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A B S T R A C T

Reducing nonmotorized crashes requires a profound understanding of the causes and consequences of the cra-
shes at the facility level. Generally, existing literature on bicyclists and pedestrian crash models suffers from two
distinct problems: lack of exposure/volume data and inadequacy in capturing potential correlations across
various crash aspects. To develop a robust framework for pedestrian crash analysis, this research employed a
multivariate model across multiple pedestrian crash severities incorporating a crucial piece of information:
pedestrian exposure. A multivariate spatial (conditional autoregressive) Poisson-lognormal model in a Bayesian
framework was developed to examine the significant factors influencing the fatal, incapacitating injury (or
suspected serious injury), and non-incapacitating injury pedestrian crashes at 409 signalized intersections in the
Austin area. Various explanatory variables were used to examine the pedestrian crashes, including traffic
characteristics, road geometry, built environment features, and pedestrian exposure volume at intersections,
which was estimated through a direct demand model as part of the study. Model results revealed valuable
insights. The superior performance of the multivariate model over the univariate model emphasized the need to
jointly model multiple pedestrian crash severities. The results showed the significant positive influence of speed
limit on fatal pedestrian crashes and revealed that both incapacitating and non-incapacitating injury crashes
increase with increasing motorized traffic volume. Bus stop presence was found to have a negative influence on
incapacitating injury crashes and a positive influence on non-incapacitating injury crashes. Moreover, the pe-
destrian volume at intersections positively influences non-incapacitating injury crashes. The difference in in-
fluence across crash types warrants careful and focused policy design of intersections to reduce pedestrian
crashes of all severity types.

1. Introduction

Walking and bicycling make up a relatively small portion of trans-
portation in the United States yet account for a disproportionate share
of the total fatal and serious injury crashes. The most recently published
National Household Travel Survey results (2017) indicated that walking
comprised 11.9 % of all trips made in the United States (League of
American Bicyclists, 2018). However, in 2018, 6227 pedestrians were
killed in traffic-related crashes, which was around 15 % of all traffic
fatalities in the United States (Governors Highway Safety Association
[GHSA], 2019). Despite the efforts of many U.S. cities to promote pe-
destrian safety, national crash statistics for pedestrians show an upward
trend: 2018 and 2017 had a 4 % and 1.7 % increase in pedestrian
fatalities, respectively, compared to previous years. The number of
pedestrian fatalities in 2018 was the highest since 1990 (Governors
Highway Safety Association (GHSA, 2019). Austin, Texas, is no

exception to this overwhelming nonmotorized crash trend. In 2018,
pedestrians made up 42 % of all traffic fatalities in Austin, the highest
number of pedestrian deaths in almost 10 years (Bradshaw, 2019).

Many big cities in the United States, including Austin, are en-
deavoring to adopt a holistic approach to increase safety and mobility
for pedestrians of all ages. To develop and implement effective strate-
gies to reduce pedestrian crashes, preferably to zero, a better under-
standing of the causes and consequences of pedestrian crashes is es-
sential. Although pedestrian-related crashes occur on various road
facilities, such as intersections, driveways, and midblock locations,
safety planners often focus on intersection-related crashes because a
large proportion of crashes are observed in or near intersections (Choi,
2010). The Texas Strategic Highway Safety Plan reported that more
than one-third of fatal and incapacitating injury crashes in Texas in
2013 were identified as intersection related (Texas Department of
Transportation [TxDOT], 2016a). A report analyzing crashes in the
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Capital Area Metropolitan Planning Organization (CAMPO) region es-
timated that the total cost of intersection crashes was around $3.3
billion from 2010 to 2014 (Texas Department of Transportation
(TxDOT, 2016a). The same report also revealed that more than one of
every seven severe crashes (fatal and suspected serious injury) at in-
tersections in the CAMPO region involved a pedestrian or bicyclist.

Besides discerning the location of pedestrian crashes, effective
countermeasures warrant a profound understanding of the role of
multiple exogenous factors (such as exposure or traffic condition) af-
fecting crash occurrence. When considering policies to reduce the fre-
quency of crashes, especially involving vulnerable road users such as
pedestrians and bicyclists, planners must also contemplate counter-
measures to minimize the severity of those crashes. Bicyclists and pe-
destrians are 2.3 and 1.5 times more likely, respectively, than pas-
senger-vehicle occupants to be fatally injured in a trip, according to a
study by Beck et al. (2007).

Safety advocates in multiple areas are persistent in their efforts to
develop evidence-based data-driven strategies to reduce pedestrian
fatalities. The literature is replete with studies of various aspects of
pedestrian crash risk, type, and severity at different geographic scales,
including intersections, census tracts, and block groups. However, most
of these studies suffer from two limitations.

The first limitation is the absence of pedestrian demand or exposure
data, which, despite being two of the most important inputs when
analyzing pedestrian safety, are often not available. Although models
(such as the direct demand model) are available to estimate non-
motorized demand at a specific spatial scale that can be used as an
exposure measure for safety analysis, only a handful of studies have
used these models (e.g., Hasani et al., 2019; Lee et al., 2019).

The second limitation is the inadequacy of separate models to
capture the potential correlations across various crash aspects. For ex-
ample, when analyzing crash frequency and severity, the traditional
univariate modeling approach leaves room for error by ignoring
common unobserved factors that simultaneously influence the occur-
rence of crashes by severity type at a spatial scale. Studies have argued
that crash frequency across different attributes (mode involved, se-
verity, crash type, and damage) tend to be correlated and are thus
multivariate in nature (Yasmin and Eluru, 2018). Therefore, the uni-
variate models, which analyze crash attributes separately, increase the
risk of potential biases, leading to inaccurate estimation (Ma et al.,
2008). For this reason, to analyze multiple crash attributes (such as
severity), researchers have recommended developing and deploying a
multivariate model to obtain a reliable, robust estimate of the impacts
of various factors on crash frequencies for different severities (Liu and
Sharma, 2018; Park and Lord, 2007).

A number of studies that acknowledge the superiority of multi-
variate models have developed crash models by type, mode, and se-
verity at various geographic scales (Lee et al., 2015; Ma et al., 2008;
Park and Lord, 2007; Wang et al., 2014; Xie et al., 2019; Ye et al., 2009;
Zeng et al., 2017). Although several researchers have attempted to
develop multivariate models to investigate intersection-related crashes
for motorized vehicles (Alarifi et al., 2018; Cheng et al., 2018; Huang
et al., 2017; Park and Lord, 2007), multivariate analyses for pedestrian-
involved crashes at intersections are rare (Heydari et al., 2017).

In light of these findings, this study focused on the development of a
data-driven framework for analyzing multiple pedestrian crash seve-
rities at signalized intersections that in a joint context incorporated
pedestrian exposure. Austin was selected as the study area given its
strong commitment to its Vision Zero goals and its need for data and
tools to facilitate strategic data-informed decisions. The study area
covered the entire city area, with a total of 409 intersections identified
for the analysis. To the authors’ knowledge, no studies have estimated
pedestrian demand or exposure at Austin intersections, despite recent
studies having shown that disregarding pedestrian exposure could sig-
nificantly affect the crash analysis model (Fitzpatrick et al., 2018). This
study was performed in two parts. First, using available pedestrian

count data from the City of Austin, a direct demand model was devel-
oped for estimating pedestrian volume/exposure at the intersection
(signalized) level. Next, the exposure information was integrated into
the development of a multivariate model for analyzing pedestrian crash
frequency at signalized intersections for three severity levels: fatal
crash, suspected serious injury or incapacitating injury crash, and non-
incapacitating injury crash.

