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a b s t r a c t 

The p -center flow-refueling facility location problem locates p refueling facilities to mini- 

mize the maximum percentage deviation of all drivers. It is a social equity resource allo- 

cation model as opposed to a social efficiency p -maximum coverage flow-refueling model. 

We propose a nonlinear integer program based on link formulation and analyze its re- 

lationship with p -maximum coverage and set covering location flow-refueling problems. 

We develop a link-based implicit enumeration algorithm with an embedded vehicle range- 

constrained shortest path subproblem to optimally solve the problem. The computational 

results show that multiple optimal solutions may exist but that they are associated with 

different total trip distances. In addition, the maximum deviation may not decrease as the 

vehicle range or the number of refueling facilities marginally increases. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The transportation sector is one of the largest contributors to greenhouse gas (GHG) emissions, accounting for 27% of all

GHG emissions in the US in 2011. Within the sector, cars are by far the greatest contributors, generating 43% of all emissions

( US EPA, 2013 ). Due to the negative environmental impacts of gasoline-powered vehicles, the development of alternative-fuel

vehicles (AFVs) powered by liquid biofuels, hydrogen and/or electricity has become a priority for governments around the

world to help ensure a healthy environment. However, some AFV drivers must fuel their vehicles at alternative-fuel refueling

facilities (AFFs) to complete trips. Thus, the development of an equitable and/or cost-effective refueling infrastructure is

essential for establishing consumer confidence in the deployment of AFVs. 

AFFs provide services required by drivers (the terms ‘user,’ ‘driver’ and ‘traveler’ are used interchangeably herein) to

complete trips (the terms ‘trip’ and ‘journey’ are used interchangeably). Flow-refueling facility location models design an in-

frastructure to successfully refuel drivers’ AFVs and ensure the completion of covered trips, and they are flow-based refueling

facility location models, which differ from point-based models. Point-based refueling facility location models design an in-

frastructure that guarantees that drivers can reach a refueling station within a minimum travel time ( Stephens-Romero et al.,

2010 ). These flow-refueling problems are analyzed in three primary research streams: p -maximum coverage, set (complete)

covering and tour-based refueling facility location models. In the design of the flow-refueling facility infrastructure, two op-

posing social objectives may be considered: social efficiency and social equity. Models of p - maximum coverage flow-refueling

with a maximum allowable deviation locate p refueling facilities to maximize the total number of trips completed within

a predetermined maximum allowable deviation. Of course, when zero deviation is imposed, all drivers travel along their

shortest paths ( Kuby and Lim, 2005 ). The p -maximum coverage flow-refueling models are system optimization (e.g., social
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efficiency ) models. These models maximize the travel flows of a system as a whole, though some vehicles may not be able

to complete their trips when feasible refueling paths exceed the maximum allowable deviation. 

In contrast, social equity optimization models explicitly consider levels of fairness among users. The goal of these models

is to allocate resources such that all drivers are indiscriminately served by the system and the worst deviation allowable is

equally applied to each driver. Set covering flow-refueling models minimize the total investment cost of refueling facilities

while addressing the refueling needs of all drivers so that they can complete their trips. Certain set covering flow-refueling

models prohibit deviations, thus requiring that all drivers travel along their shortest paths ( MirHassani and Ebrazi, 2013;

Wang and Lin, 2009; 2013; Wang and Wang, 2010 ). These models are the most desirable social equity models but are

applied only in extreme cases, as they potentially require considerable governmental/industrial investment. In this paper,

we propose an alternative means of addressing such social equity issues regarding flow-refueling infrastructure design by

examining the p-center flow-refueling facility location problem. We locate p refueling facilities so that the occurrence of the

maximum allowable deviation (i.e., the worst detour for all drivers in the system) is minimized. The number of p refueling

facilities can be treated as a surrogate for budget investment limitations. 

The remainder of this paper is organized as follows. In Section 2 , we review three primary streams of relevant research

on flow-refueling facility location models, which include p -maximum coverage, set covering and tour-based facility loca-

tion models. Section 3 presents mathematical models for the p -center flow-refueling facility location problem applied to an

uncapacitated directed network. Two exclusive but related p -center flow-refueling models—symmetric trips in a symmet-

ric network and single-direction trips in symmetric or asymmetric networks—are presented. Both models are developed as

nonlinear integer programs by link formulation. We analyze the relationship among p -center, p -maximum coverage and set

covering flow-refueling problems. Section 4 presents the algorithmic design. We propose an exact solution for optimally

solving the proposed problem without the explicit enumeration of paths. This solution method involves a link-based ap-

proach and determines travel paths as needed. The problem employs a bi-level structure, p -infrastructure design and path

determination. Through the determination of the locations of refueling facilities, the problem is simplified to a vehicle-range-

constrained routing subproblem (VRCRP). We develop a nondominated labeling shortest path algorithm for this subproblem.

This algorithm is embedded in the implicit enumeration algorithm branched on the zero-one facility decision variable in

a search tree. To improve computational efficiency, we develop a proliferate algorithm to determine the associated lower

bound. In Section 5 , we present numerical experiments on a 25-node network ( Hodgson, 1990 ) and its expanded 35-node

network to examine the computational efficiency of the proposed solution method. We analyze optimal solutions and com-

pare them to those of set-covering flow-refueling modeling. A sensitivity analysis of the impact of vehicle range on the

number of refueling facilities required is also conducted. A summary of our study is provided in Section 6 . 

2. Literature review 

In the literature, conventional location-allocation models simultaneously locate and allocate demand to a set of service

facilities in a manner that minimizes total cost. Studies on these models assume that all journeys involve direct travel

between demand nodes and facilities. Accordingly, individuals who require services travel directly from their locations to

service facilities, or conversely, a service provider will directly deliver its services from its location to the customer’s location.

These models assign customer locations and fulfill customer demands through the delivery of service facilities. The models

have been used to plan public facilities, warehouses, emergency facilities, etc. 

However, certain forms of demand that emerge during travel are dependent on the journey. These demands are ad-

dressed by facilities positioned along travel paths. Such facilities include vehicle refueling facilities, which have two unique

characteristics ( Kelly and Kuby, 2013; Kuby et al., 2013 ) that cannot be addressed by conventional location models based on

an assumption of node-based demand. First, individuals do not typically make special trips from their homes to refueling sta-

tions and then return home immediately afterward. Vehicle refueling demands thus generally take the form of traffic flows

that pass refueling facilities on the way to other destinations. Second, AFVs with a limited driving range must be refueled

multiple times to complete longer trips and/or must deviate from typical paths for refueling purposes when necessary. 

Flow-refueling facility location models study flow-based facility location problems. Three primary streams of research,

p -maximum coverage, set covering and tour-based flow-refueling models, have focused on this subject. Notably, we present

only a subset of the related research and their classifications, which are tabulated in Table 1 . 

The first stream examines p-maximum coverage flow-refueling models that design an infrastructure that is confined to a

specific number of p refueling facilities to maximize the total travel flow. These models examine social efficiency problems.

This modeling approach was inspired by Hodgson (1990) , who developed the uncapacitated flow-capturing location model .

The objective of such models is to maximize the total flow volume passing by any one facility positioned on a node along

a driver’s shortest paths in the network. However, AFVs with limited range may need to make multiple stops to complete

journeys. Thus, Kuby and Lim (2005) and Lim and Kuby (2010) developed the uncapacitated flow-refueling location model

(u-FRLM) designed specifically for siting AFFs. This model optimally locates a set of p refueling facilities in a network and

considers opportunities to refuel AFVs multiple times to maximize the total flow volume of fuel-feasible paths. 

