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Abstract—Recent studies show that the fast growing expansion
of wind power generation may lead to extremely high levels of
price volatility in wholesale electricity markets. Storage technolo-
gies, regardless of their specific forms, e.g. pump-storage hydro,
large-scale or distributed batteries, are capable of alleviating the
extreme price volatility levels due to their energy usage time
shifting, fast-ramping and price arbitrage capabilities. In this
paper, we propose a stochastic bi-level optimization model to
find the optimal nodal storage capacities required to achieve
a certain price volatility level in a highly volatile energy-only
electricity market. The decision on storage capacities is made in
the upper level problem and the operation of strategic/regulated
generation, storage and transmission players is modeled in the
lower level problem using an extended stochastic (Bayesian)
Cournot-based game. The South Australia (SA) electricity market,
which has recently experienced high levels of price volatility, and
a 30-bus IEEE system are considered as the case studies. Our
numerical results indicate that 50% price volatility reduction in
SA electricity market can be achieved by installing either 430
MWh regulated storage or 530 MWh strategic storage. In other
words, regulated storage firms are more efficient in reducing the
price volatility than strategic storage firms.

Index Terms—Price volatility, Electricity market, Bi-level op-
timization model, Storage technologies, Strategic and regulated
firms.

I. INTRODUCTION

A. Impotance of price volatility problem and storage allocation

A high level of intermittent wind generation may result
in frequent high prices and high levels of price volatility in
electricity markets [1]–[3]. High levels of price volatility in a
market refers to a situation in which the market price varies in a
wide range. For example, one hundred hours with highest levels
of electricity prices resulted in 21% of the annual monetary
market share in 2015 in South Australia, which is a highly
price volatile region in Australia’s National Electricity Market
(NEM) [4]. Price volatility makes the task of price prediction
highly uncertain, which consequently imposes large financial
risks on the market participants.

In the long term, extreme levels of price volatility can lead
to undesirable consequences such as bankruptcy of retailers
[5] and market suspension. In a highly volatile electricity
market, the participants, such as generators, utility companies
and large industrial consumers, are exposed to a high level of
financial risk as well as costly risk management strategies [6].
In some electricity markets, such as the NEM, the market is

A. Masoumzadeh and T. Alpcan are with the Department of Electrical
& Electronic Engineering, University of Melbourne, Australia, E. Nekouei
is with KTH Royal Institute of Technology, Sweden, and D. Chattopad-
hyay is with the Power System Planning Group of World bank in Wash-
ington DC. E-mails: amin.masoumzadeh@unimelb.edu.au, nekouei@kth.se,
tansu.alpcan@unimelb.edu.au, dchattopadhyay@worldbank.org

suspended if the sum of spot prices over a certain period of
time is more than cumulative price threshold (CPT). A highly
volatile market is subject to frequent CPT breaches due to the
low conventional capacity and high level of wind variability.
Storage solutions with price arbitrage capabilities can resolve
the problem of high electricity prices and consequently prevent
high levels of price volatility. We note that recently a large scale
storage installation has been announced in South Australia for
resolving the price volatility problem.

Using a proper storage allocation framework, the policy
makers and market/system operators can compute the required
nodal storage capacities for managing the price volatility level
in electricity markets. Although the current cost of storage
systems is relatively high, the support from governments (in the
form of subsidies) and the eventual decline of the technology
cost can lead to large scale integration of storage systems in
electricity markets.

B. Related Works

The problem of optimal storage operation or storage allo-
cation for facilitating the integration of intermittent renewable
energy generators in electricity networks has been studied in
[7]–[14], with total cost minimization objective functions, and
in [15]–[20], with profit maximization goals. However, the
price volatility management problem using optimal storage
allocation has not been investigated in the literature.

The operation of a storage system is optimized, by mini-
mizing the total operation costs in the network, to facilitate
the integration of intermittent renewable resources in power
systems in [7]. Minimum (operational/installation) cost storage
allocation problem for renewable integrated power systems is
studied in [8]–[10] under deterministic wind models, and in
[11] under a stochastic wind model. The minimum-cost storage
allocation problem is studied in a bi-level problem in [12],
[13], with the upper and lower levels optimizing the allocation
and the operation, respectively. The paper [14] investigates the
optimal sizing, siting, and operation strategies for a storage
system to be installed in a distribution company controlled
area. We note that these works only study the minimum cost
storage allocation or operation problems, and do not investigate
the interplay between the storage firms and other participants
in the market.

The paper [15] studies the optimal operation of a storage
unit, with a given capacity, which aims to maximize its profit
in the market from energy arbitrage and provision of regulation
and frequency response services. The paper [16] computes the
optimal supply and demand bids of a storage unit so as to
maximize the storage’s profit from energy arbitrage in the
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day-ahead and the next 24 hour-ahead markets. The paper
[17] investigates the profit maximization problem for a group
of independently-operated investor-owned storage units which
offer both energy and reserve in both day-ahead and hour-ahead
markets. In these works, the storage is modeled as a price taker
firm due to its small capacity.

The operation of a price maker storage device is optimized
using a bi-level stochastic optimization model, with the lower
level clearing the market and the upper level maximizing the
storage profit by bidding on price and charge/discharge in
[18]. The storage size in addition to its operation is optimized
in the upper level problem in [19] when the lower level
problem clears the market. Note that the price bids of market
participants other than the storage firm are treated exogenously
in these models. The paper [20] also maximizes the day-ahead
profit of a load serving entity which owns large-scale storage
capacity, assuming the price bids in the wholesale market as
exogenous parameters.

The paper [21] maximizes a large-scale energy storage
system’s profit considering the storage as the only strategic
player in the market. Using Cournot-based electricity market
models, the generation and storage firms are considered as
strategic players in [22], [23]. However, they do not study
storage sizing problem and the effect of intermittent renewables
on the market. Therefore, to the best of our knowledge, the
problem of finding optimal storage capacity subject to a price
volatility management target in electricity markets has not been
addressed before.

C. Contributions

The current paper proposes a stochastic optimization frame-
work for finding the required nodal storage capacities in elec-
tricity markets with high levels of wind penetration such that
the price volatility in the market is kept below a certain level.
The contributions of this paper are summarized as follows:

1) A bi-level optimization model is proposed to find the
optimal nodal storage capacities required for avoiding
the extreme price volatility levels in a nodal electricity
market.