2. Literature Review

2.1. Multivariate crash analysis

To inform and design safety-related policies guided by models with
superior predictive power and accuracy, researchers have paid sig-
nificant attention to advanced statistical modeling techniques, such as
multivariate models, random-parameter models, finite mixture/Markov
switching models, hierarchical models, neural and Bayesian neural
network models, and so forth (Lord and Mannering, 2010). Among
these advanced models, research on joint or multivariate modeling of
correlated outcomes has become particularly popular in the last few
years. The key strength of the multivariate modeling approach is its
ability to handle correlations across different levels of crash attributes
(such as crash occurrence and severity), which are likely to be affected
by common unobserved factors simultaneously (Mannering et al.,
2016). Some studies (Huang and Abdel-Aty, 2010; Xie et al., 2013) have
suggested that these models provide more reliable and accurate esti-
mation than traditional univariate models.

The multivariate modeling approaches for crash analysis utilized in
several studies generally vary in terms of crash attributes investigated,
modeling structures, and aggregation level. In terms of crash attributes,
studies have used multivariate models to examine crash frequency by
severity level (El-Basyouny and Sayed, 2009; Ma et al., 2008; Park and
Lord, 2007; Wang et al., 2014; Xie et al., 2019; Zeng et al., 2017; Zhan
et al., 2015), crash frequency by collision type (Bhowmik et al., 2018;
El-Basyouny et al., 2014; Song et al., 2006; Ye et al., 2009), crash fre-
quency by transportation mode (Huang et al., 2017; Lee et al., 2015),
injury severity and driver error (Wali et al., 2018), and injury severity
and vehicle damage (Wang et al., 2015).

In terms of modeling structure, researchers have examined several ap-
proaches based on their data collection and analysis requirements. Studies
have used Poisson-gamma models (Abdel-Aty and Radwan, 2000; Poch and
Mannering, 1996; Xie et al., 2019), Poisson-lognormal models (Alarifi et al.,
2017; El-Basyouny and Sayed, 2009; Huang et al., 2017; Lee et al., 2015;
Park and Lord, 2007; Wang and Kockelman, 2013), copula-based ap-
proaches (Nashad et al., 2016; Rana et al., 2010; Wang et al., 2019b;
Yasmin et al., 2014, 2018), and multivariate random-parameter zero-in-
flated negative binomial models (Anastasopoulos, 2016). A few studies have
also used the fractional split approach for modeling crash frequency by
different attributes (Bhowmik et al., 2018; Yasmin et al., 2016). Studies
have employed both Bayesian (Cheng et al., 2018; Ma et al., 2017) and
frequentist (Narayanamoorthy et al., 2013) estimation techniques to make
statistical inferences under the multivariate setting.

Studies analyzing crashes in a multivariate context also vary in
aggregation level. Similar to the univariate approach, multivariate
models can be categorized into two types: macrolevel (such as a re-
gional or traffic analysis zone level) and microlevel (such as intersec-
tions or the road segment level). Macrolevel models can examine the
influence of sociodemographic, land use, or road network character-
istics on crash attributes, which can evaluate safety conditions from a
planning perspective (Wang and Huang, 2016). Microlevel models
focus on intersection- or road-segment-related characteristics and are
often used to identify black spots. Moreover, studies have developed
joint models combining both macro- and microlevel crashes using the
Bayesian approach (Cai et al., 2019; Huang et al., 2016). Examples of
aggregation for macroscopic models (in a multivariate context) include
the traffic analysis zone level (Bhowmik et al., 2018), county level
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(Song et al., 2006), and census tract level (Wang and Kockelman, 2013;
Xie et al., 2019). Acknowledging the need for models to design safety-
related countermeasures at the microscopic level, numerous studies
have applied the multivariate modeling approach to examine crashes at
the level of the intersection (Huang et al., 2017; Park and Lord, 2007;
Strauss et al., 2014; Wang et al., 2019b; Ye et al., 2009), roadway
segment (El-Basyouny and Sayed, 2009; Wang et al., 2014), highway
corridor (Ma et al., 2017), and intersection and road segment si-
multaneously (Zeng and Huang, 2014).

Another important aspect of modeling crash frequency is con-
sidering the spatial dependence of the observations, which is often ig-
nored (Mannering et al., 2016). Research has shown that crash models
need to account for spatial dependency because spatial correlation ex-
ists extensively among adjacent locations in road networks and neigh-
borhood zones (Quddus, 2008; Wang et al., 2019a). For example, the
frequency of crashes at a location may sharply change based on the
distance from the central business district, or crashes on road segments
in close proximity can be clustered together because they have similar
traffic flow characteristics. Considering spatial correlation while ex-
amining crash models for intersections in the urban road network is
crucial because the intersections at close proximity are more likely to
share similar land use and traffic characteristics (Abdel-Aty and Wang,
2006; Xie et al., 2013, 2014). The spatial model can handle the spatial
interaction and spatial structure in crash data, which leads to improved
model parameter estimation and can reflect unmeasured confounding
variables (Huang et al., 2017; Wang et al., 2019a). Although not spe-
cific to the multivariate model, Ziakopoulos and Yannis (2020) pro-
vided a review of studies focusing on the spatial analysis of road safety,
including of vulnerable road users. While discussing the multivariate
models for both motorized and nonmotorized crash analysis, the study
noted the recent shift toward Bayesian estimation methods, which en-
abled safety analysts to obtain accurate crash prediction through
complex model configurations.

Wang et al. (2017) discussed the four approaches that are generally
used for developing spatial models for multivariate count data: the
conditional autoregressive model (CAR), multivariate finite mixture
model, generalized ordered response model, and spatio-temporal
model. Studies indicate that the most popular approach is the CAR
model, probably because it takes advantage of the flexibility of the
Bayesian hierarchical framework to account for the spatial correlation
(Ma et al., 2017; Zeng and Huang, 2014). Examples of studies involving
spatial components in the multivariate crash analysis context are Xie
et al. (2019); Huang et al. (2017); Wang and Huang (2016); Zeng and
Huang (2014); Aguero-Valverde (2013) and Barua et al. (2014).

2.2. Multivariate model for nonmotorized crash analysis and exposure
measure

Crash analysis for nonmotorized modes has received significantly
less attention under the multivariate setting than crash analysis for
motorized vehicles. Several studies sought to formulate joint models for
nonmotorized crashes at the zonal level and recognized the dependency
of various crash attributes. Wang and Kockelman (2013) aggregated
crash data at the census tract and developed a multivariate Poisson-
lognormal CAR model for pedestrian crashes across different severity
levels using 3 years of crash data (2007–2009) for the Austin area.
Nashad et al. (2016) developed a copula-based bivariate negative bi-
nomial model for pedestrian and bicycle crash frequency analysis at the
macrolevel (the statewide traffic analysis zone). The variables used in
the model included exposure measures (vehicle miles traveled), socio-
economic characteristics, road network characteristics, and land use
attributes. The study concluded that macrolevel nonmotorized crash
analysis needs to accommodate the dependence between pedestrian
and bicycle crash count events. Cai et al. (2017) developed a joint
model for crash frequency and the proportion of nonmotorists at the
traffic analysis district level in Florida. Narayanamoorthy et al. (2013)

developed a spatial multivariate count model to examine the number of
pedestrian and bicyclist injuries by injury severity at the census tract
level for New York City. The study used various risk factors, such as
sociodemographic characteristics (population density and distribution
of population based on age, income, and race), land use variables
(proportion of commercial and industrial land use), activity intensity
characteristics (number of schools and universities), road network
characteristics (proportion of highways and bicycle route length),
commute mode shares, and transit supply characteristics (number of
bus stops).