Other researchers have developed reformulating mathematical models. Capar and Kuby (2012) proposed the ‘node cover-

path cover (NC-PC)’ formulation, and Capar et al. (2013) developed the ‘arc cover-path cover (AC-PC)’ formulation. The NC-

PC formulation identifies a set of candidate facility locations that renders a node passible, while the AC-PC formulation

identifies a set of candidate facility locations that renders a directed arc travelable. Thus, when each node/directed arc along
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Table 1 

A subset of selected research and their classifications. 

Flow-refueling models Aim Time period Key characteristics Research 

Path/tour Refueling station 

p -maximum coverage Social efficiency/system 

optimization 

Single Shortest/predetermined single 

path 

Uncapacitated Kuby and Lim (2005) 

Lim and Kuby (2010) 

Capar and Kuby (2012) 

Capar et al. (2013) 

Arslan and 

Kara ̧s an (2016) 

Capacitated Upchurch et al. (2009) 

Multiple Zhang et al. (2017) 

Single Predetermined ε deviation Uncapacitated Kim and Kuby (2012) 

Kim and Kuby (2013) 

Tran et al. (2018) 

Set covering Social equity Single Shortest path Uncapacitated Wang and Lin (2009) 

MirHassani and 

Ebrazi (2013) 

Wang and Wang (2010) 

Wang and Lin (2013) 

p -center Determine the maximum 

deviation ε

This research 

Tour interception 

(Activity-based) 

Fulfilling daily activity Single Actual/resequencing Uncapacitated Kang and Recker (2009) 

Kang and Recker (2014) 

Dong et al. (2014) 

Predetermined ε deviation Kang and Recker (2015) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a path is passible/travelable, a trip is refuel-feasible. Although both formulations assume that paths for all OD pairs must

be known in advance, they do not require the computationally intensive enumeration of facility combinations along each

path, thus resulting in a reduced number of decision variables and constraints and potentially solving broader problems

than previous formulations. 

Arslan and Kara ̧s an (2016) extended the flow-refueling location model by considering both electric and plug-in hybrid

electric vehicles. They proposed a generalization model that maximizes vehicle miles traveled using electricity (and thereby

minimizes total transportation cost) and presented an exact solution methodology, called the Benders decomposition algo-

rithm. The computation showed that the approach may effectively handle instances of realistic size. Upchurch et al. (2009) ,

in contrast, studied the capacitated flow-refueling location model (c-FRLM) to determine an infrastructure of p refueling fa-

cilities such that the total flow volume is maximized while meeting multiple refueling needs and refueling facility capacity

requirements. Zhang et al. (2017) extended a single-period c-FRLM to a multiple-period c-FRLM for electric vehicles. In ad-

dition, they also studied an alternative objective function for maximizing electric vehicle demand. 

Berman et al. (1995) extended the flow-capturing location model to consider the fact that customers may deviate from

their shortest paths to visit a service facility. One of the objectives of this new model is to minimize expected inconve-

niences as measured by the deviation distance. Similarly, Kim and Kuby (2012) provided a deviated version of the FRLM to

consider the fact that drivers may make necessary deviations from their shortest paths to travel to fueling stations when

a refueling station network is sparse. The authors used the k -shortest path algorithm to generate potential deviation paths

for all OD pairs until the deviation distance of these paths reaches an upper limit. The quality of this solution is closely

correlated with the upper limit or the number of predetermined refuel-feasible paths. Furthermore, it is fairly burdensome

and computationally time consuming to enumerate all potential deviation paths and potential combinations of refueling

facilities that cover each path for large-scale problems. Kim and Kuby (2013) proposed a heuristic algorithm for managing

large-scale networks. Their bi-level method applies a greedy approach to the determination of facility infrastructures and an

embedded shortest refuel-feasible path subproblem. The heuristic algorithm is a linked-based approach that implicitly de-

termines paths when needed without the predetermination of refuel-feasible paths. Tran et al. (2018) developed an efficient

heuristic algorithm based on solving a sequence of subproblems restricted to a set of promising station candidates, some of

which are fixed as the most promising station locations to improve computation time. The experimental results show that

the algorithm outperforms the genetic and greedy algorithms. However, the solution to those heuristic algorithms is a local

optimum. 

The second stream of flow-refueling station location models is the set covering models, which minimize the total invest-

ment cost of refueling facilities and determine their locations to ensure that all AFVs have enough fuel to travel along their

shortest paths from origins to destinations in a network. These models examine social equity problems to ensure that no de-

viations occur in any AFV. Wang and Lin (2009) used such variables to track AFV fuel levels to ensure that AFVs are supplied

with enough fuel at each intermediate node to complete journeys on their shortest paths. To more efficiently address this

issue, MirHassani and Ebrazi (2013) expanded the network by adding virtual nodes and refuel-feasible-directed links to the
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shortest paths. They formulated a mixed integer linear programming problem for this expanded network. The computational

results for a 192-node network with 3160 origin–destination (OD) pairs show that this approach can be used to obtain an

optimal solution efficiently. Wang and Wang (2010) extended the set covering problem to simultaneously consider nodal

population demands such that the total coverage of population demand is maximized while path demands are satisfied.

Later, Wang and Lin (2013) extended the set covering problem to study the problem of the deployment of multiple types of

recharging stations (i.e., slow-, fast-, and battery-exchange stations) for refueling electric vehicles. 

The third stream of flow-based models includes the tour interception location models . These models are also referred to

activity-based models ( Kang and Recker, 2009; Dong et al., 2014 ) and determine an infrastructure of refueling facilities that

captures travelers’ tours / itineraries while allowing for itinerary rescheduling or activity resequencing during trip completion.

Kang and Recker (2009) used 1-day travel diaries drawn from 20 0 0 to 20 01 California state household travel survey to study

the potential impacts of electric vehicles on energy profiles. Dong et al. (2014) used GPS-based travel survey data to estimate

drivers’ travel activities, origins, destinations, travel distances, dwell times and other travel patterns. Under the assumption

that travelers’ daily travel scheduling/sequencing remains unchanged , this research determines the locations and types of

chargers used within maximum allowable budgets to minimize the number of missed trips. Based on a limited refueling

infrastructure, Kang and Recker (2014) measured the inconveniences suffered by individuals who switch from using inter-

nal combustion engine vehicles to using AFVs. The authors assumed that individuals may rearrange their travel sequencing

habits to perform identified activities. Issues of travel with allowable deviations were considered by Kang and Recker (2015) .

They studied the hydrogen refueling facility location model, which couples a location strategy for the set covering problem

with a routing and scheduling strategy for the household activity pattern problem. The model determines a refueling infras-

tructure such that each household’s travel disutility is bounded by a predetermined maximum tolerable inconvenience value

for trips involving refueling only once. Jung et al. (2014) considered stochastic demand that occur dynamically over time.

Their model determines the locations and the number of servers at each location for a maximum of p servers to minimize

the total travel times and average queue delays at each server for all travelers. 

The p - maximum coverage flow-refueling location models are system optimization (i.e., social efficiency ) models. These mod-

els identify the maximum efficiency of a system regardless of the impacts on drivers who are unable to refuel to complete

journeys in a system. In contrast, set covering flow-refueling models are social equity models that minimize total investments

made while allowing all travelers to travel along zero or predetermined deviation-allowable paths. Such models may set an

unrealistic maximum deviation for travelers to tolerate or potentially require considerable governmental/industrial invest-

ment. In the present study, we examine p - center flow-refueling facility location problems that locate p refueling facilities such

that, for the maximum percentage deviation of all drivers, the occurrence of the worst detour for any driver in a system

is minimized. We develop a social equity optimization model that explicitly considers levels of fairness among AFVs. The

proposed approach may illuminate how limited budgets may impact travel equity or the maximum allowable deviation in

driver paths. 