2) In the upper level problem, the total storage capacity is
minimized subject to a price volatility target constraint
in each node and at each time.

3) In the lower level problem, the non-cooperative interac-
tion between generation, transmission and storage play-
ers in the market is modeled as a stochastic (Bayesian)
Cournot-based game with an exponential inverse demand
function. Note that the equilibrium prices at the lower
level problem are functions of the storage capacities. The
operation of storage devices at the lower level problem
is modeled without introducing binary variables.

4) The existence of Bayesian Nash Equilibrium (Bayes-NE)
[24] under the exponential inverse demand function is
established for the lower level problem.

Under the proposed framework, the size of storage devices
at two nodes of South Australia (SA) and Victoria (VIC) in
NEM and also the size of storage in a 30-bus IEEE system
is determined such that the market price volatility is kept
below a desired level at all times. The desired level of price
volatility can be determined based on various criteria such as

net revenue earned by the market players, occurrence frequency
of undesirable prices, number of CPT breaches, etc [25].

The rest of the paper is organized as follows. The system
model and the proposed bi-level optimization problem are
formulated in Section II. The equilibrium analysis of the lower
level problem and the solution method are presented in Section
III. The simulation results are presented in Section IV. The
conclusion remarks are discussed in Section V.

II. SYSTEM MODEL

Consider a nodal electricity market with I nodes. Let N cg
i

be the set of classical generators, such as coal and gas
power plants, located in node i and Nwg

i be the set of wind
generation firms located in node i. The set of neighboring
nodes of node i is denoted by Ni. Since the wind availability
is a stochastic parameter, a scenario-based model, with Nw

different scenarios, is considered to model the wind availability
in the electricity network. The nodal prices in our model are
determined by solving a stochastic (Bayesian) Cournot-based
game among all market participants, that is, classical genera-
tors, wind firms, storage firms and transmission interconnectors
which are introduced in detail in the lower level problem, given
the wind power availability scenarios. The decision variables,
feasible region, and objective function for each player in our
game model are discussed in Section II-B. In a Cournot game,
each producer (generator) competes for maximizing its profit
which is defined as its revenue minus its production cost,
given the generation of other players. The revenue of each
player is its production level times the market price. Also,
the market price is a function of total generation. Following
the standard Cournot game models, any player in our model
maximizes its objective function given the decision variables
of other players (generation, transmission, and storage firms).
Considering different wind power availability scenarios with
given probabilities makes our game model consistent with
the Bayesian game definition. In a Bayesian game, players
maximize their expected utility over a set of scenarios with
a given probability distribution [24].

In this paper, we present a bi-level optimization approach
for finding the minimum required total storage capacity in
the market such that the market price volatility stays within
a desired limit at each time.

A. Upper-level Problem

In the upper-level optimization problem, we determine the
nodal storage capacities such that a price volatility constraint
is satisfied in each node at each time. In this paper, estimates
of variances are used to capture the volatilities [26], i.e., the
variance of market price is considered as a measure of price
volatility. The variance of the market price in node i at time
t, i.e., Var

(
Pitw

)
, can be written as:

Var (Pitw) = Ew
[
(Pitw (qitw))

2
]
− (Ew [P (qitw)])

2

=
∑
w

(
Pitw (qitw)

)2

Ψw −
(∑

w

Pitw (qitw) Ψw

)2

(1)

where Ψw is the probability of scenario w, and Pitw (qitw) is
the market price in node i at time t under the wind availability
scenario w, which is a function of the collection of all players’
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strategies qitw, i.e., the decision variables in the lower level
game.

The notion of variance quantifies the effective variation
range of random variables, i.e. a random variable with a
small variance has a smaller effective range of variation when
compared with a random variable with a large variance.

Given the price volatility relation (1) based on the Bayes-NE
strategy collection of all firms q?itw, the upper-level optimiza-
tion problem is given by:

min
{Qs

i}i

I∑
i=1

Qs
i

s.t.
Qs
i ≥ 0 ∀i (2a)

Var (Pitw (q?itw)) ≤ σ2
0 ∀i, t (2b)

where Qs
i is the storage capacity in node i, Pitw (q?itw) is the

market price in node i at time t under the wind availability
scenario w, and σ2

0 is the price volatility target. The price
volatility of the market is defined as the maximum variance
of market price, i.e. maxit Var(Pitw(q?itw)).

B. Lower-level Problem
In the lower-level problem, the nodal market prices and

the Bayes-NE strategies of firms are obtained by solving an
extended stochastic Cournot-based game between wind genera-
tors, storage firms, transmission firms, and classical generators.
Our model differs from a standard Cournot game, such that it
includes regulated players in addition to strategic players in
generation, storage and transmission levels.

Definition 1: A strategic (price maker) firm decides on its
strategies over the operation horizon {1, ..., NT} such that
its aggregate expected profit, over the operation horizon, is
maximized. On the other hand, a regulated (price taker) firm
aims to maximize the net market value, i.e. the social welfare
[27].

The market price in node i at time t under the wind
availability scenario w is given by an exponential inverse
demand function (Appendix B):

Pitw(qitw)=αite
−βit

qsitw+
∑

m∈Nwg
i

qwg
mitw+

∑
n∈Ncg

i

qcgnitw+
∑

j∈Ni

qtrijtw


(3)

where αit, βit are positive real values in the inverse demand
function, qcg

nitw is the generation strategy of the nth classical
generator located in node i at time t under scenario w, qwg

mitw

is the generation strategy of the mth wind generator located in
node i at time t under scenario w, qs

itw is the charge/discharge
strategy of the storage firm in node i at time t under scenario
w, qtr

ijtw is the strategy of transmission firm located between
node i and node j at time t under scenario w. The collection
of strategies of all firms located in node i at time t under the
scenario w is denoted by qitw. Note that the total amount of
power supply from the generation and storage firms plus the
net import/export, i.e., qs

itw +
∑

m∈Nwg
i

qwg
mitw +

∑
n∈N cg

i

qcg
nitw +∑

j∈Ni

qtr
ijtw, is equal to the net electricity demand in each node,

at each time and under each scenario, which represents the
nodal electricity balance in our model.