Although the research was not specific to pedestrian crash severity,
Huang et al. (2017) simultaneously analyzed the occurrence of motor
vehicle, bicycle, and pedestrian crashes at urban intersections in Florida
using multiple explanatory variables, such as annual daily traffic for
major/minor roads; population density; leg number; speed limit; and
presence of a traffic signal, pedestrian signal, crosswalk, bus stop, and
median. Heydari et al. (2017) investigated the crash correlates of
walking and cycling at signalized intersections in Montreal, Canada,
using a flexible multivariate latent class approach. The explanatory
variables were motorized volume by turning direction; nonmotorized
volume; maximum speed limit; leg number; and presence of a pedes-
trian signal, subway station, bus stop, and median. Additional ex-
planatory variables included land use characteristics such as employ-
ment, commercial area, land use mix, and number of schools.

Because the exposure measure is an essential element for modeling
nonmotorized crash frequency, studies have used a number of methods
to quantify the exposure to crash risk. Wang and Kockelman (2013)
used walk miles traveled as an exposure measure, which was estimated
using household travel survey data and least squares regression. Vehicle
miles traveled was another exposure measure used by studies for non-
motorized crash analysis through a joint model (Nashad et al., 2016).
Cai et al. (2017) found that the product of the log of population and the
log of vehicle miles traveled was the best exposure variable to examine
pedestrian crashes for a zip code–level analysis. Since it is often difficult
to quantify the number of pedestrian/bicyclist miles of travel and mo-
torized vehicle miles of travel at a zonal level, studies—in both a
multivariate and non-multivariate context—have suggested the use of
surrogate measures such as population density (LaScala et al., 2000;
Narayanamoorthy et al., 2013), income (Loukaitou-Sideris et al., 2007),
activity intensity characteristics (Mitra and Washington, 2012), road
network length (Figliozzi et al., 2018; Kamel et al., 2019), and so forth.
In other studies, bicycle and pedestrian count data obtained from both
signalized and unsignalized intersections were incorporated as ex-
posure measures (Heydari et al., 2017; Strauss et al., 2014).

3. Model description and formulation

3.1. Mixed Poisson model for crash analysis

Researchers have extensively used mixed Poisson models to ac-
commodate the overdispersion in crash counts. These mixed Poisson
models, hierarchical in nature, accommodate the observed crashes
(conditional on the mean) that are mutually independent and Poisson
distributed at the first level. The mixed Poisson models allow the un-
observable mean of crashes to vary across locations, with an assumed
probability distribution at the second level. Most highway safety re-
searchers have used two types of mixed Poisson models: Poisson gamma
and Poisson lognormal. Studies suggest that the Poisson-lognormal
model is more flexible than the Poisson gamma in accommodating
multivariate structure and spatial correlation (Aguero-Valverde and
Jovanis, 2009; Ma et al., 2008).

In this study, a multivariate spatial Poisson-lognormal model was
developed to observe the pedestrian crash frequency across three se-
verities at intersections in the Austin area. Because ignoring spatial
correlation may lead to biased model parameters and inferior model
performance (Aguero-Valverde and Jovanis, 2010; LeSage and Pace,
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2009), the potential presence of spatial correlations among the inter-
sections was also accounted for. The model estimation was conducted
through a full Bayesian approach, which considers the uncertainty re-
lated to model parameters and provides exact measures of uncertainty
(Miaou and Lord, 2003). In the Poisson-lognormal model, the Poisson
parameter is assumed to follow a lognormal distribution. The marginal
distribution of this model does not have a closed form, and the max-
imum likelihood estimates approach cannot be directly used to estimate
model parameters, unlike the Poisson-gamma model. For this reason,
Markov-chain Monte Carlo simulation methods from the Bayesian
perspective were used for model estimation.

3.2. Multivariate spatial Poisson-lognormal model

Let Yik denote the number of pedestrian crashes observed at the ith

intersection ( = 1, 2,. . ., 409) of kth severity ( = 1, 2, 3) during the
study period. In the Poisson hierarchical models, Y ,ik when conditional
on the mean crash rate ik, is assumed to be Poisson distributed, which
can be expressed as:

Y Poisson ( )ik ik (1)

The mean crash rate ( )ik can be specified at the second level of
hierarchy:

= + + +log X S U( )ik k i k ik ik (2)

where:

• k is the intercept term of severity k.
• Xi indicates a column vector of covariates (pedestrian volume, in-

tersection features, traffic condition, etc.).
• k = ( ,k k1 2, …, km) denotes an m dimensional regression coef-

ficient vector specific to each observation type k. For example,
m= 7 (because seven explanatory variables were used in the final
model) for this study.

• Uik represents the error term that captures site-specific heterogeneity
not explained by spatial effects. It is assumed to be multivariate
normally distributed with a mean vector of 0 and a variance-cov-
ariance matrix of. This is equivalent to e Lognormal (0, )Uik ,
where is the variance-covariance matrix for heterogeneous effects.
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Here, the diagonal elements, kk
2 , represent the heterogeneous variance

of Ui1, Ui2, and Ui3. The off-diagonal elements denote the heterogeneous
covariance among Ui1, Ui2, and Ui3. For the precision matrix Σ−1, the
most commonly used noninformative Wishart distribution is specified
as the prior, written as Wishart (I, r). Here, I denotes the identity ma-
trix, and r (≥ K) denotes the degrees of freedom, set at 3 to make the
prior minimally informative (Gelman, 2006).

Sik is a spatially structured random effects term that accounts for
spatial autocorrelation, which cannot be incorporated by the Poisson-
lognormal model alone (Huang et al., 2017). To explore the spatial
correlation between adjacent intersections, Sik is assigned an intrinsic
conditional autoregressive (ICAR) (Besag et al., 1991) prior for each
severity level k. The multivariate ICAR model is the intrinsic version of
the multivariate conditional autoregressive model (Lawson, 2013) and
has been used by several studies for multivariate spatial analysis (Liu
and Zhu, 2017; Ma et al., 2017). For the spatially structured random
effects Si = (S S Si i i1, 2, 3 )T, the multivariate ICAR specification can be
expressed as:

S S S S MN S n|( , , ) ( , / )i i i i i s i1 2 3 (4)
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where:

• ,i j denotes the weight that intersection j has on intersection i:
,i j = 1 if i and j are adjacent and 0 otherwise.

• ni is the number of intersections adjacent to intersection i.
• Σs is the covariance matrix where the diagonal elements represent

the conditional variance of S S Si i i1, 2, 3. The off-diagonal elements
represent the conditional within-intersection covariance. s is also
assumed to follow a Wishart distribution.

To define the spatial relationship, the fixed distance band option
was chosen, with a threshold value of 1 mile. Previous studies have
asserted the appropriateness of this method to analyze point datasets
(Lee and Khattak, 2019; Mitchel, 2005).