3. Mathematical model 

In this study, we define the network examined as an uncapacitated directed network G = ( N, A ), where N is a set of nodes

including the origins and destinations of all OD pairs with element i, j ∈ N and A is the set of directed links with element

ij ∈ A with the direction running from (tail) node i to (head) node j . Some/all origins and destinations may be designated

candidate refueling facility locations with element s ∈ S . In addition, we assume that the service capacity of each facility is

unlimited to form an uncapacitated network. Key definitions and assumptions are as follows. 

(1) Two types of networks . 

a. Symmetric network . A network that, for any pair of nodes, includes a pair of links in opposing directions. In addi-

tion, their attributes (distance and fuel consumption) are identical. 

b. Asymmetric network . A network that consists of a single link for a pair or for some/all pairs of nodes, or a pair of

links in opposing directions for a pair or for some/all pairs of nodes wherein their attributes are different, or a

combination of the above. 

(2) Two types of trips . 

a. Single-direction trips . For such trips, drivers depart from their origins and arrive at their destinations. AFVs have

an initial fuel level and a nonzero fuel level at any node in their journals. Vehicles may refuel along the way as

needed. 

b. Symmetric round trips . For such trips, drivers travel along their forward (directed) paths from their origins to their

destinations and return along their reverse (directed) paths, which are identical to their forward paths but are

oriented in the opposite direction, and arrive at the locations in the reverse sequence. To ensure the completion

of round trips, drivers require half the fuel capacity upon departing from their origins ( Kuby and Lim, 2005 ) and

the same amount of fuel upon arriving at their destinations ( MirHassani and Ebrazi, 2013 ). 

(3) Vehicle range feasible paths (VRFPs) are directed paths from origins to destinations in which drivers have enough fuel

or can refuel to complete their journeys. However, we assume that all drivers are rational and thus always choose to

travel along the shortest paths, namely, via vehicle range shortest feasible paths (VRSPs). 
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(4) We define the absolute shortest path (ASP) of an OD pair as the shortest distance from an origin to a destination

assuming that the driver has an unlimited fuel capacity. 

(5) The percentage of deviation for a driver is the percentage increase in distance from the distance to the ASP to the

distance to the VRSP in a p -infrastructure. 

3.1. Notations 

The notations used throughout this study are defined as follows. 

A. Sets and parameters 

O : The set of origin nodes with generic o ∈ O . 

D : The set of destination nodes with generic d ∈ D . 

S : The set of candidate refueling facility nodes with generic s ∈ S . 

N : The set of nodes N = { O ∪ D ∪ S } \ {{ O ∩ S }, { D ∩ S }} with generic i / j ∈ N . 

A : The set of directed arcs with generic element ij ∈ A . 

V : Vehicle full fuel tank capacity. 

d ij : The distance from node i to node j . 

ˆ e od 
o : The initial fuel level at trip origin o for O-D pair od ∈ OD 

f ij : Fuel consumed after traveling from node i to node j . 

z̄ od : The absolute shortest distance for O-D pair od ∈ OD 

B : A large value. 

B. Decision variables 

e 
od, f 
i 

: Fuel remaining with arrival at node i on a forward path of O-D pair od . Note that the superscript f is used to denote

the forward trip. 

y i : 1 when a refueling facility is located at node i,i ∈ S and = 0 otherwise. 

x od 
i j 

: 1 when a driver travels on directed link ij for OD pair od and = 0 otherwise. 

r od : The percentage of deviation between VRSP and ASP for OD pair od . 

3.2. The p-center flow-refueling problem in an uncapacitated directed network 

The p -center flow-refueling facility location problem in an uncapacitated directed network involves selecting a set of p

facilities from the set of candidate refueling sites such that the maximum of all drivers’ percentage deviations is minimized.

We study the p -center problem for the following two cases: symmetric round trips taken in a symmetric network and

single-direction trips taken in symmetric or asymmetric networks. 

3.2.1. Symmetric round trips occurring in a symmetric network 

The mathematical formulation for symmetric round trips in a symmetric network is as follows: 

Minimize ε = max 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

r od = 

(∑ 

i j 

d i j x 
od 
i j 

− z̄ od 

)
z̄ od 

, ∀ od ∈ M 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(1) 

Subject to: ∑ 

i ∈ S 
y i = p (2) 

∑ 

j∈ N 
x od 

i j −
∑ 

j∈ N 
x od 

ji = 

{ 

1 , i = o;
−1 , i = d;

0 , o/w ;
∀ i ∈ N, od ∈ M (3) 

e od, f 
j 

≤
(
e od, f 

i ( 1 − y i ) + V y i − f i j 

)(
x od 

i j 

)
+ B 

(
1 − x od 

i j 

) ∀ i j ∈ A, od ∈ M (4) 

⎧ ⎨ 

⎩ 

e od, f 
o = 

ˆ e od 
o ≥ 0 . 5 V 

0 ≤ e od, f 
j 

≤ V ∀ j ∈ N\{ o, d} 
e od, f 

d 
≥ 0 . 5 V 

∀ od ∈ M (5) 

(
x od 

i j , y i 
)

∈ { 0 , 1 } ; ∀ i ∈ N, i j ∈ A, od ∈ M (6) 

The objective function minimizes the maximum percentage deviation of all drivers. Constraint (2) states that there is

an exact number of p refueling facilities to be allocated within the network. Constraints (3) , the set of flow conservation
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constraints, state that each driver travels on his/her forward VRSP. This path includes links valued at 1. Constraints (4) track

the fuel level at each node on a forward path. Note that these constraints are a set of either-or formulations. Let us ob-

serve the following cases for Constraints (4) . (1) For y i = 1 , x od 
i j 

= 1 , the constraint becomes e 
od, f 
j 

≤ V − f i j , or the amount of

fuel remaining upon arrival at node j . (2) For y i = 0 , x od 
i j 

= 1 , the constraint becomes e 
od, f 
j 

≤ e 
od, f 
i 

− f i j . Finally, (3) for cases

y i = 1 , x od 
i j 

= 0 and y i = 0 , x od 
i j 

= 0 , as link ij is not located on the path, the constraint becomes e 
od, f 
j 

≤ B and is thus lifted .

Thus, Constraints (4) ensure that enough fuel is available for the completion of a journey along link ij . In addition, fuel

remaining upon arrival at node j cannot exceed the level of consumption required to travel along link ij . Of course, the

vehicle is fully refueled to its capacity when it departs a refueling facility at node i,y i = 1. Constraints (5) state that the

fuel level at any intermediate node of all directed forward paths is a non-negative decision variable and is bounded by the

full capacity. In addition, the initial fuel level of AFVs of drivers at their respective origin nodes and destinations must be

at least half capacity. All decision variables, links on VRSPs and facility location decision variables are binary, as stated in

Constraints (6) . 

3.2.2. Single-direction trips occurring in asymmetric or symmetric networks 

Mathematical formulations (1)–(6) apply to symmetric round trips. These symmetric assumptions improve computational

efficiency, as the model needs to determine only a single forward path for all OD trips. Suppose that all trips are single-

direction trips in asymmetric or symmetric networks. No half-capacity fuel levels are required for origins or destinations.

Constraints (5) can simply be replaced with the following: {
e od, f 

o = 

ˆ e od 
o ≥ 0 

0 ≤ e od, f 
j 

≤ V ∀ j ∈ N\{ o} ∀ od ∈ M (5a)

The amount of fuel required depends on the path traveled and is sufficient as long as AFVs have enough fuel to complete

their journeys. 

