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A B S T R A C T

The mortality rate due to cardiac abnormalities is enormous, making the development of wearables to monitor
functioning of the heart of paramount importance. In this paper, wepresent a resource efficient and low power
architecture using Integer Haar Wavelet Transform for the complete delineation of ECG signal. The novelty
of the algorithm lies in the use of single scale wavelet coefficients to delineate P-QRS-T features making it
computationally simple. The proposed architecture is implemented using Xilinx FPGA ZedBoard Zynq™−7000
platform, and utilises only 4.38% of the available resources. It is synthesised using 180 nm CMOS technology
consuming 0.88 μW power, making it area as well as power-efficient for the wearable IoT healthcare devices.
1. Introduction

One of the prime application of IoT healthcare is the wearable
devices that enable individuals to monitor their health statistics round
the clock. As we know, the number of patients having heart abnor-
malities have been increasing due to stressful and unhealthy lifestyle
since past few decades. According to the World Health Organization,
cardiovascular diseases (CVD) takes a life toll of about 17 million each
year worldwide [1]. By the year 2020, heart diseases have become the
primary cause of mortality and disability globally. WHO anticipates this
figure to increase about 24 million each year by the next decade. The
rise in mortality rate is due to scarce medical facilities and healthcare
centres that leads to delay in diagnosis of pathologies. Therefore, the
need of the hour is to develop personalised cardiovascular disease
monitoring wearable devices that are compact and reliable, and can
operate in low power. These devices should monitor patients’ continu-
ously and connect them to the doctors preventing them from reaching
any critical conditions. These devices should have strict power budget
requirements so that they can run on low power to improve battery
life. It necessitates the development of area and power efficient VLSI
architectures that can perform ECG analysis in power and resources
constrained environment.

Electrocardiogram (ECG) is a bio-signal, which is utilised by medical
practitioners all over the world to monitor electrical activity of the
heart. A human heart contains four chambers; two atria and two ven-
tricles, whose rhythmic depolarisation and repolarisation is captured
with the help of ECG. As we know, ECG has three primary features
namely P wave, QRS complex and T wave, as shown in Fig. 1. Atrial
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depolarisation and ventricular repolarisation is represented by P and T
wave, respectively. The QRS wave characterises rapid depolarisation of
the ventricles. Due to the large muscle mass of ventricles as compared
to atria, QRS complex has a larger amplitude than the P wave. Any vari-
ation in the standard values of ECG features and derived intervals aids
cardiologists to diagnose cardiac abnormalities [2]. Hence, accurate
and efficient algorithms are required that can process the acquired ECG
signal to extract fiducial points. The features extracted from an ECG are
used individually or in a group for different analysis and classification
of heart abnormalities.

Pan and Tompkins [3] propose an algorithm to extract QRS Com-
plexes of ECG signal with an accuracy of 99.3%. This algorithm in-
cludes several complicated operations, such as differentiation, squaring
and moving average. Despite a remarkable accuracy, it is inefficient
for the area optimal and low power hardware implementation due
to computational complexity. Several algorithms are developed that
utilise discrete wavelet transform for ECG feature extraction [4–6].
These algorithms employ modulus maxima analysis and time-domain
refinement to extract QRS complex and, P and T wave. These pro-
posed algorithms use multiscale resolution coefficients increasing the
memory footprint. Tekeste T. et al. introduce curve-length transform
for 𝑄𝑅𝑆 detection and discrete wavelet transform for P and T wave
extraction [7]. The architecture developed for this method was realised
using 65𝑛𝑚 technology consuming 642𝑛𝑊 power while operating at a
frequency of 7.5 kHz. However, the use of both curve-length transform
and wavelet transform makes it computationally complex. For efficient
hardware implementation of algorithms, feature extraction module
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Fig. 1. Normal ECG.