3.3. Prior specification

Prior specification is a crucial component of Bayesian modeling
approaches. Because of the lack of sufficient prior knowledge of the
distributions for individual parameters, uninformative (vague) prior
distributions are usually specified (Ma et al., 2017). The intercept term

k was assigned a uniform prior dflat(). The regression coefficient km
(for m number of predictors) was specified to follow a noninformative
normal distribution with a mean of 0 and a variance of 10,000.

The key differences between the multivariate and univariate models
lie in the prior specifications of the random effects. For the univariate
model, which cannot accommodate the dependence between severity
types, the random effects for different severities of crashes are in-
dependent. Therefore, for the univariate model, Uik was assumed to
follow an independent normal distribution, as follows:

U N (0, )ik uk
2 (6)

Sik was determined through an ICAR distribution, as expressed by:

=S S N S n| ( ¯ , / ) for k 1,2, 3ik ik ik sk i
2 (7)

=S
S

n
¯ ,
ik

j i

i j jk

i (8)

where:

• ,i j denotes the weight that intersection j has on intersection i.
,i j = 1 if i and j are adjacent and 0 otherwise.

According to the ICAR model, the conditional distribution of Sik, given
the remaining components (S ik ), is normal, with mean S̄ik and variance

n/sk i
2 . Here, ni is the number of intersections adjacent to intersection i. The

variation of Sik is controlled by the overall variance parameter sk
2 . The

hyper-parameters for 1/ sk
2 and 1/ uk

2 are Gamma (0.5, 0.0005).

3.4. Model evaluation

The deviance information criteria (DIC) were used as goodness-of-fit
measures for model comparisons. The DIC are a generalization of
Akaike information criteria proposed by Speigelhalter et al. (2002) and
provide a Bayesian measure of model complexity and fitting.

The DIC can be defined as:

= + = +DIC D D D D( ¯) 2 (9)

where:

• D ( ¯) is the deviance using the posterior mean values of the para-
meters of interest .

S. Munira, et al. Accident Analysis and Prevention 144 (2020) 105679

4



• D is the posterior mean of deviances.
• D is the effective number of parameters in the model.

Lower DIC values for the model are preferred. Generally, differences
in DIC of more than 10 suggest keeping the model with the lower DIC;
differences between 5 and 10 are considered substantial; differences of
less than 5 suggest that the models are not statistically different (MRC
Biostatistics Unit, 2004).

4. Data description

Austin, Texas, was selected as the study area for this study to fa-
cilitate the city’s newly adopted holistic approach (Austin
Transportation Department, 2018) to improve citywide pedestrian
safety and promote walking for transport and physical activity. The city
also adopted the Vision Zero initiative to reduce traffic-related deaths
and injuries to zero by the year 2025.

This section explains the data compiled and processed for the de-
velopment of the crash model described in Section 3. The data included
crash data as the main variable of interest along with exposure data and
other explanatory variables used to develop the pedestrian crash model.

4.1. Crash data

The traffic crash data for this study were taken from TxDOT’s Crash
Records Information System (CRIS) (Texas Department of
Transportation (TxDOT, 2016b). The data obtained included the dis-
aggregated crash data for all locations within the study area, collected
over 8 years (2011–2018). Along with various crash features, CRIS
reports the severity of crashes (not injured, possible injury, non-in-
capacitating injury, incapacitating injury, and killed) and units in-
volved (such as motor vehicle or pedestrian) and identifies the co-
ordinates of each crash location. CRIS also separates crash data based
on the location where the traffic crash occurred:

• Intersection crash: a traffic crash that occurs within the limits of an
intersection.

• Intersection-related crash: a traffic crash that occurs on an approach
to or exit from an intersection and results from an activity, behavior,
or control related to the movement of traffic units through the in-
tersection. The crash reviewers designate a crash as intersection-
related if they deem that the presence or characteristics of the in-
tersection contributed to the crash.

• Driveway access crash: a traffic crash that occurs on a driveway
access or involves a road vehicle entering or leaving another
roadway by way of a driveway access.

• Non-intersection crash: a traffic crash that is not an intersection
crash, intersection-related crash, or driveway access crash.

To meet the objectives of this study, pedestrian-involved intersec-
tion or intersection-related fatal and injury (non-incapacitating and
incapacitating) crashes were extracted from the dataset. Not injured or
possible injury (no visible injury) crashes were not included in the
analysis. After obtaining the crashes based on the specified criteria, the
location of each crash was matched or spatially joined with the nearest
intersections of the network because the crash dataset does not identify
the name or location of the intersection related to a crash. The inter-
section map was generated using the city’s comprehensive transport
network data. Only crashes within a 300-foot buffer (Fitzpatrick et al.,
2018) of the nearest intersection were considered. A total of 655 pe-
destrian crashes (fatal and injury) at 409 signalized intersections were
identified.

The analysis unit (i.e., dependent variable of the model) is the
number of crashes (of each severity type considered in the analysis) at
an intersection aggregated over 8 years. Although pedestrian crash data
were available prior to 2011 for the study area, a study period of 8 years

was considered to be of adequate length to gather enough pedestrian
crash data. The latest pedestrian safety action plan for the Austin area
(Austin Transportation Department, 2018), which aggregated 6 years
(2010–2015) of pedestrian crash data to relate with land use char-
acteristics, was also taken into consideration when selecting the ag-
gregation period. Table 1 presents the crash frequency of each severity
level of interest.

As seen in Table 1, the number of fatal crashes is low when com-
pared with the other two crash types. However, fatal crashes were kept
as an individual category because the study sought to observe the in-
fluence of the explanatory variables specific to intersection fatal cra-
shes. According to a study by Lord and Miranda-Moreno (2008),
Poisson-lognormal models tend to perform better than Poisson-gamma
models when crash data are characterized by a low sample mean
combined with a small sample size.

4.2. Pedestrian exposure data

Given the lack of pedestrian exposure or volume data across the
region, a direct demand model was developed to estimate pedestrian
volume in all crash locations based on the available count data. This
particular model is one of the most frequently used modeling ap-
proaches in pedestrian/bicyclist safety (Turner et al., 2017). The
modeling framework uses count observations from limited locations
and estimates demand at a specific location (midblock or intersection)
by directly relating the counts to mode, trip, and traveler attributes
using a form of regression analysis (Ortuzar and Willumsen, 2011). A
comprehensive literature review of the direct demand model was be-
yond the scope of this study but is provided by Munira and Sener
(2017).

The following subsections provide information on data gathering
and processing for estimating the exposure—or pedestrian—volume,
which was used as an input in the crash model.

4.2.1. Data used for estimating pedestrian volume
This study collected actual volume data from two sources:

• Short-duration count data from the City of Austin Transportation
Department.

• Continuous count data from Eco-Counter.

The City of Austin Transportation Department collected 24 -h short
count data for pedestrians from 44 intersections in the study area.
Following the standard data method, the pedestrian volume data were
collected on typical weekdays distributed over 5 months (April, May,
June, August, and October) in 2017. The continuous count data were
obtained from Eco-Counter, which has been collecting pedestrian and
bicycle data in 11 locations in the Austin area since 2012. The count
data from the permanent counter were taken to estimate the daily and
monthly factors (Nordback et al., 2013), which were then used to cal-
culate the annual average daily pedestrian volume for the 44 locations.
The final annual average daily pedestrian volume was used as the de-
pendent variable of the pedestrian direct demand model.