3.3. The relationship with flow-based models 

In this section, we analyze the relationship among the p -center, p -maximum coverage and set covering flow-refueling

facility location models. 

3.3.1. p-maximum coverage flow-refueling facility problems 

The p -center flow-refueling facility location problem determines the lowest percentage deviation under which all flows

in a system can be served by a p -infrastructure. Thus, we have the following: 

Lemma 1. Denote ε∗as the optimal solution to the p-center flow-refueling facility location problem. In turn, ε∗ is the lowest

predetermined percentage deviation that guarantees that all flows will be served under the p-maximum coverage flow-refueling

facility location problem. 

Proof. Denote {( r od ) ∗, od ∈ OD } as the optimal percentage deviation of OD pairs of the p -center flow-refueling fa-

cility location problem. When ε∗ is the optimal solution to the p -center flow-refueling facility location problem,

{ y ∗s ∈ { 0 , 1 } , ∀ s ∈ S : 
∑ 

s y 
∗
s = p } ; this condition implies the following: ε∗ ≥ max {( r od ) ∗, ∀ od ∈ OD }. Thus, {( r od ) ∗, od ∈ OD }

is a feasible solution to the p -maximum coverage flow-refueling facility location problem with a predetermined maximum

allowable deviation of ε∗. Now, assume the opposite, where there is another p -infrastructure { y s̄ ∈ { 0 , 1 } , ∀ ̄s ∈ S : 
∑ 

s̄ y s̄ = p }
with a set of refuel-feasible paths that satisfies condition ε ∗ > max { ̄r od , ∀ od ∈ OD } for the p -maximum coverage flow-

refueling facility location problem. Because { ̄r od , ∀ od ∈ OD } is a feasible solution to the p -center flow-refueling facility

location problem, ε∗ cannot be the optimal solution to the p -center flow-refueling facility location problem. A contradiction

is thus established. �

Of course, pursuing any ambitious goal to predetermine a lower (i.e., smaller than ε∗) maximum percentage deviation

may indicate only that there is a trip flow that cannot be served by any such p -infrastructure. 

Corollary 2. If ε∗ is the optimal solution to the p-center flow-refueling facility location problem with a predetermined number of

refueling facilities p, no p-infrastructures of the p-maximum coverage flow-refueling facility location problem can serve all OD

flows by a predetermined maximum deviation of { ε: 0 ≤ ε < ε∗}. 

Proof. Again, there is a set of refuel-feasible paths in the p -maximum coverage flow-refueling facility location problem that

satisfies condition ε ∗ > ε = max { ̄r od , ∀ od ∈ OD } . { ̄r od , ∀ od ∈ OD } is a feasible solution to the p -center flow-refueling facility

location problem, implying that ε∗ cannot be the optimal solution to the p -center flow-refueling facility location problem. A
contradiction is thus established. �
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3.3.2. Set covering flow-refueling facility problems 

The p -center flow-refueling facility location problem determines the maximum percentage deviation for a predetermined

p number of refueling facilities. In contrast, the set covering flow-refueling facility location problem determines the mini-

mum number of refueling facilities for a predetermined maximum percentage deviation. Thus, there is a strong relationship

between the two problems, which can be stated as the following lemma: 

Lemma 3. Suppose ε∗ is the optimal solution to the p ∗-center flow-refueling facility location problem with a predetermined

number of refueling facilities p ∗ and that s ∗ is the optimal number of refueling facilities for the set covering flow-refueling facility

location problem with a predetermined maximum deviation of ε∗. We in turn have the following relationship: s ∗ ≤ p ∗. 

Proof. Because ε∗ is the optimal solution to the p ∗-center flow-refueling facility location problem, this implies that ε∗ ≥
max {( r od ) ∗, ∀ od ∈ OD }. Thus, p ∗-infrastructure serves as a feasible solution to the set covering flow-refueling facility location

problem with a predetermined maximum deviation of ε∗. �

This proof shows that the center flow-refueling facility location problem determines the maximum percentage deviation

ε∗ for a predetermined size of refueling facilities p . The set covering flow-refueling facility location problem will determine

the smallest size s ∗ when p -infrastructures p ∈ {1, ...| S |} all achieve the maximum percentage deviation of ε∗. Thus, we have

the following corollary: 

Corollary 4. s ∗ = min { p : ε ( p ) = ε ∗, p ∈ {1, ...| S |}} . 

Proof. From Lemma 3 , we have s ∗ ≤ p ∗ where ε ∗ = ε ( p ∗). Assume that there is a p’ -infrastructure such that { p ′ | ε( p ′ ) = ε∗}

< s ∗. Then, p’ -infrastructure must be the optimal solution to the set covering flow-refueling facility location problem with

a maximum deviation of ε∗. This condition contradicts the conclusion that s ∗ is the optimal solution to the set covering

flow-refueling facility location problem. �

Finally, as p continuously increases, all drivers may travel along their shortest paths, thus leading to the following: 

Lemma 5. The optimal solution to the p-center flow-refueling facility location problem when p is sufficiently large is the optimal

solution to the set covering flow-refueling facility location problem that involves the shortest paths. 

Proof. As all origins and destinations are candidate locations for refueling facilities, all drivers may travel along their short-

est paths when all locations are designated a refueling facility. �

Collectively, the p -center flow-refueling facility location problem determines the lowest percentage deviation at which

all flows in a system can be served by a predetermined p . Any ambitious goal to establish a lower deviation may imply

only that a trip flow cannot be addressed by the p -maximum coverage flow-refueling facility location problem. In addition,

although the center flow-refueling facility location problem determines the maximum percentage deviation for infrastructure 

of a predetermined size, the set covering flow-refueling facility location problem will determine the smallest size associated

with that maximum percentage deviation. Finally, there is a large p value such that p -infrastructure may allow all drivers to

travel along their shortest paths. 

4. Design of the algorithm 

One solution scheme is a path-based approach. That is, when reformulating the model as a set covering problem that

selects a set of p refueling facilities to completely cover at least one VRFP for all OD pairs. This approach requires access to

a reasonable set of VRFPs. This set may be determined by a predetermined number of paths or from all paths based on the

best estimated maximum deviation for all OD pairs. One of the drawbacks associated with this approach is that it is time

consuming to simply generate a set of VRFPs. In addition, a set may need to be expanded when an insufficient number

of paths are generated to provide feasible results. In this study, we design an exact optimal solution without explicitly

generating any sets of deviation paths using a link-based approach. 

Observe that the p -center flow-refueling problem has a bi-level structure. The upper level forms a p -infrastructure (Con-

straint 2), while the lower level forms VRSPs for all OD pairs in the vehicle range-constrained shortest path (VRCSP) sub-

problem through Constraints (3)–(5) . The VRCSP determines the shortest path constrained by a vehicle’s driving range even

when a vehicle may be refueled along its path when necessary. We embed the VRCSP into an implicit enumeration scheme

to determine the maximum percentage deviation. 

4.1. The VRCSP subproblem 

We propose a labeling shortest path (SP) algorithm with dequeue implementation to determine the VRSP of all OD pairs.