In what follows, the variable µ is used to indicate the
associated Lagrange variable with its corresponding constraint
in the model.

1) Wind Generators: The Bayes-NE strategy of the mth
wind generator in node i is obtained by solving the following
optimization problem:

max
{qwg

mitw}tw�0

∑
w

Ψw

NT∑
t=1

Pitw (qitw) qwg
mitw (1− γwg

mi) +

γwg
mi

(
Pitw (qitw)

−βit

)
s.t.

qwg
mitw ≤ Q

wg
mitw : µwg,max

mitw ∀t, w (4a)
Pitw (qitw) ≤ P cap : µwg,cap

mitw ∀t, w (4b)
where qwg

mitw and Qwg
mitw are the generation level and the

available wind capacity of the mth wind generator located
in node i at time t under scenario w. The parameter P cap

represents the price cap in the market, which is, for instance,
11000 $/MWh in the NEM market. Setting cap price in
electricity markets also aims to limit the price levels and price
volatility levels. Note that the wind availability changes in time
in a stochastic manner, and the wind firm’s bids depend on the
wind availability. As a result, the nodal prices and decisions
of the other firms become stochastic in our model [28].

The mth wind firm in node i acts as a strategic firm in the
market if γwg

mi is equal to zero and acts as a regulated firm
if γwg

mi is equal to one. The difference between regulated and
strategic players corresponds to the strategic price impacting
capability. In fact, a regulated firm behaves as a price taker
player while a strategic firm behaves as a price maker player.

2) Storage Firms: Storage firms benefit from price differ-
ence at different times to make profit, i.e. they sell the off-peak
stored electricity at higher prices at peak times. The Bayes-NE
strategy of storage firm located in node i is determined by
solving the following optimization problem:

max
{qdisitw,q

ch
itw}tw�0

,{qsitw}tw

∑
w

Ψw

NT∑
t=1

Pitw (qitw) qs
itw (1− γs

i )−

csi
(
qdis
itw + qch

itw

)
+ γs

i

(
Pitw (qitw)

−βit

)
s.t.

qs
itw = ηdis

i qdis
itw −

qch
itw

ηch
i

: µs
itw ∀t, w (5a)

qdis
itw ≤ ζdis

i Qs
i : µdis,max

itw ∀t, w (5b)

qch
itw ≤ ζch

i Q
s
i : µch,max

itw ∀t, w (5c)

0 ≤
t∑

k=1

(
qch
ikw − qdis

ikw

)
∆ ≤ Qs

i : µs,min
itw , µs,max

itw ∀t, w (5d)

Pitw (qitw) ≤ P cap : µs,cap
itw ∀t, w (5e)

where qdis
itw and qch

itw are the discharge and charge levels
of the storage firm in node i at time t under scenario w,
respectively, csi is the unit operation cost, ηch

i ,ηdis
i are the

charging and discharging efficiencies, respectively, and qs
itw

is the net supply/demand of the storage firm in node i. The
parameter ζch

i (ζdis
i ) is the percentage of storage capacity

Qs
i , which can be charged (discharged) during time period
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∆. It is assumed that the storage devices are initially fully
discharged. The energy level of the storage device in node
i at each time is limited by its capacity Qs

i . Note that the
nodal market prices depend on the storage capacities, i.e. Qs

is,
through the constraints (5b)-(5d). This dependency allows the
market operator to meet the volatility constraint using the
optimal values of the storage capacities. The storage capacity
variables are the only variables that couple the scenarios in
the lower level problem. Therefore, each scenario of the lower
lever problem can be solved separately for any storage capacity
amount. The storage firm in node i acts as a strategic firm in
the market if γs

i is equal to zero and acts as a regulated firm
if γs

i is equal to one.
Proposition 1: At the Bayes-NE of the lower level game,

each storage firm is either in the charge mode or discharge
mode at each scenario, i.e. the charge and discharge levels of
each storage firm cannot be simultaneously positive at the NE
of each scenario.
Proof: See Appendix A.

3) Classical Generators: Classical generators include coal,
gas, hydro and nuclear power plants. The Bayes-NE strategy
of nth classical generator located in node i is determined by
solving the following optimization problem:

max
{qcgnitw}tw�0

∑
w

Ψw

NT∑
t=1

Pitw (qitw) qcg
nitw (1− γcg

ni)− c
cg
niq

cg
nitw

+ γcg
ni

(
Pitw (qitw)

−βit

)
s.t.

qcg
nitw ≤ Q

cg
ni : µcg,max

nitw ∀t, w (6a)
qcg
nitw − q

cg
ni(t−1)w ≤ R

up
ni : µcg,up

nitw ∀t, w (6b)

qcg
ni(t−1)w − q

cg
nitw ≤ R

dn
ni : µcg,dn

nitw ∀t, w (6c)

Pitw (qitw) ≤ P cap : µcg,cap
nitw ∀t, w (6d)

where qcg
nitw is the generation level of the nth classical gen-

erator in node i at time t under scenario w, Qcg
ni and ccg

ni

are the capacity and the short term marginal cost of the nth
classical generator in node i, respectively. The constraints (6b)
and (6c) ensure that the ramping limitations of the nth classical
generator in node i are always met. The nth classical generator
in node i acts as a strategic firm in the market if γcg

ni is equal
to zero and acts as a regulated firm if γcg

ni is equal to one.
4) Transmission Firms: The Bayes-NE strategy of the trans-

mission firm between nodes i and j is determined by solving
the following optimization problem:

max
{qtrjitw,qtrijtw}tw

∑
w

Ψw

NT∑
t=1

(
Pjtw

(
qjtw

)
qtr
jitw+Pitw (qitw) qtr

ijtw

)
(
1− γtr

ij

)
+ γtr

ij

(
Pjtw

(
qjtw

)
−βjt

+
Pitw (qitw)

−βit

)
s.t.

qtr
ijtw = −qtr

jitw : µtr
ijtw ∀t, w (7a)

−Qtr
ij ≤ qtr

ijtw ≤ Qtr
ij : µtr,min

ijtw , µtr,max
ijtw ∀t, w (7b)

Pktw (qktw) ≤ P cap : µtr,cap
kk′tw k, k′ ∈ {i, j}, k 6= k′ ∀t, w

(7c)
where qtr

ijtw is the electricity flow from nodes j to i at time t
under scenario w, and Qtr

ij is the capacity of the transmission

line between node i and node j. The transmission firm between
nodes i and j behaves as a strategic player when γtr

ij is equal
to zero and behaves as a regulated player when γtr

ij is equal to
one. Note that the term Pjtw

(
qjtw

)
qtr
jitw + Pitw (qitw) qtr

ijtw

in the objective function of the transmission firm is equal
to
(
Pjtw

(
qjtw

)
− Pitw (qitw)

)
qtr
jitw which implies that the

transmission firm between two nodes makes profit by transmit-
ting electricity from the node with lower market price to the
node with higher market price. Moreover, the price difference
between the paired nodes indicates the congestion on the
transmission lines and can be used to set the value of Financial
Transmission Rights (FTR) [29] in electricity markets.