A rich set of explanatory variables to use as an input in the pedes-
trian direct demand model was created with data from multiple
sources, such as the Data and Technology Services of the City of Austin

Table 1
Description and Frequency of Fatal and Injury Pedestrian Crashes.

Severity Description Frequency

Fatal Fatal (killed) crash 30
Incapacitating Suspected serious injury/incapacitating injury

crash
119

Non-incapacitating Non-incapacitating injury crash 506
Total crashes 655
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Transportation Department, the City of Austin public data portal, the
2017 American Community Survey, the City of Austin Planning and
Development Review Department, the Texas Education Agency, the
Austin Transportation Department Arterial Management Division, and
the Capital Metropolitan Transportation Authority (Capital Metro) data
portal. These datasets were then analyzed, cleaned, and processed to
bring them to homogenous spatial scales (buffer levels around the in-
tersection). Over 300 variables for three buffer zones—0.25 miles, 0.5
miles, and 1 mile—were created for this study. The variables were ca-
tegorized into seven groups: demographics, socioeconomics, network/
interaction with vehicle traffic, pedestrian- or bicycle-specific infra-
structure, transit facilities, major generators, and land use. For a de-
tailed description of each variable category, see Munira and Sener
(2017).

4.2.2. Estimation of pedestrian volume
Based on the estimated pedestrian volume for the 44 intersections

and the explanatory variables created at three buffer zones, a negative
binomial model was developed. As discussed by Munira and Sener
(2017), both the Poisson and the negative binomial model have been
used frequently in estimating nonmotorized volume due to the discrete
nature of the volume data (Hankey et al., 2012; Strauss and Miranda-
Moreno, 2013; Tabeshian and Kattan, 2014). This study chose the ne-
gative binomial model over the Poisson model since the data were
overdispersed in nature, with greater variance than the mean. Different
combinations of explanatory variables were examined, and the best
model was selected based on goodness of fit and predictive accuracy, as
well as intuitive considerations and parsimony in specification. In ad-
dition, while selecting the number of variables for the final model
combinations, the sample size was also considered to avoid the over-
fitting issue (Howell, 1997). Therefore, only five predictors were se-
lected for the final model, thereby following the general principle of
eight to 10 observations per predictor.

Table 2 presents the results of the final pedestrian direct demand
model. As illustrated in the table, the best model was obtained with
variables of different buffer levels. This finding is consistent with pre-
vious studies (Liu and Griswold, 2009; Miranda-Moreno and Fernandes,
2011) and confirms the need for developing model variables at different
buffer scales. Further investigation into the model variables revealed
that while some variables conformed to previous studies, other vari-
ables provided unique insights into the pedestrian behavior for the
Austin region.

The model suggested that with the increasing length of paved and
unpaved trail around 0.5 miles from the intersection, pedestrian volume
increases. Previous studies have also indicated a significant positive
relationship between pedestrian activity and trail length (e.g., Hankey
and Lindsey, 2016). Similarly, a significant positive influence of com-
mercial space (Miranda-Moreno and Fernandes, 2011; Tabeshian and
Kattan, 2014) and transit stops (Hankey et al., 2017; Pulugurtha and
Repaka, 2008) on pedestrian volume was also observed. This finding is
intuitive because people are expected to walk to and from transit stops
to access their final destinations. Furthermore, commercial spaces, such
as shopping areas, are likely to attract pedestrians. The negative re-
lationship between the population of small children and pedestrian
volume may be attributed to people’s unwillingness to walk when they
have to travel with small children (Jones et al., 2010). Moreover, an
interesting relationship was observed between the home-based worker
population and walking activity. The work-at-home population refers to a
worker’s lack of travel from home to a separate workplace (U.S. Census
Bureau, 2017). The positive relationship between this population group
and pedestrian volume implies that home-based employees, who save
significant commute time and energy, are probably more likely to walk
for physical activity, daily chores, or recreation, contributing to the
increasing pedestrian volume in their nearby areas.

Fig. 1 illustrates pedestrian volume estimated by the model at the
intersections of the study area. While the figure provides the pedestrian

volume for the 409 signalized intersections of the study area (i.e., the
entire city area), the inset map provides a close-up examination of the
central region of the city. Overall, the findings from the model provide
valuable insights into the factors affecting pedestrian activity at inter-
sections in the Austin region. In addition to safety analysis, this model
can estimate pedestrian demand at other intersections of the same re-
gion, which is often needed for planning. The model result can also be
used as an exposure measure in future pedestrian crash models if
needed.

4.3. Explanatory variables

The pedestrian crash data were integrated with traffic character-
istics, road geometry, and built environment features on the intersec-
tion approaches. Data for explanatory variables for each intersection
were obtained for the years of 2016–20171 and from various sources,
including the TxDOT Roadway-Highway Inventory (RHiNO), the City of
Austin’s signal data and sidewalk data, and Capital Metro’s transit data.
Data preparation was mainly performed in ArcGIS.

The 2017 TxDOT RHiNO was used to obtain roadway features for
the target intersections. Because the RHiNO network often did not
perfectly align with the City of Austin’s comprehensive transport net-
work data, extensive manual data processing was needed to match the
intersections and minimize error. To handle the roadway characteristics
of different approaches of the same intersection, categorized the in-
tersecting approaches were categorized by two types: major and minor.
The categorization was done based on traffic volume, functional class,
and cross section. The major approach to the intersecting street was the
street with the greater traffic volume, larger cross section, and/or
higher functional class (National Cooperative Highway Research
Program, 2004). Data were gathered for both major and minor ap-
proaches of the intersections. Issues in the topology of RHiNO added to
the difficulties in identifying the major and minor streets for each in-
tersection. The key issues faced during this process were:

• Intersecting streets did not always intersect in the RHiNO data.
Often, tiny gaps existed between the roadway segments of the in-
tersections.

Table 2
Pedestrian Direct Demand Model Results.

Variable (Buffer Radius) Estimate T-Stat Pr(> |z|)

Intercept 4.088 8.21 < 0.001
Paved and unpaved trail length in feet (0.5 miles) 6.37e-05 4.86 < 0.001
Number of commercial establishments (0.1 miles) 2.39e-02 2.44 0.01
Total population under 5 years (0.5 miles) −3.72e-03 −3.17 < 0.001
Total population working at home (0.1 miles) 6.10e-02 4.14 < 0.001
Number of transit stops (1.0 miles) 8.96e-03 2.61 0.01

Model Statistics
Sample size (N) 44
Overdispersion parameter (theta) 2.26
Root mean square error (RMSE) 598.17
R-squared (R2) 0.77
Mean absolute error (MAE) 379.35

1 The database for explanatory variables was compiled based on available
data, which were limited to the years of 2016–2017 during the execution of this
study. Given that the crash data were aggregated over 8 years, it would have
been ideal if the explanatory variable data could have been gathered for each of
the years. As discussed later in the conclusion section, this is one of the lim-
itations of this study, and indeed a limitation of any such aggregate-level study.
For instance, in their studies, Chen and Zhou (2016) and Forbes and Habib
(2015) discussed the limitation of their aggregate-level crash analyses related to
not being able to capture the temporal effect of changes in the built environ-
ment factors.
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• RHiNO roadway segments did not always break at intersections.
• The length of roadway segments varied significantly, from less than

1 foot to over 100 feet.