The algorithm may solve either directional or symmetric trips. Two main steps are involved: node selection and distance/fuel

level update . The algorithm starts at origin o and proceeds with a forward search. This algorithm is characterized by node

labeling. For each node i , we create a set of labels ω 

n 
i 

= ( e od, f,n 
i 

, d 
od, f,n 
i 

) to represent the fuel level and distance of the n th
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Fig. 1. Two illustrative examples of the VRCSP algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

forward path n ∈ M ( i ) at node i from origin o . At any node i on path n , we scan all associated leaving links with a common

tail node i . A vehicle may reach head node j upon leaving link ij if it is supplied with enough fuel to travel from tail node i to

head node j . Whenever head node j is reached, we calculate two temporary attributes, fuel level and distance ( ̃  e 
od, f 
j 

, ˜ d 
od, f 
j 

) , as

˜ e 
od, f 
j 

= e 
od, f,n 
i 

− f i j and 

˜ d 
od, f 
j 

= d 
od, f,n 
i 

+ d i j , respectively. Of course, the fuel level will be reset to its full level ˜ e 
od, f 
j 

= V when

node j keeps a refueling facility open. We maintain only nondominated labels. Thus, ∃ n ∈ M ( j ): e 
od, f,n 
j 

≥ ˜ e 
od, f 
j 

and d 
od, f,n 
j 

≤ ˜ d 
od, f 
j 

,

and no labels shall be recorded, which means that a rational driver cannot travel along this path segment, as another path

segment runs from origin o to node j over a distance that is not longer, and the driver may travel with the same amount

of remaining fuel. Otherwise, we increment the nondominated set of node j as e 
od, f,m 

j 
= ˜ e 

od, f 
j 

and d 
od, f,m 

j 
= 

˜ d 
od, f 
j 

for m = n + 1.

Whenever a nondominated label is recorded for a head node, that node will be inserted into the search node sequence .

Dequeue implementation will place this node in the first position of the sequence if it was previously positioned in the

sequence. Otherwise, it will be placed at the end of the sequence. The algorithm will not end until the search node sequence

is empty. Note that this algorithm does not require any additional preprocessing of network configurations for computation

purposes as is necessary with, for example, an artificial feasible network constructed to represent all feasible paths, as

proposed by Ichimori et al. (1981) and Kim and Kuby (2013) and Adler et al. (2016) . 

We now illustrate two examples, shown in Fig. 1 (a) and (b), in a directed network, where o is the origin node, d is the

destination node and the number shown on each link is its associated distance. We assume that a full-capacity vehicle can

travel a distance of 10. For a symmetric round trip for an OD pair od of the p = 1 center problem, at least half a tank of

fuel is required at the origin and destination nodes to guarantee that enough fuel is available for journey completion. In

Fig. 1 (a), node 2 is assigned a refueling facility. In Fig. 1 (a), a vehicle with a range of 10 cannot travel along a forward path

o -1-3- d or complete its round trip even though it is the ASP between o and d . The vehicle cannot complete its associated

backward path d -3-1- o due to fuel limitations. Observe the first label at node 3 ω 

1 
3 

= (0 , 5) on path segment o -1-3. After

traveling along another path segment o -2 and 3 and reaching node 3, its associated attributes are ω 

2 
3 = (0 . 7 , 7) . This label

can be recorded as the second label at node 3, as it is a nondominated solution. Ultimately, at the destination, the SP with

sufficient fuel is the VRSP. 
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Fig. 2. An illustrative search tree and backward search scenarios for p = 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the VRSP may not necessarily be a path with no duplicated nodes. In other words, the path may include a

cycle . Observe the second example illustrated in Fig. 1 (b). The VRSP is o -1-2-1- d for OD pair od , which includes a cycle of

1-2-1. 

4.2. Implicit enumeration algorithm 

The VRCSP algorithm is embedded in an implicit enumeration on binary decision variable y ’s open or closed refueling

facilities at candidate locations. These decisions collectively form the search tree illustrated in Fig. 2 . 

A node in the search tree shown in Fig. 2 is denoted by search node. A search node is associated with either complete or

incomplete p -infrastructure. When the open/closed status of all candidate refueling facilities is assigned and the total number

of facilities open is exactly equal to p , the infrastructure is a complete p -infrastructure. We may evaluate the objective value

and the maximum deviation and update the incumbent solution when a superior solution is obtained. We search backward

(toward lower tiers) to determine the next search node. The infrastructure is incomplete , implying that the status of certain

refueling facilities has yet to be assigned. We can determine the feasibility level of the branch rooted at the search node and

then determine its associated lower bound when feasible. When the lower bound is lower than the incumbent, we perform

a depth-first search by moving downward (toward higher tiers) to determine the next search node. Otherwise, we search

backward. 

4.2.1. Backward search 

For the backward search applied at search node s , we iteratively move backward toward lower tiers until reaching node s̄

with y s̄ = 1 , and while applying y s̄ = 0 , condition 

∑ s = ̄s 
s =1 y s + | S| − | ̄s | ≥ p must hold. This condition implies the presence of p -

infrastructure on the branch rooted at s̄ . Otherwise, while 
∑ s = ̄s 

s =1 y s + | S| − | ̄s | < p, no p -infrastructure may exist even though

all unassigned refueling facilities y s = 1 , ∀ s ∈ { ̄s + 1 , ... | S| } remain open. Of course, when none exist, the program terminates.

With the determination of s̄ , two branching scenarios occur as follows. 

(a) Suppose that 
∑ s = ̄s 

s =1 y s + | S| − | ̄s | > p and that there are more than enough refueling facilities available to form a p-

infrastructure. Thus, node s̄ becomes the next search node. An example for p = 3 is shown in Fig. 2 (a). The search

node applies y 5 = 1 in a p = 3 infrastructure where y 1 = y 4 = 1 and y 2 = y 3 = 0. Now, when performing the backward

search, node 5 cannot simply be closed, i.e., y 5 = 0, and assigned as the next search node. This situation leaves only 2

refueling facilities for a p = 3 problem. Thus, we continuously trace backward to node 4 and close its refueling facility

y 4 = 0. Unfortunately, y 1 = y 5 = 1 with y 2 = y 3 = y 4 = 0 cannot form the p = 3 infrastructure. Thus, we continuously trace

back to node 1 and close its refueling facility y 1 = 0, and we move to node 2, where y 2 = 1. This node becomes the

search node, as in addition to node 2, there are 3 more candidate nodes (3, 4, and 5) of the p = 3 problem. 
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Fig. 3. An illustrative forward search scenario for p = 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Suppose that 
∑ s = ̄s 

s =1 y s + | S| − | ̄s | = p and there are exactly enough refueling facilities to form a p -infrastructure. Thus,

we apply y s = 1 , ∀ s ∈ { ̄s + 1 , ... | S| } and designate node | S | as the next search node with y | S | = 1, as shown in Fig. 2 (b)

as an example of p = 3. 

4.2.2. Forward search 

For the forward search at search node s , we perform a depth-first search by moving downward by one tier higher in value

relative to node s + 1 . Of course, two branching scenarios can occur. These involve branching to node s + 1 with y s + 1 = 1, as

shown in Fig. 3 (a), or to node | S | with y | S | = 0, as shown in Fig. 3 (b) as an example of the p = 3 problem. 

4.2.3. The computational procedure 

A flowchart of the implicit enumeration algorithm is shown in Fig. 4 , and the steps involved are discussed below. 

Step 0. Feasibility and initialization . To determine feasibility levels, we solve the set covering flow-refueling facility location

problem, which is discussed in Section 4.3 . This solution determines the lowest number of refueling facilities feasible. When

this number is greater than the predetermined p , the solution space of the p -center flow-refueling problem is empty , and

we terminate the program due to issues of infeasibility. Otherwise, we construct a search tree, as shown in Fig. 2 , and we

set the initial incumbent solution as ε∗ = ∞ . We open the first p refueling facilities with y s = 1, s = {1, ..., p } and close the

remaining refueling facilities y s = 0, s = { p + 1, ..., | S |} and denote y | S | = 0 as the first search node s ← y | S | . 