Transmission lines or interconnectors are usually controlled
by the market operator and are regulated to maximize the
social welfare in the market. The markets with regulated
transmission firms are discussed as electricity markets with
transmission constraints in the literature, e.g., see [30]–[32].
However, some electricity markets allow the transmission lines
to act strategically, i.e. to make revenue by trading electricity
across the nodes [33].

III. SOLUTION APPROACH

In this section, we first provide a game-theoretic analysis
of the lower-level problem. Next, the bi-level price volatility
management problem is transformed to a single optimization
Mathematical Problem with Equilibrium Constraints (MPEC).

A. Game-theoretic Analysis of the Lower-level Problem

To solve the lower-level problem, we need to study the
best response functions of firms participating in the market.
Then, any intersection of the best response functions of all
firms in all scenarios will be a Bayes-NE. In this subsection,
we first establish the existence of Bayes-NE for the lower-
level problem. Then, we provide the necessary and sufficient
conditions which can be used to solve the lower-level problem.

To transform the bi-level price volatility management prob-
lem to a single level problem, we need to ensure that for every
vector of storage capacities, i.e. Qs = [Qs

1, · · · , Qs
I ]
> ≥ 0,

the lower-level problem admits a Bayes-NE. At the Bayes-NE
strategy of the lower-level problem, no single firm has any
incentive to unilaterally deviate its strategy from its Bayes-NE
strategy. Note that the objective function of each firm is quasi-
concave in its strategy and constraint set of each firm is closed
and bounded for all Qs = [Qs

1, · · · , Qs
I ]
> ≥ 0. Thus, the lower

level game admits a Bayes-NE. This result is formally stated
in Proposition 2.

Proposition 2: For any vector of storage capacities, Qs =
[Qs

1, · · · , Qs
I ]
> ≥ 0, the lower level game admits a Bayes-NE.

Proof: Note that the objective function of each firm is
continuous and quasi-concave in its strategy. Also, the strategy
space is non-empty, compact and convex. Therefore, according
to Theorem 1.2 in [34], the lower level game admits a Bayes-
NE.

1) Best responses of wind firm mi: Let q−(mi) be the strate-
gies of all firms in the market except the wind generator m
located in node i. Then, the best response of the wind generator
m in node i to q−(mi) satisfies the necessary and sufficient
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Karush-Kuhn-Tucker (KKT) conditions (t ∈ {1, ..., NT};w ∈
{1, ..., Nw}):

Pitw (qitw) + (1− γwg
mi)

∂Pitw (qitw)

∂qwg
mitw

qwg
mitw −

µwg,max
mitw

Ψw
−

∂Pitw(qitw)
∂qwg

mitw
µwg,cap
mitw

Ψw
≤ 0 ⊥ qwg

mitw ≥ 0 (8a)

qwg
mitw ≤ Q

wg
mitw ⊥ µ

wg,max
mitw ≥ 0 (8b)

Pitw (qitw) ≤ P cap ⊥ µwg,cap
itw ≥ 0 (8c)

where the perpendicularity sign, ⊥, means that at least one of
the adjacent inequalities must be satisfied as an equality [35].

2) Best responses of storage firm i: To study the best
response of the storage firm in node i, let q−i denote the
collection of strategies of all firms except the storage firm
in node i. Then, the best response of the storage firm in
node i is obtained by solving the following KKT conditions
(t ∈ {1, ..., NT};w ∈ {1, ..., Nw}):

Pitw (qitw)+(1−γs
i )
∂Pitw (qitw)

∂qs
itw

qs
itw+

µs
itw−

∂Pitw(qitw)
∂qsitw

µs,cap
itw

Ψw

= 0 (9a)

−ηdis
i µs

itw−µ
dis,max
itw −∆

∑NT

k=t

(
µs,min
ikw −µ

s,max
ikw

)
Ψw

− csi ≤ 0

⊥ qdis
itw ≥ 0 (9b)

µs
itw

ηchi
− µch,max

itw + ∆
∑NT

k=t

(
µs,min
ikw − µs,max

ikw

)
Ψw

− csi ≤ 0

⊥ qch
itw ≥ 0 (9c)

qs
itw = ηdis

i qdis
itw −

qch
itw

ηch
i

(9d)

qdis
itw ≤ ζdis

i Qs
i ⊥ µ

dis,max
itw ≥ 0 (9e)

qch
itw ≤ ζch

i Q
s
i ⊥ µ

ch,max
itw ≥ 0 (9f)

0 ≤
t∑

k=1

(
qch
ikw − qdis

ikw

)
∆ ⊥ µs,min

itw ≥ 0 (9g)

t∑
k=1

(
qch
ikw − qdis

ikw

)
∆ ≤ Qs

i ⊥ µ
s,max
itw ≥ 0 (9h)

Pitw (qitw) ≤ P cap ⊥ µs,cap
itw ≥ 0 (9i)

3) Best responses of classical generation firm ni: The best
response of the classical generator n in node i to q−(ni), i.e.
the collection of strategies of all firms except the classical
generator n in node i, is obtained by solving the following
KKT conditions (t ∈ {1, ..., NT};w ∈ {1, ..., Nw}):

Pitw (qitw)−ccg
ni+(1− γcg

ni)
∂Pitw (qitw)