Fig. 2. Mallat’s algorithm.

should be computationally inexpensive utilising minimum memory.
Therefore, the objective of this paper is to develop a computationally
efficient algorithm and to design memory and power-efficient archi-
tecture for extracting ECG features. In order to achieve this goal,
optimisation is performed at both algorithmic and architecture level
by employing power optimisation techniques. This makes the proposed
architecture suitable for resource-constrained low power wearable de-
vices. The accuracy of the proposed architecture is validated using ECG
databases from Physionet [8]. The extracted ECG features can be used
further to analyse various ECG intervals for detecting cardiovascular
diseases [9,10]. The rest of the paper is sectioned as follows. Section 2
presents the theoretical perspectives of the wavelet transform. Section 3
elaborates the proposed ECG feature extraction algorithm, and Sec-
tion 4 explains the hardware implementation of this algorithm. Results
are discussed in Section 5, and this paper is concluded in Section 6.

2. Wavelet transform

Wavelet transform is a linear transformation employed to process
non-stationary signals [11]. It performs an overall frequency analysis of
the signal and also provides a signal’s time-domain based information.
It carries out analysis on different levels with a proper resolution by
breaking signals into various frequency levels. Hence, in short time
duration, high-frequency signals are evaluated, and similarly, long
time intervals are considered to analyse low-frequency signals. The
97
advantage of inspecting signals in different frequency levels prove to
be efficient for characterising and delineating non-stationary signals,
such as ECG. For a signal 𝑓 (𝑡), wavelet transform in continuous time
domain is given as Eq. (1), where ∗ is the complex conjugate of any
function and 𝜓𝑥,𝑦(𝑡) is the basis function or mother wavelet. 𝑥 and 𝑦
are termed as the scaling factor and translation factor, respectively.
Therefore, 𝜓∗( 𝑡−𝑦𝑥 ) represents a shifted and scaled version of basis
function. Discrete wavelet transform (DWT) is potent as compared
to continuous wavelet transform (CWT) due to less redundancy and
better time complexity for a large range of applications. The DWT
of any signal 𝑥[𝑛] is calculated by applying a set of low pass and
high pass filters with impulse responses 𝑔 and ℎ, respectively. The
output obtained from convolution of signal 𝑥[𝑛] with 𝑔 and ℎ is given
by Eq. (2).

𝑊 (𝑥, 𝑦) = ∫

∞

−∞
𝑓 (𝑡)𝜓𝑥,𝑦(𝑡)𝑑𝑡

𝜓𝑥,𝑦(𝑡) =
1
√

𝑎
𝜓∗(

𝑡 − 𝑦
𝑥

)
(1)

𝑦[𝑛] = 𝛴∞
𝑘=−∞𝑥[𝑘]𝑔[𝑛 − 𝑘]

𝑦[𝑛] = 𝛴∞
𝑘=−∞𝑥[𝑘]ℎ[𝑛 − 𝑘]

(2)

Detail coefficients and approximate coefficients of the signal are
obtained from the output of high pass filter (ℎ) and low pass filter
(𝑔), respectively. The two filters are called Quadrature Mirror Filters.
In general, the wavelet coefficients are calculated using Mallat’s algo-
rithm [4] as shown in Fig. 2. As we know, the signal 𝑥[𝑛] is applied to
LPF and HPF to realise detailed and approximate coefficients. These
coefficients are downsampled by 2, thus, generating the coefficients
of the level 1 (21) in Mallat’s algorithm. The approximate coefficients
of level 1 are fed to LPF and HPF, and then again downsampled
to obtain level 2 coefficient (22). This process is continued until the
resolution required for a specific application is achieved. There are a
wide variety of wavelet functions available [11] which are utilised in
various applications.

2.1. Integer Haar transform

The simplest wavelet among all the mother wavelets is the Haar
wavelet. The coefficients of the transfer function of LPF and HPF for
Haar wavelet are described in Eq. (3).