Step 1. Is the infrastructure complete? If search node s represents complete p -infrastructure as shown in Fig. 2 (a) and (b),

then we proceed to Step 2. Otherwise, we proceed to Step 3. 

Step 2 . Is there a better feasible solution? We determine VRSP and its associated deviation ( ̄r od ) , od ∈ Mfor each OD pair by

solving the VRCSP algorithm. If ε ∗ > max { ( ̄r od ) , od ∈ M } , then we update the incumbent solution ε ∗ = max { ( ̄r od ) , od ∈ M } to-

gether with respective minimum deviations ( r od ) ∗ = r̄ od , od ∈ M. However, this new incumbent solution does not imply that

the lowest deviation of all OD pairs has been improved such that ( r od ) ∗ < r̄ od , od ∈ M. We proceed to Step 5 for branching. 

Step 3 . Does a better solution exist on the branch ? Prior to determining the lower bound associated with search node s in

an incomplete p -infrastructure, we determine whether there is a superior solution on the branch rooted at the search node.

We open all unassigned refueling facilities even though the total number of open facilities may exceed p . We determine the

VRSP and its associated { ̄r od , od ∈ M } for all OD pairs using the VRCSP algorithm. If the maximum deviation of VRSPs is

larger than the incumbent, then ε ∗ < max { ( ̄r od ) , od ∈ M } , we may conclude that any smaller subsets of refueling facilities in

the branch must represent an inferior solution to the incumbent. We proceed to Step 5 for branching. 

Step 4. The lower bound . We apply a sequence of three steps to each OD, od ∈ M , to determine the lower bound. These

steps are described as follows. 
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Fig. 4. Flowchart of the implicit enumeration algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) We first determine the additional number of refueling facilities that must open on the ASP to form a VRFP for OD

pair od. When the number is no greater than the available number of refueling facilities to be assigned, the minimum

deviation of OD pair od is zero. 

(b) We next determine the lowest number of additional refueling facilities that must open such that there is at least a

VRFP for OD pair od. We apply the proliferate algorithm to the set covering flow-refueling facility location problem

to construct a reachable directed out-tree. Further detail on this step is provided in Section 4.3 . When this value is

greater than the available value to be assigned, no feasible VRFP can exist. The minimum deviation of OD pair od is

infinite. 

(c) We finally assign the available number of refueling facilities as driver reserve fuel. We then apply the VRCSP algorithm

to determine the VRSP. If the AFV’s tank depletes (empty) during travel, then the reserve will be used. Of course, the

driver may refuel to the full tank level ˜ e 
od, f 
j 

= V whenever an open refueling facility is reached. The ratio between the

VRSP and ASP is the minimum percentage of deviation of OD pair od. 

With the completion of all OD pairs, we can determine the maximum minimum deviations of the OD pairs, which form

the lower bound associated with the search node s . 

Step 5. Branching : Three branching schemes are used to determine the next search node: a complete p -infrastructure and

superior and inferior values in an incomplete p -infrastructure. We discuss each scheme as follows. 

(1) A complete infrastructure . Suppose that y | S | = 1 at node | S | is the last refueling facility in the sequence with 

∑ 

s y s = p .

We cannot simply complete this stage by applying y | S | = 0, as the result of 
∑ 

s y s = p − 1 < p is an infeasible solution.

Thus, for y | S | = 1 or y | S | = 0, we must perform a backward search, as discussed in Section 4.2.1 . Once a new search

node is identified, we can proceed to Step 2. When a new search node is not found, the incumbent ε∗ is the optimal

solution and the program terminates. 

(2) Fathom in an incomplete infrastructure . The occurrence of a fathom at search node s implies that an inferior solution

for the rooted branch or the lower bound associated with search node s is no better than the incumbent. We apply

the backward search method discussed in Section 4.2.1 . Either a new search node is identified and Step 2 is repeated

or the program terminates with incumbent ε∗ identified as the optimal solution. 

(3) Depth search in an incomplete infrastructure . When the lower bound is lower than the incumbent, we must perform a
forward search, as discussed in Section 4.2.2 , and return to Step 2. 
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4.3. The lowest number of facilities 

We use a proliferate algorithm, which is a link-based approach, to determine the lowest number of refueling facilities

available so that all OD pairs have at least a VRFP in an incomplete p -infrastructure. For an unreachable OD pair, the algo-

rithm iteratively expands a reachable directed out-tree (RDOT) originating at its origin node until it reaches its destination

node. Upon completion, we may determine the lowest number of additional refueling facilities necessary. Upon comple-

tion, the largest of the smallest additional facilities of all OD pairs is the lower bound associated with this incomplete p -

infrastructure. 

We define an RDOT as a tree wherein all nodes can be reached from the original node by using the dequeue implemen-

tation, which is a type of label-correcting algorithm ( Ahuja et al., 1993 ), and preserve the path with the highest residual fuel

level at any node. When a destination has not yet been reached, we open a refueling facility from all undetermined facility

candidate nodes in the directed out-tree. Note that we cannot alternate the statuses of candidate nodes that have already

been assigned, open or closed, in the incomplete p -infrastructure. Therefore, we must open at least 1 additional refueling

facility at one of the undetermined candidate nodes in the incomplete p -infrastructure. The result is the 1st outward prolif-

erate wave. We then expand the RDOT by including all nodes that can be reached. We now either reach the destination or

repeat the process to expand another directed out-tree. In the latter case, we open a refueling facility at all undetermined

candidate nodes. We now open a second additional refueling facility, thus forming a second outward proliferate wave. This

process continues until we eventually reach the destination. Upon reaching the destination, the number of additional facili-

ties is the lower bound of this OD pair. 

The Hodgson network is depicted in Fig. 5 (a). As an example, suppose that the origin is node 1 and that the destination

is node 12 with a vehicle range of 8. Node 6 is the search node. The destination is unreachable within the incomplete

infrastructure that contains the first 6 nodes. There are refueling facilities at nodes 1, 4 and 6. However, nodes 2, 3 and

5 do not include a refueling facility, as shown in Fig. 5 (a). First, we determine the directed out-tree rooted at the origin

(node 1), which is depicted in Fig. 5 (b). Because no feasible paths reach the destination, we assign all undetermined nodes

in the directed out-tree as refueling facilities, as shown in Fig. 5 (c). At this stage, we add the 1st additional refueling facility

at nodes 7 to 9 for OD pair (1, 12). We expand our directed out-tree with all reachable nodes, as shown in Fig. 5 (d).

Unfortunately, we still cannot reach the destination. Again, we assign undetermined nodes with a refueling station from

the result of 5(e). We now add a second additional refueling facility to the incomplete infrastructure. Finally, we reach the

destination, i.e., node 12. As a result, the lowest number of refueling facilities is 2 for OD pair (1, 12). 

One may observe that the directed out-tree includes links that may reach any node with the highest remaining fuel level

found at any node, and it contains a VRFP for all OD pairs. 

Lemma 6. There is a VRFP of an OD pair in the RDOT. 

Proof. The origin node may reach all nodes in the first directed out-tree. All nodes of the second directed out-tree may be

reached by at least one node in the first directed out-tree. The directed out-tree continuously expands until the destination

is reached. Thus, there is at least a VRFP in the directed out-tree. �

5. Computational results 

We conduct our numerical test using the 25-node network studied by Hodgson (1990) , as shown in Fig. 5 (a). The network

applied is an undirected network. We can expand the network by any pair of nodes with 2 directed links to form a directed

network. We assume that all 25 nodes are origins, destinations, and candidate locations of refueling facilities. Thus, there

are 600 OD pairs. All trips are symmetric round trips. Our base experiment assumes that a vehicle may travel a distance

of 9 with full capacity. All vehicles are running on half a tank of fuel at their origins and must be running on half a tank

upon arriving at their destinations for symmetric round trips. In addition, we experimented with levels of sensitivity in the

number of refueling facilities involved, p , and with vehicle ranges. Our algorithm is coded in C and is tested using Linux O/S

equipped with a Core TM i7 CPU 7700 processor of 3.6 GHz. 