∂qcg
nitw

qcg
nitw−

µcg,max
nitw

Ψw
−

∂Pitw(qitw)
∂qcgnitw

µcg,cap
nitw

Ψw
+
µcg,up
ni(t+1)w−µ

cg,up
nitw +µcg,dn

nitw −µ
cg,dn
ni(t+1)w

Ψw

≤ 0 ⊥ qcg
nitw ≥ 0 (10a)

qcg
nitw ≤ Q

cg
ni ⊥ µ

cg,max
nitw (10b)

qcg
nitw − q

cg
ni(t−1)w ≤ R

up
ni ⊥ µ

cg,up
nitw ≥ 0 (10c)

qcg
ni(t−1)w − q

cg
nitw ≤ R

dn
ni ⊥ µ

cg,dn
nitw ≥ 0 (10d)

Pitw (qitw) ≤ P cap ⊥ µcg,cap
nitw ≥ 0 (10e)

4) Best responses of transmission firm ij: Finally, the best
response of the transmission firm between nodes i and j, to
q−(ij), i.e. the set of all firms’ strategies except those of the
transmission line between nodes i and j, can be obtained using
the KKT conditions (t ∈ {1, ..., NT};w ∈ {1, ..., Nw}):

Pitw (qitw) +
(
1− γtr

ij

) ∂Pitw (qitw)

∂qtr
ijtw

qtr
ijtw +

µtr
jitw + µtr

ijtw

Ψw

+
µtr,min
ijtw − µtr,max

ijtw − ∂Pitw(qitw)
∂qtrijtw

µtr,cap
ijtw

Ψw
= 0 (11a)

qtr
ijtw = −qtr

jitw (11b)

−Qtr
ij ≤ qtr

ijtw ⊥ µ
tr,min
ijtw ≥ 0 (11c)

qtr
ijtw ≤ Qtr

ij ⊥ µ
tr,max
ijtw ≥ 0 (11d)

Pitw (qitw) ≤ P cap ⊥ µtr,cap
ijtw ≥ 0 (11e)

B. The Equivalent Single-level Problem

Here, the bi-level price volatility management problem is
transformed into a single-level MPEC. To this end, note that
for every vector of storage capacities the market price can
be obtained by solving the firms’ KKT conditions. Thus, by
imposing the KKT conditions of all firms as constraints in
the optimization problem (2), the price volatility management
problem can be written as the following single-level optimiza-
tion problem:

min
I∑
i=1

Qs
i (12)

s.t.

(2a− 2b), (8a− 8c), (9a− 9i), (10a− 10e), (11a− 11e)

m ∈ {1, ..., Nwg
i }, n ∈ {1, ..., N

cg
i }, i, j ∈ {1, ..., I},

t ∈ {1, ..., NT};w ∈ {1, ..., Nw}
where the optimization variables are the storage capacities, the
bidding strategies of all firms and the set of all Lagrange mul-
tipliers. Because of the nonlinear complementary constraints,
the feasible region is not necessarily convex or even connected.
Therefore, increasing the storage capacities stepwise, ∆Qs, we
solve the lower level problem, which is convex.

Remark 1: It is possible to convert the equivalent single
level problem (12) to a Mixed-Integer Non-Linear Problem
(MINLP). However, the large number of integer variables
potentially makes the resulting MINLP computationally infea-
sible.

The MPEC problem (12) can be solved using extensive
search when the number of nodes is small. For large electricity
networks, the greedy algorithm proposed in [36] can be used to
find the storage capacities iteratively while the other variables
are calculated as the solution of the lower level problem. In
each iteration, the lower level problem is solved as a Mixed
Complementarity Problem (MCP) [37], which is sometimes
termed as rectangular variational inequalities. The optimization
solution method is illustrated in Algorithm 1. The storage
capacity variable is discretized and the increment storage
capacity of ∆Qs is added to the selected node i∗ at each
iteration of the algorithm. Once the price volatility constraint
is satisfied with equality, the optimum solution is found.
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Although our greedy algorithm just guarantees a locally
optimal storage capacity, we obtained the same results in NEM
market using the extensive search.

Algorithm 1 The greedy algorithm for finding the storage
allocation

while maxit Var(Pitw(q?itw)) > σ2
0 do

iteration=iteration+1
for i′ = 1 : I do

Qs
i′(iteration)← Qs

i′(iteration− 1) + ∆Qs

Qs
−i′(iteration)← Qs

−i′(iteration− 1)
q? ← Lower level problem Bayes−NE
Price Volatility(i′)← maxit Var(Pitw(q?itw))

end for
i∗ ← find

i
(min(Price Volatility(i)))

Qs
i∗(iteration)← Qs

i∗(iteration− 1) + ∆Qs

end while

IV. CASE STUDY AND SIMULATION RESULTS

In this section, we apply our price volatility management
framework to two different types of electricity markets: (i)
the NEM market, which has a regional pricing mechanism,
(ii) a 30-bus electricity system with a Locational Marginal
Pricing (LMP) mechanism [38]. The most important difference
between LMP and regional pricing markets is the number of
settlement prices. Tens or hundreds of pricing nodes may be
required to implement a LMP market whereas in a regional
pricing only few settlement prices are considered. Note that
the optimization problem (12) can model both regional and
LMP markets.

A. Simulations in NEM

In this subsection, we study the impact of storage installation
on price volatility in two nodes of Australia’s National Electric-
ity Market (NEM), South Australia (SA) and Victoria (VIC),
with regional pricing mechanism, which sets the marginal value
of demand at each region as the regional prices. SA has a
high level of wind penetration and VIC has high coal-fueled
classical generation. Real data for price and demand from the
year 2015 is used to calibrate the inverse demand function
in the model. Different types of generation firms, such as
coal, gas, hydro, wind and biomass, with generation capacity
(intermittent and dispatchable) of 3.7 GW and 11.3 GW were
active in SA and VIC, respectively, in 2015. The transmission
line interconnecting SA and VIC, which is a regulated line,
has the capacity of 680 MW but currently is working with just
70% of its capacity. The generation capacities in our numerical
results are gathered from Australian Electricity Market Oper-
ator’s (AEMO’s) website (aemo.com.au) and all the prices are
shown in Australian dollar.

