponding codes
𝜚(G , (m,N ), S ) have girths g = 8, 10, 12, 14, 16, 18, 20. As
shown in Table 2, in some cases, the constructed codes have
better lengths and minimum distances compared to the codes T
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TABLE 8 QC-LDPC codes based on strong edge coloring of graph G having mother matrix s (G ).

Graph Block size Girth Length Slope vector

G26(1, 5, 17, 25) 6008 20 312416 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,2,0,0,0,1,0,1,0,2,0,
0,0,1,0,1,0,2,0,2,3,8,7,16,11,23,15,32,26,51,35,63,54,74,68,108,40,85,91,143,
113,132,106,176,57,170,177,362,256,505,278,584,388,811,513,1010,578,1219,
751,1482,857,1626,873,1850,1089,1990,542,1941,1033,2618,1428,3064]

1467 18 76284 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,2,0,0,0,1,0,1,0,2,0,
0,0,1,0,1,0,2,0,2,3,8,7,13,4,16,8,23,3,21,25,36,32,52,39,46,43,57,13,28,48,54,35,
56,39,73,39,118,108,224,127,233,135,252,155,321,138,282,237,427,245,469,
286,537,193,482,315,593,345,518,445,820]

325 16 16900 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,2,0,1,0,0,0,2,0,
1,0,0,0,2,0,1,0,3,0,3,2,10,4,15,0,5,4,14,1,15,9,20,17,23,6,19,18,8,15,21,7,25,20,
35,24,59,28,69,25,64,41,90,45,78,60,126,47,95,72,140,93,166,98,154,31,140,
65,148,26,133]

70 14 3640 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,2,0,1,0,0,0,2,0,
1,0,0,0,2,0,1,0,3,0,3,0,6,1,4,1,5,0,9,1,5,1,6,9,12,4,8,3,10,5,11,4,11,9,6,8,20,13,27,
2,22,19,16,15,36,10,26,27,42,26,48,24,45,18,42,23,37,27,47,33,13]

16 12 832 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,
0,0,1,0,0,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,2,2,3,1,2,2,4,1,3,2,1,1,3,2,1,2,6,3,7,2,6,1,7,
6,12,1,9,2,7,1,8,2,5,3,8,15,7,12,6,2,12]

5 10 260 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,
0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,2,0,2,0,2,1,3,0,1,1,2,0,4,0,4,0,2,3,2,1,2,3,4,2,3,
4,3,1,4,2,4,2,4,3,1,3,3,3,1,2,4,2,1]
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FIGURE 4 The BER performances of the constructed codes with different girths having mother matrices p(G ) and s (G ) with maximum iteration
number 20.
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constructed in [35]. For example, the length of the constructed
girth-20 QC-LDPC code with parity-check matrix p(K4,4) is
remarkably less than the length of girth-20 voltage graph based
QC-LDPC codes [35] with the same regularity.

7 SIMULATION RESULTS

Using software available online [44], we have obtained simula-
tion results on additive white Gaussian noise (AWGN) channel
with BPSK modulation. The decoding algorithm is the sum-
product algorithm under the constraints of a maximum of 20
iterations. The random-like MacKay codes [3] constructed by
this software, have no 4-cycles in their Tanner graphs.

In Figure 4, we used QPEG (a × b) to denote the QC-LDPC
code obtained by applying the algorithm presented in [30] to
a a × b base matrix generated by PEG having girth at least
6. In addition, Rand (a × b) denotes a random-like code repre-
sented by a a × b parity-check matrix with girth of at least 6
and column-weight three. Applying the presented algorithm in
[30] on the base matrices constructed by the proper edge col-
orings of K6 and Q4 and the strong edge colorings of Q4 and
G26(1, 5, 17, 25) some QC-LDPC codes with girths 12, 14, 16,
18 are constructed. In this figure for a given graph G , p(G )
and s (G ) are used to denote the parity-check matrices of the
constructed codes based on proper edge coloring p and strong
edge coloring s of G .

For a fixed graph G , a performance comparison among the
constructed QC-LDPC codes with different girths and their
random-like counterparts and QPEG are given in Figure 4. The
figure confirms the superiority of the constructed codes having
large girth with respect to the random like codes and QPEG and
also that the girth has a direct impact on the code performance.
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