5.1. The base experiment 

For our computational results for a vehicle range of 9, base experiments are collectively tabulated in Table 2 . 

As the size of infrastructure p increases, the number of combinations for both complete and incomplete infrastructures

increases, thus resulting in longer computational times, as shown in Table 2 . However, one of our main observations derived

from the base experiment is as follows. 

There are several optimal solutions for different total travel distances. Multiple optimal solutions identified for the p -

center problem result from the fact that, while the maximum deviation at optimality remains unchanged, the paths of some

ODs can vary with different total system distances. For example, when 18 fuel stations must be positioned, 14 alternative

optimal solutions are available with an identical maximum deviation of 42.8%. However, the highest and lowest total system

distances are 17,344 and 17,184, which are presented in Fig. 6 (a) and (b), respectively. The distance gap is 160, which is

0.93% of the lowest total distance. 
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Fig. 5. Illustration of the lower bounding procedure of Hodgson’s 25-node network (1990). 
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Table 2 

Computational results for a vehicle range of 9. 

p Max deviation (%) Iteration Comp. time (m/s) Number of alternate optima Total system distance Solution 

Highest Lowest 

11 400.0 4035 14.181 s 25 21,932 20,156 2,5,7,9,12,14,19, 

20,23,24,25 

12 200.0 6934 24.973 s 6 19,368 18,752 2,5,7,9,10,12,13,17, 

20,22,24,25 

13 120.0 10,381 38.271 s 10 18,868 17,736 2,5,7,9,10,11,16,18,19, 

21,22,24,25 

14 120.0 17,708 1 m 6.121 s 185 18,868 17,440 2,5,7,9,10,11,16,18,19, 

21,22,23,24,25 

15 100.0 6261 23.639 s 10 18,336 17,576 1,3,4,5,7,9,10,11,16,18,19, 

21,22,24,25 

16 100.0 7322 27.106 s 155 18,344 17,280 1,3,4,5,7,9,10,11,16,18, 

19,21,22,23,24,25 

17 60.0 6293 22.943 s 14 17,368 17,208 1,3,4,5,7,8,9,10,12,13,16, 

18,19,21,22,24,25 

18 42.8 3580 12.890 s 14 17,344 17,184 1,3,4,5,6,7,8,9,10,12,13, 

16,18,19,21,22,24,25 

19 0 1249 4.368 s 8 17,080 17,080 1,3,4,5,6,7,8,9,10,11,12,13, 

14,16,17,20,23,24,25 

Fig. 6. An illustration of multiple optimal solutions for 18 -infrastructure. 

 

 

 

 

 

 

 

One of the optimal 18 -infrastructures, as shown in Fig. 6 (a), includes a refueling station at location 21. Suppose that

we substitute the location at 21 with that at 14, as shown in Fig. 6 (b). The maximum deviation remains at 42.8%. This

problem has multiple optimal solutions. Observe OD pair (8, 11) with a VRSP of 8-13-11. Its distance is 10 against its ASP

of 7, thus resulting in a deviation of 42.8% for both 18 -infrastructures. The maximum deviation remains unchanged. While

the alternation of refueling stations from location 21 to location 14 does not improve the travel distance of OD pair (8, 11),

some OD pairs, such as (11, 14) and (11, 22), alternate their VRSPs to ASPs as 11-13-14 and 11-13-10-14-22, respectively. 

5.2. Sensitivity analysis 

We also conducted a sensitivity analysis on the number of refueling facilities based on various vehicle ranges. The ve-

hicle range is increased to 10 and is then increased by an increment of 2 to 16. Corresponding computational results are

graphically shown in Fig. 7 . 



138 C.-C. Lin, C.-C. Lin / Transportation Research Part B 118 (2018) 124–142 

Fig. 7. Sensitivity analysis of vehicle ranges. 

Fig. 8. Sensitivity analysis of the number of refueling facilities for a vehicle range of 10. 

 

 

 

 

 

 

 

 

 

 

 

From our sensitivity analysis and base experiment, we make a few key observations that are discussed as follows. 

(1) The maximum deviation may not always decrease as the number of refueling facilities increases by one . When more refu-

eling facilities are present, drivers are more likely to identify shorter VRSPs. Curves follow a monotonically decreasing

function. However, this does not directly imply that an increase in the number of refueling stations by 1 can guar-

antee a decrease in the maximum deviation. For the vehicle range of 9 shown in Table 2 , an increase in the number

of refueling stations from 13 to 14 or from 15 to 16 does not always reduce the maximum deviation. Similarly, for

vehicle ranges of 10 and 16 shown in Fig. 7 , an increase in the number of refueling stations from 13 to 14 or from 6

to 7 does not change the maximum deviation. In other words, some drivers’ deviations do not improve when the size

of the infrastructure increases by 1. As an example, for a vehicle range of 10, the maximum deviation is 100% for the

13- and 14-infrastructures shown in Fig. 8 . In a 13-infrastructures setup, there are OD pairs of (8, 10), (9, 10) and (15,

16) with respective VRSPs of 8-10-14-10, 9-10-14-10, and 15-12-16 with a maximum deviation of 100%. Increasing the

number of refueling facilities by 1 at location 10 may reduce the deviation of (8, 10) and (9, 10) to 0%, but it will
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Fig. 9. The optimal infrastructure for p = 15, 16, 17 for a vehicle range of 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

have no effect on OD pair (15, 16). Thus, the maximum deviation fails to improve with an increase in the number of

refueling stations by 1. 

(2) Different marginal deviations in the number of refueling facilities with improvements . Observe the infrastructures of 15,

16, and 17 with a vehicle range of 10 shown in Fig. 9 . When p = 15, no refueling facilities are positioned at locations 3

and 4, and thus, for OD pair (3, 4), drivers must travel on a VRSP of 3-2-4 rather than on an ASP of 3–4. The respective

travel distances are 7 and 4, thus producing a minimum deviation of 75%. When p = 16, 1 additional refueling station

at location 4 is added to the infrastructure, and OD pair (3, 4) can now travel along its ASP. OD pair (8, 11) in turn

adheres to the maximum deviation for all OD pairs. Rather, the VRSP is 8-13-11 with a distance of 10, and the ASP

of 8–11 applies a distance of 7, thus forming a maximum deviation of 42.8%. When a 16th refueling station is located

at location 4, the marginal maximum deviation is improved by 32.2%. Now, observe infrastructure p = 17, where 1

new refueling station at location 11 is added to the infrastructure. All drivers may travel along their respective ASPs

with no deviations. The marginal maximum deviation of the seventeenth refueling station is improved by 42.8%, thus

representing a stronger improvement than that achieved by the sixteenth refueling station. 

(3) The maximum deviation may not always decrease as the vehicle range increases. It is clear that, for longer vehicle ranges,

fewer stations are needed to achieve the same maximum deviation, as drivers may have more opportunities to re-

fuel, which alleviates the need for drivers to make detours to refuel their vehicles and shortens VRFPs. In Fig. 7 , the

maximum percentage deviation is 300% for an infrastructure of 10 refueling facilities when the vehicle range is 10.

However, for a vehicle range of 12, only 8 stations are required, and for a vehicle range of 14, 7 stations are required.