In our study, we consider a set of scenarios each representing
a 24-hour wind power availability profile. In order to guarantee
a high level of accuracy, we do not employ scenario reduction
methods [39] and instead consider 365 daily wind power avail-
ability scenarios, with equal probabilities, using the realistic
data from the year 2015 in different regions of NEM (source of
data: AEMO). Fig. 1 shows the hourly wind power availability

in SA. On each box in Fig. 1, the central mark indicates the
average level and the bottom and top edges of the box indicate
the 25th and 75th percentiles of wind power availability from
the 365 scenarios, respectively. It can be seen that in SA the
wind power capacity is about 1200 MW and the wind capacity
factor is about 33-42% at different hours.
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Fig. 1: SA’s Hourly wind power availability distribution in 2015
(the central marks show the average levels and the bottom and
top edges of the boxes indicate the 25th and 75th percentiles).

In what follows, by price volatility we mean the maximum
variance of market price, i.e. maxit Var(Pitw(q?itw)). Also, by
square root of price volatility we mean the maximum standard
deviation of market price, i.e. maxit

√
Var(Pitw(q?itw).

1) One-region model simulations in South Australia:
In our one-region model simulations, we first study the impacts
of peak demand levels and supply capacity shortage on the
standard deviation of hourly electricity prices (or square root
of hourly price volatilities) in SA with no storage. Next, we
study the effect of storage on the price volatility in SA. Fig.
2 shows the average and standard deviation of hourly prices
for a day in SA (with no storage) for three different cases:
(i) a regular demand day, (ii) a high demand day, (iii) a high
demand day with coal-plant outage. An additional load of 1000
MW is considered in the high demand case during hours 16, 17
and 18 to study the joint effect of wind intermittency and large
demand variations on the price volatility. The additional loads
are sometimes demanded in the market due to unexpected high
temperatures happening in the region. The coal-plant outage
case is motivated by the recent retirement of two coal-plants
in SA with total capacity of 770 MW [40]. This allows us
to investigate the joint impact of wind indeterminacy and low
base-load generation capacity on the price volatility.

According to Fig. 2, wind power fluctuation does not create
much price fluctuation in a regular demand day. The square root
of the price volatility in the regular demand day is equal to 65
$/MWh. Depending on the wind power availability level, the
peak price varies from 92 $/MWh to 323 $/MWh, with average
of 210 $/MWh, in a regular demand day. Based on Fig. 2, the
square root of the price volatility in the high demand day is
equal to 1167 $/MWh. The maximum price in a high demand
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day in SA changes from 237 $/MWh to 4466 $/MWh, with
average of 1555 $/MWh, because of wind power availability
fluctuation. The extra load at peak times and the wind power
fluctuation create a higher level of price volatility during a high
demand day compared with a regular demand day.

The retirement (outage) of coal-plants in SA beside the extra
load at peak hours increases the price volatility due to the wind
power fluctuation. The maximum price during the high demand
day with coal-plant outage varies from 377 $/MWh to the cap
price of 11000 $/MWh, with average of 5832 $/MWh. The
square root of the price volatility during the high demand day
with coal-plant outage is equal to 4365 $/MWh. The square
root of the price volatility during the high demand day with
coal-plant outage is almost 67 times more than the regular
demand day due to the simultaneous variation in both supply
and demand.
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Fig. 2: Standard deviation and mean of hourly wholesale
electricity prices in SA with no storage.

Fig. 3 shows the minimum required (strategic/regulated)
storage capacities for achieving various levels of price volatility
in SA during a high demand day with coal-plant outage.
The minimum storage capacities are calculated by solving the
optimization problem (12) for the high demand day with coal-
plant outage case. According to Fig. 3, a strategic storage
firm requires a substantially larger capacity, compared with a
regulated storage firm, to achieve a target price volatility level
due to the selfish behavior of the storage firms. In fact, the
strategic storage firms may sometimes withhold their available
capacities and do not participate in the price volatility reduction
as they do not always benefit from reducing the price. The
price volatility in SA can be reduced by 50% using either 530
MWh strategic storage or 430 MWh regulated storage. Note
that AEMO has forecasted about 500 MWh battery storage to
be installed in SA until 2035 [41].

According to our numerical results, storage can displace the
peaking generators, with high fuel costs and market power,
which results in reducing the price level and the price volatility.
A storage capacity of 500 MWh (or 500 MW given the
discharge coefficient ηdis = 1) reduces the square root of the
price volatility from 4365 $/MWh to 2692 $/MWh, almost 38%
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Fig. 3: Optimal strategic and regulated storage capacity for
achieving different price volatility levels in SA region for a
high demand day with coal-plant outage.

reduction, during a high demand day with coal-plant outage in
SA.

The behaviour of the peak and the daily average prices
for the high demand day with coal-plant outage in SA is
illustrated in Fig. 4. In this figure, the peak price represents
the average of highest prices over all scenarios during the
day, i.e.

∑
w Ψw (maxt Ptw(q?tw)) and the daily average price

indicates the average of price over time and scenarios, i.e.
1
NT

∑
tw Ptw(q?tw)Ψw. Sensitivity analysis of the peak and the

daily average prices in SA with respect to storage capacity
indicates that high storage capacities lead to relatively low
prices in the market. At very high prices, demand is almost
inelastic and a small amount of excess supply leads to a large
amount of price reduction. According to Fig. 4, the rate of
peak price reduction decreases as the storage capacity increases
since large storage capacities lead to lower peak prices which
make the demand more elastic.

Based on Fig. 4, the impact of storage on the daily average
and peak prices depends on whether the storage firm is strategic
or regulated. It can be observed that the impacts of strategic
and regulated storage firms on the daily peak/average prices
are almost similar for small storage capacities, i.e. when the
storage capacity is smaller than 100 MWh (or 100 MW given
ηdis = 1). However, a regulated firm reduces both the peak and
the average prices more efficiently compared with a strategic
storage firm as its capacity becomes large. A large strategic
storage firm in SA does not use its excess capacity beyond
500 MWh to reduce the market price since it acts as a strategic
profit maximizer, but a regulated storage firm contributes to the
price volatility reduction as long as there is potential for price
reduction by its operation.