𝑔 = [ 1
√

2
, 1
√

2
]

ℎ = [ 1
√

2
, −1
√

2
]

(3)

In [12], the authors elaborated uniqueness and simplicity of the
Haar wavelet and compared it with the other wavelets. It is ob-
served that Haar wavelet outperforms other wavelets due to its less
memory requirement and reduced computational complexity. Although
Haar wavelet is highly efficient, there are challenges in its hardware
implementation due to the involvement of floating-point arithmetic.
Therefore, integer Haar wavelet (IHT) is adopted for avoiding these
floating point calculations. The approximate and detailed coefficients
(𝐶𝐴 𝑎𝑛𝑑 𝐶𝐷) of IHT are presented in Eq. (4).

𝐶𝐴[𝑛] = ⌊

1
2
𝑥[2𝑛] + 1

2
𝑥[2𝑛 + 1]⌋

𝐶𝐷[𝑛] = 𝑥[2𝑛] − 𝑥[2𝑛 + 1]
(4)

It can be observed that the basic operations, such as addition, sub-
traction and division by 2 are required to calculate wavelet coefficients.
Further, division with 2𝑛 can be realised using a simple right shift
operation. The absence of floating point operations reduces complexity
of hardware implementation of IHT and makes its realisation efficient
in the digital logic systems.
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3. ECG feature extraction algorithm

The prime application of our proposed work is wearable IoT health-
care devices, where the ECG features processing and associated com-
putations take place in power and area constrained environment [13].
Therefore, limiting the complexity and power consumption of the al-
gorithm is essential and critical engineering necessity of the proposed
method. Moreover, ECG analysis algorithm needs to fulfil clinical re-
quirements of producing acceptable results by introducing the least
error in the delineation of features. These two criteria pose significant
constraints on the employment of relevant signal processing methods
in terms of their physical implementation in an energy-constrained
environment. Therefore, in this section, a modified and efficient algo-
rithm aiming towards optimal power dissipation and clinical accuracy
is described in detail.

Algorithm 1 Pseudocode to extract QRS Complex
1: Input: ECG x[n] of length N
2: Initial estimation of R peaks
3: Calculate detailed coefficients 𝐶𝐷3 of x[n]
4: Calculate 𝑎𝑏𝑠_𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐶𝐷3)
5: Threshold for R peak: 𝑡ℎ_𝑅 = 𝑎𝑏𝑠_𝑚𝑎𝑥 >> 2
6: 𝑗 ← 0
7: for 𝑖 = 0,⋯ , 𝑛𝑐𝑜𝑒𝑓 do
8: if 𝐶𝐷3 > 𝑡ℎ_𝑅 then
9: 𝑅_𝑝𝑜𝑠_𝑡𝑒𝑚𝑝𝑗 = 𝐶𝐷3 ∗ 23

0: 𝑖 ← 𝑖 + 16
1: 𝑗 ← 𝑗 + 1
2: else
3: 𝑖 ← 𝑖 + 1
4: end if
5: end for
6: R peak Delineation
7: for 𝑘 = 0,⋯ , 𝑗 do
8: 𝑅_𝑝𝑒𝑎𝑘𝑘 = 𝑚𝑎𝑥(𝑥[𝑛]), 𝑛 ∈ (𝑅_𝑝𝑜𝑠_𝑡𝑒𝑚𝑝𝑘 −𝑊 1, 𝑅_𝑝𝑜𝑠_𝑡𝑒𝑚𝑝𝑘 +𝑊 1)
9: 𝑅_𝑝𝑒𝑎𝑘_𝑝𝑜𝑠 = 𝑝𝑜𝑠(𝑚𝑎𝑥)
0: 𝑘← 𝑘 + 1
1: end for
2: Q and S peak Delineation
3: for 𝑙 = 0,⋯ , 𝑗 do
4: 𝑄𝑙 = 𝑚𝑖𝑛(𝑥[𝑛]), for 𝑛 ∈ (𝑅_𝑝𝑒𝑎𝑘_𝑝𝑜𝑠, 𝑅_𝑝𝑒𝑎𝑘_𝑝𝑜𝑠 −𝑊 2)