For a range of 16, 5 stations are required to surpass a value of 300%. 

However, an increase in the vehicle range may not guarantee a decrease in the maximum deviation. As shown in Fig. 10 ,

for the infrastructure of 14 refueling facilities, the maximum percentage deviation is 75% for vehicle ranges of 12 and 14.

An increase in the vehicle range by an increment of 2 does not lead to a decrease in maximum percentage deviations. For

OD pair (24, 25), a vehicle cannot directly travel over a distance of 8 with half a tank of fuel for vehicle ranges 12 and 14.

Thus, a vehicle must travel to a refueling station at 23 to refuel. The vehicle may then be able to travel to its destination at

25, where it may also refuel to a full tank and then complete its return trip to its original location at 24. 

These findings suggest that an adequate deployment of stations can limit the number of deviations drivers must make

without an increase in vehicle ranges. This practice may be central to promoting AFVs, especially when the improvement in

AFV ranges is expensive and challenging for manufacturers to achieve. 

5.3. Computational analysis of the size of the network 

We propose an exact link-based optimal solution for optimally solving the p -center flow-refueling problem without the

explicit enumeration of paths. In this section, we use the number of iterations and the computational times to analyze the

computational performance of the algorithm on the network scale. We gradually expand our base network, Hodgson’s 25-

node network, to a 35-node network, as depicted in Fig. 11 , with an increment of 5 nodes. For all network sizes, we again

assume all nodes as origins, destinations and candidate sites for refueling facilities. The network size of 35 nodes contains

1,190 OD pairs, which is comparable to a CA network of 1,167 OD pairs ( Arslan and Kara ̧s an, 2016 ). 

The computational results are tabulated in Table 3 . The number of OD pairs and tree nodes (complete/incomplete infras-

tructures) on the search tree increased at a much faster rate than the network size. However, there is a profound impact
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Fig. 10. The optimal infrastructure for vehicle ranges of 12 and 14 for p = 14. 

Table 3 

Computational performances of networks of various size for a vehicle range of 9. 

25 30 35 

Max deviation (%) Iteration Comp. time (m/s) Max deviation (%) Iteration Comp. time (m/s) Max deviation (%) Iteration Comp. time (m/s) 

10 Infeasible 1153 3.713 s Infeasible 349 1.118 s Infeasible 305 1.707 s 

15 100.0 6261 23.639 s 120.0 41,397 3 m 31.299 s 883.0 324,371 43 m 5.804 s 

20 0 672 2.044 s 75.0 19,350 1 m 43.567 s 120.0 899,794 127 m 25.744 s 

25 0 25 0.008 s 0 5097 24.760 s 62.5 279,819 41 m 5.942 s 

30 – – 0 30 0.006 s 0 11,938 1 m 30.563 s 

35 – – – – 0 35 0.009 s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on the number of complete/incomplete infrastructures. With a network size of 35, the infrastructure size of p = 20 has the

largest set of complete infrastructures at 3.247 billion, while the largest sets of network sizes of 30 and 25 are more than

30 and 3.27 million. As seen in Table 3 , increasing the network size obviously increases the computational time. However,

all instances except one required more than 2 h of computational time, and the link-based exact algorithm may solve all

instances optimally in less than 45 min. The link-based algorithm enables us to efficiently handle problems of manageable

sizes. 

One of the key observations is that the complete infrastructures may increase exponentially as the network size in-

creases; for example, they increase 47.4- and 20.9-fold with an increment of 5 nodes from a 25-node network if all nodes

are candidate refueling locations. However, the number of OD pairs are increased by much smaller magnitudes (1.45- and

1.37-fold, respectively). When all candidate locations are designated refueling stations, the VRCSP subproblem will con-

sume most of the computational time. Observing the computational times in Table 3 , when comparing the largest com-

bination of complete infrastructures between 30- and 35-node networks, the time increased 36.2-fold, but when desig-

nating all locations as refueling stations, the times increased by relatively smaller magnitudes of 1.5-fold, from 0.006 s to

0.009 s. Thus, our exact link-based optimal solution without the explicit enumeration of paths is more sensitive to the num-

ber of candidate locations in the network and thus has a profound impact on the combinations and the computational

efficiency. 



C.-C. Lin, C.-C. Lin / Transportation Research Part B 118 (2018) 124–142 141 

Fig. 11. The expanded 35-node network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions 

Alternative-fuel vehicles (AFVs) are on pace to replace petroleum-based vehicles to reduce global CO 2 emissions and

contribute to a healthy living environment. However, fuel storage technologies limit the AFV driving range. This limitation

requires drivers to deviate from their normal/ideal trips to replenish their AFVs to complete their journeys. Despite high

levels of capital investment, the development of a suitable refueling infrastructure is essential for establishing consumer

confidence in AFVs. 

Most of refueling facility location models are classified as flow-based facility location problems. In the design of a flow-

refueling facility infrastructure, two opposing social issues must be considered: social efficiency and social equity. System

optimization (i.e., social efficiency ) models design an infrastructure to maximize total travel flow. However, in the present

study, we propose the social equity optimization model, which is a p -center flow-refueling facility location problem that

explicitly considers the levels of fairness among users. The goal of this method is to allocate resources such that all AFV

users are indiscriminately served by the system while the occurrence of worst deviations is minimized and applied equally

across individuals. 

Through the study of p -center, p -maximum coverage and set covering flow-refueling facility location problems, we show

that the p -center flow-refueling facility location problem determines the lowest percentage deviation from which all flows

in a system can be served by a predetermined p . The p -maximum coverage flow-refueling facility location problem cannot

serve all drivers wishing to reach any deviation that is lower than the maximum percentage deviation, thus supporting

a higher level of social equity. In addition, through problem formulation, the set covering flow-refueling facility location

problem determines the smallest size associated with the optimal percentage deviation determined from the p -center flow-
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refueling facility location problem. Finally, a large p is used such that the p -infrastructure can allow all drivers to travel

along their SPs. 

We formulate the p -center flow-refueling facility location problem as a link-based nonlinear integer program. The model

uses a bi-level structure. The upper level determines the facility design master problem, while the lower level determines

the VRCSP subproblem. We propose a link-based approach, in which we develop a nondominated labeling SP using the

dequeue implementation algorithm to solve the VRCSP subproblem. This algorithm is embedded in the implicit enumera-

tion algorithm to optimality solve the model. We use Hodgson’s 25-node and expand it to a 35-node undirected network

for our numerical experiments. The computational results show that our exact link-based optimal solution is more sensi-

tive to the number of candidate locations than the number of OD pairs. In addition, we conduct a sensitivity analysis of

the vehicle range, the number of refueling facilities and the network scale. Our computations show the following: (1) there

are multiple optimal solutions for different total travel distances; (2) the maximum deviation may not always decrease as

the vehicle range increases or as the number of refueling facilities increases by one; and (3) different marginal deviations

occur in the number of refueling facilities when improvements are made. 

Because there are multiple optimal solutions for different total travel distances, we may incorporate the total travel

distance as the secondary objective term. It can be implemented in the link-based exact algorithm with a fairly minor mod-

ification. The first modification is needed in Step 5(2). The condition was as follows: when the lower bound associated with

search node is no better than the incumbent, we perform a backward search. It shall be modified as we perform the back-

ward search if the lower bound is worse than the incumbent. The second modification is needed in Step 2. The original

condition was that, whenever the minimum of the maximum percentage deviation of all drivers is improved (i.e., smaller),

we update the incumbent solution. The new condition is that, although the minimum of the maximum deviations remained

the same, the total travel distance improves (i.e., decreased); thus, we also need to update the incumbent. 
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