To correctly categorize roadway segments as part of the major or
minor street at each target intersection, the researchers applied the
following solutions:

1 The missing intersections in RHiNO, caused by the gaps between
roadway segments around intersections, were manually added to
include all the target intersections.

2 The complete intersection network was used to break RHiNO seg-
ments at target intersections. Only RHiNO segments within 50 feet
of the target intersections were kept for the following analysis.

3 Major and minor streets for each intersection were identified based
on traffic volume and geometric characteristics.

Fig. 1. Pedestrian Volume at the 409 Signalized Intersections of the Study Area (magnified central region in the inset).
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Each process went through extensive quality control.
To obtain traffic and pedestrian signal data in the intersection, the

City of Austin’s signal data were processed for each intersection.
Similarly, Capital Metro’s bus stop data were gathered to determine the
presence of a bus stop (within 300 feet) for each location. To obtain the
sidewalk data, first the presence of a sidewalk for both major and minor
streets was confirmed. Using the data, a new variable was created that
identified whether a sidewalk was present in at least one approach to
the intersection.

Table 3 presents the descriptive statistics of the variables considered
for the model. Several other variables—for instance, related to truck
percentage, functional classification, and presence of a median for the
minor approach—were considered at the initial stages but eliminated in
the process and not considered for the model due to the presence of
excessive missing values.

The final model building went through an extensive process. First,
the correlations between independent variables were checked. Where
the absolute value of the correlation coefficient between pairs of vari-
ables was greater than or equal to 0.6, the variables were considered
highly correlated (Evans, 1996), and inclusion of these variables might
have led to an unreliable estimate of model parameters. Therefore,
several checks were conducted to examine potential multicollinearity
issues due to these variables. Next, various combinations of the in-
dependent variables were examined and compared based on the model
performance. Variables that were highly correlated were not included
in the same combination. The median and pedestrian signal variables
were excluded because they exhibited low variation. Based on the
model contribution and collinearity, the functional system variable for
both major and minor approaches, the variable for the number of lanes
for both major and minor approaches, and the average daily traffic for
minor approaches were excluded from the final model.

The final model included some variables that were not significant at
the 90 % confidence level due to their potential for future research and
based on insights obtained from the safety literature and local practice.
For instance, the recently published pedestrian safety action plan for
the Austin area (Austin Transportation Department, 2018) highlighted
the importance of considering various land use characteristics, in-
cluding sidewalk and street width, when examining pedestrian risk in
the region. Thus, such variables, although not significant at the desired
level of significance, were kept in the final model for intuitive con-
siderations and their practical value, which helped bridge a connection

to the study conducted by the local transportation department. A model
with only significant variables was also built to examine the difference
in DIC between the two models, which was found to have a value of 5
and therefore was not significant.

5. Crash model results

5.1. Model performance

The final model developed is a Bayesian multivariate Poisson-log-
normal CAR model. For comparison, a Bayesian univariate Poisson-
lognormal CAR model was also estimated with the same variable spe-
cification.

The models were estimated using WinBUGS software and statistical
software R (R Core Team, 2016). Package R2WinBUGS (Sturtz et al.,
2005) was also used to run WinBUGS from R software and to estimate
the parameters. The posterior summaries were obtained via 100,000
iterations with 50,000 burn-in samples. The convergence of the model
was assessed by inspecting the trace plots and ensuring that the Monte
Carlo error for each parameter of interest was less than about 5 % of the
sample standard deviation.

Table 4 presents the goodness of fit of both the multivariate and
univariate models. The table illustrates that the multivariate model
outperformed the univariate model, with the multivariate model having
lower D and DIC values than the univariate model. The multivariate
model exhibited a significant drop in D and DIC values compared to the
univariate model.

The results suggest that the multivariate model accounting for
correlation among different crash types provides better model fitting,
and using the multivariate spatial model instead of the univariate
spatial model is more appropriate.

Table 3
Descriptive Statistics of the Crash Model Variables.

Variables Description Mean Minimum Maximum

Ped_Vol Annual average daily pedestrian volume (AADP) 605 4 7083
Leg_Num Number of legs at the intersection 3.73 3 5
Spd_Max Maximum speed limit at the intersection (miles per hour) 44 25 65
Num_Lanes_Maj Number of through lanes on the major road 4 2 6
Num_Lanes _Min Number of through lanes on the minor road 2 1 6
ADT_Major Adjusted average daily traffic volume on the major road 22,742 405 52,976
ADT_Minor Adjusted average daily traffic volume on the minor road 6421 200 42,922
Truck_per_Maj Percent of trucks in the average daily traffic at the major approach 3.33 1 8.9
Categorical Variable
Bus_Stop Presence of a bus stop (within 300 feet of the intersection) (binary variable) No bus stop (42 %)

Bus stop present (58 %)
Side_walk Presence of a sidewalk on one approach (binary variable) No sidewalk on any approaches (11 %)

Sidewalk on one approach (89 %)
Ped_Sig Presence of a pedestrian signal (binary variable) No signal (7 %)

Signal present (93 %)
F_ System _Maj Functional system of the major road Other principal arterial (60.4 %)

Minor arterial (23.7 %)
Major collector (14.2 %)
Minor collector (0.2 %)
Local (1.5 %)

Med_ Maj Presence of median on the major approach (binary variable) No median (94.0 %)
Median present (5.9 %)

Table 4
Summary of Model Performance.

Model Type D ρD DIC

Univariate model 1899.40 82.069 1981.47
Multivariate model 1803.11 167.771 1970.88
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5.2. Model results

5.2.1. Explanatory variables (observed)
Since the multivariate model outperformed the univariate model,

the discussion of the explanatory variables is based on the multivariate
model results. Table 5 presents the coefficient estimates for the multi-
variate spatial model. To observe the significance level, the 95 %
credible intervals of the posterior sampled parameters were checked.
The 95 % credible interval contains the sampled data values from the
2.5th percentile to the 97.5th percentile of the posterior distributions.
Similarly, the 90 % credible interval from the 5th percentile and 95th
percentile values was assessed. A variable is statistically insignificant if
the confidence interval contains zero (Gelman, 2004).

The variation in significance and the magnitude of explanatory
variables across different crash severity types emphasize the need for
multivariate models by severity type to provide accurate guidelines for
designing countermeasures.

The results showed that for the fatal crash severity level, the only
significant variable (at the 95 % confidence level) was the maximum
speed limit. This significant positive influence of speed limit on fatal
pedestrian crashes suggests that pedestrians are more at risk of being
killed in a crash when vehicles are driving at a higher speed. Previous
studies have also revealed that higher speed limits are associated with a
greater risk of pedestrian crashes, including severe pedestrian injuries
(Davis, 2001; Jensen, 1998; Zegeer et al., 2006). According to model
results, holding all other variables constant, the relative risk of a fatal
crash for pedestrians at signalized intersections increased by around 10
% with an increase of one standard deviation in the speed limit.

When the variables for incapacitating injury crashes and non-in-
capacitating injury crashes were investigated, both crash severities had
two common significant variables: average daily traffic volume on the
major approach and a bus stop.