25: 𝑆𝑙 = 𝑚𝑖𝑛(𝑥[𝑛]), for 𝑛 ∈ (𝑅_𝑝𝑒𝑎𝑘_𝑝𝑜𝑠, 𝑅_𝑝𝑒𝑎𝑘_𝑝𝑜𝑠 +𝑊 3)
26: 𝑙 ← 𝑙 + 1
27: end for
28: RR Estimation
29: for 𝑚 = 1,⋯ , 𝑗 do
30: 𝑅𝑅𝑚−1 = 𝑅𝑚 − 𝑅𝑚−1
31: 𝑚← 𝑚 + 1
32: if 𝑚 > 1 then
33: 𝑒𝑛_𝑝 = 1
34: 𝑒𝑛_𝑡 = 1
35: end if
36: end for

Algorithm 1 represents proposed algorithm to detect QRS com-
lex. DWT is utilised in this algorithm owing to its effectiveness. The
ost considerable advantage of DWT lies in its time-scale nature that

an inherently separate artefacts like isoelectric line wandering and
ssociated noises from the ECG signal [14] which is processed by
mploying Integer Haar wavelet (IHT). As explained in the previous
ubsection, the hardware implementation of IHT is preferred due to its
nteger nature. IHT avoids any floating-point calculations; therefore,
t can be implemented using simple addition, subtraction and shift
perations. Although IHT has its limitations, it is an appropriate choice
or the implementation of digital logic systems dedicated to low power
ealthcare [15]. The algorithm is divided into three main stages.
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1. The algorithm begins with the detection of R peak.
2. Once the R peaks are found, QRS onsets and offsets can be
delineated, if required, before and after the R peak.

3. After the extraction of QRS complex, delineation of P and T
waves can be performed whenever needed.

.1. QRS detection module

The proposed ECG feature extraction algorithm operates on the ECG
ignal sampled at 250 Hz. Both frequency analysis and time-domain
efinement are employed for delineating ECG fiducial points. Initially, a
indow of 800 samples (𝑁) of ECG signals is chosen for processing. It is
bserved that during certain cardiac abnormalities, such as Arrhythmia,
he RR interval deviates from its standard value. The minimum two
eats are required to calculate RR interval and, P and T waves. A
indow of 800 samples enables proposed algorithm to capture at least

wo P-QRS-T beats, when ECG is sampled at 250 Hz for normal as well
s for abnormal patients. This leads to correct delineation of all the
rimary features in an abnormal ECG as well. As depicted in Algorithm
, detailed coefficients (𝐶𝐷3) of third dyadic scale (23) are computed
or P-QRS-T extraction. These coefficients are calculated using Mallat’s
lgorithm with IHT as mother wavelet, as shown in Fig. 2. Once
hese coefficients are computed, the absolute maximum of the (𝐶𝐷3)
oefficients are found (Eq. (5)), and threshold is calculated using Eq. (6)
o determine the position of R peak. The value of the threshold is
pdated after every 800 samples making it adaptive to the variation
n ECG signal.

𝑎𝑏𝑠_𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝐶𝐷3) (5)

𝑡ℎ_𝑅 = 𝑎𝑏𝑠_𝑚𝑎𝑥
4

(6)

After calculating the threshold value, an initial estimation of R peak
is realised. The values of each 𝐶𝐷3 coefficients are compared with the
threshold value. If the magnitude of the coefficient is higher than the
threshold value, then its value is stored as initial value of R peak. Later
the next 16 samples of (𝐶𝐷3) are skipped in order to avoid detection
of more than one R peak from the same QRS complex. Initial R peak
positions in the original ECG signal are found by mapping selected 𝐶𝐷3
coefficients to the signal. This mapping is accomplished by multiplying
𝐶𝐷3 coefficients with 23 as it is evident from Fig. 2.