Fig. 5 depicts the square root of price volatility versus
storage capacity in SA during the high demand day with coal-
plant outage. According to this figure, the price volatility in
the market decreases by installing either regulated or strategic
storage devices. To reduce the square root of price volatility
to 3350 $/MWh, the required strategic capacity is about 100
MWh more than that of a regulated storage. Moreover, a
strategic storage firm stops reducing the price volatility when
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Fig. 4: Daily peak and average prices in SA versus storage
capacity in a high demand day with coal-plant outage.

its capacity exceeds a threshold value. In our study, a strategic
storage firm does not reduce the square root of price volatility
more than 32%, but a regulated firm reduces it by 89%. These
observations confirm that regulated storage firms are more
efficient than strategic firms in reducing the price volatility.

The impact of the regulated storage firm in reducing the
price volatility can be divided into three ranges of initial,
efficient, and saturated, as shown in Fig. 5. In the initial range,
an increment in the capacity of the regulated firm slightly
reduces the price volatility. Then the price volatility reduces
sharply with storage capacity in the second region. Finally,
the price volatility reduction gradually stops in the saturated
region. This observation implies that although storage alleviates
the price volatility in the market, it is not capable to eliminate
it completely.
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Fig. 5: Square root of price volatility in SA versus storage
capacity during a high demand day with coal-plant outage.

2) Two-region model simulations in South Australia and
Victoria:

In the one-region model simulations, we analysed the impact
of storage on the price volatility in SA when the SA-VIC in-
terconnector is not active. In this subsection, we first study the
effect of the interconnector between SA and VIC on the price
volatility in the absence of storage firms. Next, we investigate
the impact of storage firms on the price volatility when the
SA-VIC transmission line operates at various capacities. In our
numerical results, SA is connected to VIC using a 680 MW
interconnector which is currently operating with 70% of its
capacity, i.e. 30% of its capacity is under maintenance. The
numerical results in this subsection are based on the two-node
model for a high demand day with coal-plant outage in SA. To
investigate the impact of transmission line on price volatility, it
is assumed that the SA-VIC interconnector operates with 60%
and 70% of its capacity.

According to our numerical results, the peak price (the
average of highest prices over all scenarios) in SA is equal to
6154 $/MWh when the SA-VIC interconnector is completely
in outage. However, the peak price reduces to 3328 $/MWh
and 2432 $/MWh when the interconnector operates at 60%
and 70% of its capacity. The square root of price volatility
is 4365 $/MWh, 860 $/MWh, and 614 $/MWh when the
capacity of the SA-VIC transmission line is equal to 0%, 60%,
and 70%, respectively, which emphasizes the importance of
interconnectors in price volatility reduction.

Simulation results show that as long as the interconnector
is not congested, the line alleviates the price volatility phe-
nomenon in SA by importing electricity from VIC to SA at
peak times. Since the market in SA compared to VIC is much
smaller, about three times, the price volatility abatement in SA
after importing electricity from VIC is much higher than the
price volatility increment in VIC. Moreover, the price volatility
reduces as the capacity of transmission line increases.

Fig. 6 shows the optimum storage capacity versus the
percentage of price volatility reduction in the two-node market.
According to our numerical results, storage is just located
in SA, which witnesses a high level of price volatility as
the capacity of transmission line decreases. According to this
figure, the optimum storage capacity becomes large as the
capacity of transmission line decreases. Note that a sudden
decrease of the transmission line capacity may result in a
high level of price volatility in SA. However, based on Fig.
6, storage firms are capable of reducing the price volatility
during the outage of the interconnecting lines.

B. Simulations for a 30-bus System

In order to assess the functionality of our optimal storage
allocation model for markets consisting relatively high number
of nodes, we simulate a standard IEEE 30-bus (30-node)
electricity network with LMP pricing mechanism, which sets
the marginal value of demand at each bus or node as the nodal
prices, in this subsection. The generation and transmission data
is based upon [42], which includes six classical generators
introduced in Table I. We assume the first two generators are
regulated in our system. To consider the impact of supply
scarcity, we retire the classical generator at node 5 and install
the wind power generation capacity of 2.5 MW at each node,
i.e., the total capacity of 75 MW in the system, in our study.
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Fig. 6: Optimal regulated storage capacity versus the percent-
age of price volatility reduction in the two-node market in a
high demand day with coal-plant outage in SA.

The transmission line limits are set to 50% of their values so
that some lines would be binding in the solutions.

TABLE I: Location, capacity and generation cost of classical
generators in the 30-bus electricity system.

Unit 1 2 3 4 5 6
Bus 1 2 5 8 11 13
Capacity
(MW)

200 80 50 35 30 40

Cost
($/MWh)

15 15 35 35 35 35

We divide a day into the off-peak period (10 hours), the peak
period (4 hours) and the shoulder period (10 hours) times. The
demand in the off-peak is 10% more than the demand in the
shoulder period whereas the peak demand is 25% more than the
shoulder demand. Given the demand values in [42], we assume
the electricity prices are equal to 40, 75 and 50 $/MWh during
off-peak, peak, and shoulder periods, respectively.

In the absence of storage, the square root of the price
volatility is equal to 250 $/MWh in the market due to the
joint effect of wind power fluctuation and the power-plant
retirement. To compute the storage capacity, we use Algorithm
1 with the increment storage capacity of 15 MWh. According
to our numerical results, Algorithm 1 installs the storage only
at node 5, which is the highest price volatile node in the system,
in order to meet the required price volatility level. Fig (7)
represents the price volatility level after allocating the storage
capacity, calculated by the greedy algorithm 1. The step size
of the increment storage capacity is considered as 15 MWh in
each iteration of the algorithm. For instance, the total storage
capacity of 60 MWh at the node 5 is calculated to address
the square root of the price volatility limit of 90 $/MWh. The
joint effect of capacity retirement and high electricity demand
at node 5 leads to high level of price volatility after installing
the intermittent wind power capacities in the market and makes
the node 5 the likely candidate for storage allocation to meet
the price volatility requirement.

Number of iteration
0 1 2 3 4 5 6 7 8 9 10

S
qu

ar
e 

ro
ot

 o
f 
p
ri

ce
 v

ol
at

il
it
y 

($
/M

W
h
)

0

50

100

150

200

250
Square root of price volatility in each iteration

Fig. 7: Square root of price volatility level in the 30-bus system
after ten iterations of Algorithm 1 with ∆Qs = 15MWh.