As expected, the daily traffic volume on the major approach had a
positive influence on both incapacitating injury crashes and non-in-
capacitating injury crashes, which conforms to previous studies
(Harwood et al., 2008; Huang et al., 2017; Zegeer et al., 2001; Zhao
et al., 2018). The relative risk of incapacitating injury crashes and non-
incapacitating injury crashes increased by 3.4 % and 2.4 %, respec-
tively, with an increase of one standard deviation of traffic volume (in
1000 vehicles per day).

In contrast to some earlier studies (Huang et al., 2017; Strauss et al.,
2014), the effect of the presence of a bus stop around the intersection
showed an interesting difference across the two crash types. The model
results showed that the presence of a bus stop decreased (by 31 %) the
risk of incapacitating injury crashes but increased (by 32 %) the risk of
non-incapacitating injury crashes for pedestrians. This finding may be
attributed to the fact that an intersection with bus stops accommodating
a lot of pedestrian and bicycle traffic may decrease the risk of in-
capacitating injury crashes because the speed is generally low and
motorists are careful and vigilant, but may increase the risk of non-

incapacitating injury crashes due to the decreased visibility.
In terms of the pedestrian exposure measure, the results indicated

that increasing pedestrian volume contributes to increasing non-in-
capacitating injury crashes. Previous studies have suggested a similar
relationship (Amoh-Gyimah et al., 2016; Cai et al., 2016; Osama and
Sayed, 2017). However, pedestrian volume did not have a significant
influence (at the 90 % confidence level) on the other two crash types.
Previous studies have suggested that the relationship between pedes-
trian volume and crashes is complex. While the total number of pe-
destrian crashes at a particular location tends to increase with in-
creasing pedestrian volume, the increase is nonlinear in nature
(Jacobsen, 2003; Leden, 2002).

5.2.2. Heterogeneous and spatial effects (unobserved)
The estimation results for the heterogeneous and spatial effects (as

specified in Eq. 2) for the multivariate spatial model are presented in
Tables 6 and 7, respectively. Table 6 presents the variance-covariance
and correlation of heterogeneous effects across crash severities within
intersections. Table 7 presents the variance-covariance and correlation
matrix of spatial effects for crash counts for three severity types. The
diagonal cells of the table indicate the variance for each crash severity.
The covariance matrix is presented in the upper part of the matrix in
each table. The correlation matrix is presented in the lower part of the
matrix in each table. The effect is significant when the standard de-
viation is lower than the mean and not significant when the standard
deviation is higher than the mean (Huang et al., 2017).

As Table 6 shows, the variance of heterogeneous effects for the crash
count of each severity is significant and indicates the need to in-
corporate a heterogeneous error term in the model. Moreover, the value
of heterogeneous variance is the highest for fatal crashes, which sug-
gests that fatal crashes exhibit more randomness than incapacitating
and non-incapacitating injury crashes. However, the covariance for
heterogenous effects is not significant. In addition, the correlation be-
tween crash counts of all severity types is not significant, which in-
dicates no significant unobserved common factor contributing to fatal,
incapacitating, and non-incapacitating crash counts for pedestrians.

Table 5
Estimated Coefficients of the Multivariate Spatial Model.

Variablea Fatal Crash Incapacitating Injury Crash Non-incapacitating Injury Crash
Mean (SD) Mean (SD) Mean (SD)

Intercept −8.19 (3.26)** −3.404 (1.3)** −0.63 (0.72)
Ped_Vol (in 100 AADP) −0.04 (0.03) 0.01 (0.01) 0.01 (0.005)**
Truck_per_Maj −0.13 (0.20) −0.10 (0.1) 0.01 (0.05)
Bus_Stop 0.09 (0.47) −0.38 (0.22)* 0.28 (0.12)**
Side_walk 0.74 (0.94) −0.19 (0.3) −0.01 (0.17)
Leg_Num −0.36 (0.44) −0.02 (0.25) 0.03 (0.12)
Spd_Max (mph) 0.10 (0.05)** 0.002 (0.02) 0.003 (0.01)
ADT_Maj (in 1000 vehicles per day) −0.001 (0.03) 0.03 (0.01)** 0.02 (0.01)**

a See Table 3 for variable descriptions.
* Significant coefficients at the 90 % confidence level.
** Significant coefficients at the 95 % confidence level.

Table 6
Variance-Covariance and Correlation Matrix for Heterogeneous Effects of the
Multivariate Spatial Model.

Fatal Incapacitating Non-incapacitating
Mean (Standard Deviation)

Fatal 0.52 (0.4)a,* 0.01 (0.19)b −0.05 (0.1)b

Incapacitating 0.01 (0.39)c 0.38 (0.19)a,* 0.06 (0.07)b

Non-incapacitating −0.15 (0.3)c 0.22 (0.24)c 0.17 (0.05)a,*

* Significance denoted by the lower standard deviation than the mean.
a Variance.
b Covariance.
c Correlation.
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Similar to the heterogenous effects, the results of Table 7 indicate
the significant variance of spatial effects for crash counts of each crash
severity and suggest that the crash observations of different severities
exhibit a significant correlation between adjacent intersections. The
results also indicate the insignificance of the covariance for spatial ef-
fects. Furthermore, the correlation between fatal and incapacitating
crashes and fatal and non-incapacitating crashes for the spatial effects is
not significant. This finding suggests that a higher number of fatal
crashes occurring at a particular intersection is significantly correlated
with a higher number of fatal crashes at an adjacent intersection but is
not significantly correlated with crash frequency of incapacitating and
non-incapacitating crashes at the adjacent intersection. However, a
significant correlation exists between the crash frequency of in-
capacitating and non-incapacitating crashes at the adjacent intersec-
tions.

6. Discussion

The findings of the study offer valuable insights into both pedestrian
demand and crashes of different severity levels in the study area. One of
the noteworthy contributions of this study is that it incorporated pe-
destrian volume at all intersections of the study area in the crash ana-
lysis—an aspect typically missing or represented via surrogate mea-
sures. Even the 2018 Pedestrian Safety Action Plan of the City of Austin
(Austin Transportation Department, 2018) highlighted the need to in-
corporate reliable pedestrian volume for safety analysis in the area. The
direct demand model for pedestrians proved to be not only a crucial
component in the crash model but also a viable standalone pedestrian
demand estimation tool for nonmotorized policy formulation, project
prioritization, pollution analysis, and so forth.

In addition, the direct demand model yielded valuable insights into
the factors affecting pedestrian demand in the Austin area. The positive
influence of trails (both paved and unpaved) shows how the urban trail
facilities contribute to pedestrian traffic. The city’s Urban Trails Master
Plan (City of Austin, 2014) outlines the plan for future expansion of the
urban trail network throughout the city, and the related model results
underscore the promising potential of the expansion projects to en-
courage pedestrian activity. In addition, given that commercial estab-
lishments and transit stops attract pedestrian activity, city officials
should promote mixed-use developments and provide facilities such as
well-buffered sidewalks near transit stops and commercial areas. An-
other significant determinant of pedestrian activity at intersections in
the Austin area is the population of employees working remotely. As
shown by the model, the population working at home contributes to
increasing pedestrian activity at nearby locations. This finding indicates
that home-based employees, who save significant commute time and
energy, are probably more likely to walk for physical activity, daily
chores, or recreation. Employers seeking policies to boost the physical
and mental well-being of employees may consider flexible work ar-
rangements so employees can engage in physical activity.