V. CONCLUSION

High penetration of intermittent renewables, such as wind or
solar farms, brings high levels of price volatility in electricity
markets. Our study presents an optimization model which de-
cides on the minimum storage capacity required for achieving
a price volatility target in electricity markets. Based on our
numerical results, the impact of storage on the price volatility
in one-node electricity market of SA, two-node market of SA-
VIC and the standard 30-bus IEEE system can be summarized
as:

• Storage alleviates price volatility in the market due to
the wind intermittency. However, storage does not remove
price volatility completely, i.e. storage stops reducing the
price volatility when it is not profitable.

• The effect of a storage firm on price volatility reduction
depends on whether the firm is regulated or strategic.
Both storage types have similar operation behaviour and
price reduction effect when they possess small capacities.
For larger capacities, a strategic firm may under-utilize its
available capacity and stop reducing the price level due
to its profit maximization strategy. On the other hand, a
regulated storage firm is more efficient in price volatility
reduction because of its social welfare maximization strat-
egy. The price level and volatility reduction patterns ob-
served when storage firms are regulated provide stronger
incentives for the market operator to subsidize the storage
technologies.

• Both storage devices and transmission lines are capable of
reducing the price volatility. High levels of price volatility
that may happen due to the line maintenance can be
alleviated by storage devices.

• Although many parameters affect the price volatility level
of a system, penetration of intermittent wind power gen-
eration in a region makes the region or node highly
price volatile when a classical generation capacity outage
happens or high load level is demanded.

We intend to study the impact of ancillary services markets
[43] and capacity markets [44] on the integration of storage
systems in electricity networks and study the wind correlation
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analysis to look at volatility reduction effectiveness in our
future work. Our future research also includes the optimal
storage siting problem subject to the line congestion constraint
to alleviate the congestion problem.

APPENDIX A
CHARGING/DISCHARGING

In this appendix, we show that the charge and discharge
levels of any storage device cannot be simultaneously positive
at the NE of the lower game under each scenario. Consider a
strategy in which both charge and discharge levels of storage
device i at time t under scenario w, i.e. qdis

itw, q
ch
itw, are both

positive. We show that this strategy cannot be a NE strategy
of scenario w as follows. The net electricity flow of storage
can be written as qs

itw = ηdis
i qdis

itw −
qchitw
ηchi

. Let q̄dis
itw and q̄ch

itw be
the new discharge and charge levels of storage firm i defined
as
{
q̄dis
itw = qdis

itw−
qchitw
ηdisi ηchi

, q̄ch
itw = 0

}
if qs

itw > 0, or
{
q̄dis
itw =

0, q̄ch
itw = qch

itw− qdis
itwη

dis
i ηch

i

}
if qs

itw < 0. The new net flow

of electricity can be written as q̄s
itw = ηdis

i q̄dis
itw −

q̄chitw
ηchi

. Note
that the new variables q̄s

itw, q̄ch
itw and q̄dis

itw satisfy the constraints
(5a-5d).

Considering the new charge and discharge strategies q̄dis
itw

and q̄ch
itw, instead of qdis

itw and qch
itw, the nodal price and the

net flow of storage device i do not change. However, the
charge/discharge cost of the storage firm i, under the new
strategy, is reduces by:

csi
(
qch
itw + qdis

itw

)
− csi

(
q̄dis
itw + q̄ch

itw

)
> 0

Hence, any strategy at each scenario in which the charge and
discharge variables are simultaneously positive cannot be a NE,
i.e. at the NE of the lower game under each scenario each
storage firm is either in the charge mode or discharge mode.

APPENDIX B
INVERSE DEMAND FUNCTION

Two most commonly used inverse demand functions in
microeconomics literature are the linear and iso-elastic models
[45], e.g., in [23], [46]. Exponential inverse demand function
has also been used in energy market models [47]. The inverse
demand function of most commodities follows a non-linear
downward sloping price versus demand relation [48] and a lin-
ear inverse demand function is just its first order approximation
at an operating price and demand level. The linear function may
become invalid when the operating point changes drastically,
e.g., when the price plunges from the very high amount of
11000 $/MWh to low level of 50 $/MWh.

The iso-elastic and exponential functions can more accu-
rately illustrate the price and demand relation. In fact, the
exponential function, p = α′e−β

′q , is the modified version of
the iso-elastic function, ln(p) = α − βln(q) or p = α̃e−βln(q)

with α̃ = eα, which substitutes the logarithmic demand levels
with nominal levels. We discuss three reasons privileging
the exponential inverse demand function over the iso-elastic.
Firstly, the KKT conditions of the lower level game become
highly non-linear under the iso-elatsic function and it becomes
hard to numerically solve them. The derivative of the expo-
nential inverse demand function with respect to demand is
∂p
∂q = −β′p, while the derivative of the iso-elastic function

respect to demand is ∂p
∂q = −βpq−1. Secondly, the exponential

function has a finite price feature while the iso-elastic function
goes to infinity for small levels of demand. Lastly, the exponen-
tial function partially covers the specifications of both linear
and iso-elastic functions. Consequently, we use and calibrate
exponential inverse demand functions to characterize the price
and demand relations in our model.

In electricity market models, the constant coefficients in
the inverse demand functions are usually calibrated based on
actual price/demand data , p/q, and price elasticity levels,

ε =
∂q
q
∂p
p

[48], which are given as input to our model. Given
two equations of price-demand function and elasticity function,
i.e., p = f(q) and ε = ∂q

∂p
p
q , and two unknowns, we can

find the both parameters in all three discussed inverse demand
functions. For instance, given the price of p = 50 $/MWh,
demand of q = 1500 MW and price elasticity of demand
ε = −0.3, the linear function p = 650

3 −
1
9q, the iso-elastic

function ln(p) = 28.28− 10
3 ln(q), and the exponential function

p = 50e
10
3 e−

1
450 q can be extracted. Fig. 8 compares the

calibrated linear, exponential and iso-elastic inverse demand
functions. The properties of the exponential function lie be-
tween the linear and iso-elastic functions.
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Fig. 8: Calibrated linear, exponential and iso-elastic inverse
demand functions at price 50 $/MWh, demand 1500 MW, and
elasticity -0.3.
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