The pedestrian crash model developed for this study, along with the
subsequent results, can be beneficial in helping policy makers create

both short- and long-term strategies to reduce pedestrian crashes of all
severity types. While some variables conform to previous studies, other
variables offer new insights into the crash patterns of the study area.
The positive relationship between speed limit and fatal crash risk is well
supported by observations reported by the Austin Transportation
Department (2018), which indicated that although crashes are more
frequent in locations with lower speed limits (30–45 mph), the risk of
fatal crashes is the highest (64 % from 2010 to 2015) when the speed
limit increases beyond 45 mph. The findings of the model in this study
highlight the need to perform road safety audits of high-speed roadways
and to develop criteria to promote safe design speeds of city streets.
Educational campaigns to promote safe driving and walking behavior
may also prove beneficial.

The significant positive influence of traffic volume on both in-
capacitating and non-incapacitating injury crashes at intersections also
warrants specific policy attention. A road diet strategy that involves
narrowing or eliminating travel lanes is an effective strategy for im-
proving pedestrian safety conditions by lowering vehicle speed and
reducing crossing distance (Zegeer et al., 2001). In addition, installation
of bike lanes, which provides a buffer between the street and the
sidewalk, increases driver awareness and expectation as well as reduces
potential conflict between pedestrians and bicyclists on the side-
walk—thereby both encouraging nonmotorized activity and improving
road safety conditions.

The influence of the presence of bus stops at the intersections across
incapacitating and non-incapacitating injury crashes offers interesting
insights as well. The negative and positive influence of bus stops on
incapacitating injury and non-incapacitating injury crashes, respec-
tively, can be explained by findings from previous studies. For instance,
Clifton et al. (2009) found a significant negative influence of bus stops
on injury crashes but not on fatal crashes. The authors suggested that
better transit access might be representative of an urban center area
where motorists travel at slow speeds and fewer crashes with severe
injuries occur. Given that the central region of the Austin area is transit
rich, the negative influence of bus stops on serious injury crashes might
also be attributed to the same reason. On the other hand, the higher risk
of incapacitating injury crashes near the transit stops may be attributed
to more pedestrians boarding or exiting buses. In other words, although
the number of crashes increase in the presence of bus stops, they are
less likely to result in serious injuries due to motorists moving at slower
speeds. The positive influence of bus stops on pedestrian crashes at
intersections was also reported by earlier studies (Chen et al., 2019;
Pulugurtha and Sambhara, 2011), but the severity of crashes was not
differentiated.

The policies regarding bus stops should aim to reduce pedestrian
crashes of all severity types and consider a combination of design ele-
ments. For example, increasing pedestrian crossing time, installing
high-visibility crosswalks and refuge islands, and ensuring adequate
light have been proven to be effective in reducing pedestrian crashes
(Chen et al., 2013). At the same time, extra caution should be exercised
before implementing engineering measures such as relocation of bus
stops (such as to midblock locations), and only after considering the
measure’s positive influence on incapacitating injury crashes. A report
by the Austin Transportation Department (2018) indicated that despite
having more crashes at intersection locations, crashes at midblock lo-
cations are more often severe. This finding might be attributed to the
higher speed and lower expectation of pedestrians crossing at the
midblock locations.

Finally, the influence of pedestrian volume on different crash se-
verity types provides interesting insight. Intersections with higher pe-
destrian demand tend to experience higher non-incapacitating injury
crashes (significant at the 95 % confidence level). On the other hand,
pedestrian volume did not have a significant influence (at the desired
level of significance) on the other two crash types. The relationship
between pedestrian severity type and pedestrian demand at intersec-
tions merits further investigation.

Table 7
Variance-Covariance and Correlation Matrix for Spatial Effects of the
Multivariate Spatial Model.

Fatal Incapacitating Non-incapacitating
Mean (Standard Deviation)

Fatal 0.44 (0.36)a,* 0.06 (0.22)b 0.02 (0.16)b

Incapacitating 0.09 (0.39)c 0.51 (0.33)a,* 0.17 (0.18)b

Non-incapacitating 0.04 (0.38)c 0.37 (0.32)c,* 0.32 (0.16)a,*

* Significance denoted by the lower standard deviation than the mean.
a Variance.
b Covariance.
c Correlation.
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7. Conclusion

Intersection-level crash analyses are essential for obtaining deeper
insights into the factors affecting safety conditions in order to facilitate
policy decisions. The traffic operations at signalized intersections are
complex, and the pedestrian crash risk of different severities at signa-
lized intersections can be influenced by many operational and geo-
metric factors that require profound understanding to design counter-
measures.

This study contributed to the field of research by developing an
integrated analysis framework to examine the impacts of various factors
on crash frequencies across fatal, incapacitating injury, and non-in-
capacitating injury crashes involving pedestrians in the Austin area.
The ultimate objective was to demonstrate the usability of direct de-
mand models to develop exposure measures—a key feature of crash
analysis—and to illustrate the potential of complex multivariate models
to accurately estimate crash parameters to help develop policy-based
countermeasures aimed at reducing pedestrian crash risks at intersec-
tions. A multivariate Poisson-lognormal spatial model was developed.
The results showed that the multivariate model accounting for corre-
lation among different crash types provided a better model fit, and the
use of the multivariate spatial model instead of the univariate spatial
model was more appropriate in the study context. Moreover, the model
could distinguish the difference in influence of multiple explanatory
variables across the crash types at the intersections in the Austin area.

This study is not without limitations and calls for future research,
particularly in three main areas. First, this study conducted an ag-
gregate-level analysis in which the crashes of different severity were
aggregated for 8 years to ensure adequate sample size for a robust
statistical analysis. Although aggregate methods are commonly used
and provide valuable insights (e.g., Miranda-Moreno and Fernandes,
2011; Park and Lord, 2007), especially when data are limited, the ag-
gregation does not capture the temporal variations of the explanatory
variables. Future studies will be valuable to assess the extent of possible
bias due to temporal variations in the built environment characteristics.
Moreover, research efforts considering temporal correlation to capture
the variability of crashes as well as to reflect the influence of different
land use and traffic-related factors can add value to the field when
conducting similar safety analyses. Second, the pedestrian exposure
measure used in this study was obtained using a direct demand mod-
eling approach that has been widely utilized and is recommended,
especially when resources are limited (e.g., input data requirements,
technical complexity, budget considerations due to costly model de-
velopment and maintenance), as noted in a recent FHWA guide (Turner
et al., 2018). Although the modeling framework makes great use of
available count data at limited locations and of their surrounding fea-
tures to estimate volume at locations without counts, it is limited in
terms of capturing the underlying behaviors and travel patterns. As
resources and tools become more available, safety researchers and
practitioners may consider the value added to compile additional data
(e.g., trip-level information) and/or create more complex models (e.g.,
regional travel demand models) when developing exposure measures.
Third, because the crash data do not identify the name of the inter-
section related to a specific crash, geo-referenced crash data were used
to join and identify the nearest intersection. Therefore, the research
depended on the accuracy of the inputted coordinates. Issues in the
topology of RHiNO data added to the challenge of processing data.
Future studies need to gather more area-level and intersection-related
features to observe their influence on pedestrian crashes of different
severity types. Besides intersection location, crash risk on midblock
locations should be investigated to design policy measures.
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