The standard duration of the QRS complex is 120 ms, which may
increase and decrease during certain cardiac abnormalities. Therefore,
in order to find final values of R peaks, a dynamic window of 2×𝑊 1 as
per the standard value of QRS complex is chosen to mark R peak. For
a positive QRS complex, Q and S peaks are the minimum peaks before
and after R peaks, as depicted in Fig. 1. For a standard duration of QRS
complex, a window of 60–80 ms (𝑊 1 𝑎𝑛𝑑 𝑊 3) is selected to delineate
Q and S peaks. The minimum of 𝑊 1 and 𝑊 2 are marked as Q and S
peaks, respectively. Similarly, the onset and offset of QRS complex are
delineated as the maximum value in an adaptive window of 40 ms after
Q and S peaks, respectively. RR intervals are also computed in parallel
from the detected R peaks.

3.2. P and T wave detection

As we know, P wave is the starting wave of the heartbeat. In
normal patients, its duration is less than 120 ms, but it expands for
the abnormalities, such as atrial fibrillation up to 170 ms [16]. The
PR interval is of 120–200 ms [17]. Thus, the P wave is delineated
considering a window (𝑊 4) of 100–200 ms before the QRS complex.

he window should never exceed half of the RR interval. Choosing a
indow according to the RR interval makes the algorithm adaptive to

he varying heart rate of a particular patient; therefore, detection is
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performed accurately even for abnormal ECGs. Algorithm 2 exhibits the
flow of P wave extraction from ECG signal.

Algorithm 2 Pseudocode for P and T wave extraction
1: Calculation of P peaks
2: When 𝑒𝑛_𝑃 == 1
3: 𝑓𝑙𝑎𝑔𝑃 ← 0
4: for 𝑐 = 0,⋯ , 𝑗 do
5: 𝑃 1𝑐 = 𝑚𝑖𝑛(𝐶𝐷3[𝑛]), for 𝑛 ∈ (𝑊 4)
6: 𝑃 2𝑐 = 𝑚𝑎𝑥(𝐶𝐷3[𝑛]), for 𝑛 ∈ (𝑊 4)
7: if 𝑃 1𝑐 < 𝑃2𝑐 then
8: 𝑃 𝑡_𝑜𝑛𝑐 = 𝑃 1𝑐 ∗ 23

9: 𝑃 𝑡_𝑜𝑓𝑓𝑐 = 𝑃 2𝑐 ∗ 23

10: 𝑓𝑙𝑎𝑔𝑃 ← 1
11: if 𝑓𝑙𝑎𝑔𝑃 == 1 then
12: 𝑃 _𝑜𝑛𝑐 = 𝑚𝑖𝑛(𝑥[𝑛]), for 𝑛 ∈ (𝑃 𝑡_𝑜𝑛𝑐 −𝑊 5, 𝑃 𝑡_𝑜𝑛𝑐 )
13: 𝑃 _𝑜𝑓𝑓𝑐 = 𝑚𝑖𝑛(𝑥[𝑛]),for 𝑛 ∈ (𝑃 𝑡_𝑜𝑓𝑓𝑐 , 𝑃 𝑡_𝑜𝑓𝑓𝑐 +𝑊 5)
14: 𝑃 _𝑝𝑒𝑎𝑘𝑐 = 𝑚𝑎𝑥(𝑥[𝑛]),for 𝑛 ∈ (𝑃 _𝑜𝑛𝑐 , 𝑃 _𝑜𝑓𝑓𝑐 )
15: 𝑓𝑙𝑎𝑔𝑃 ← 0
16: end if
17: else
18: 𝑃 𝑡_𝑜𝑛𝑐 = 𝑃 2𝑐 ∗ 23

19: 𝑃 𝑡_𝑜𝑓𝑓𝑐 = 𝑃1𝑐 ∗ 23

20: 𝑓𝑙𝑎𝑔𝑃 ← 1
21: if 𝑓𝑙𝑎𝑔𝑃 == 1 then
22: 𝑃 _𝑜𝑛𝑐 = 𝑚𝑎𝑥(𝑥[𝑛]), for 𝑛 ∈ (𝑃 𝑡_𝑜𝑛𝑐 −𝑊 5, 𝑃 𝑡_𝑜𝑛𝑐 )
23: 𝑃 _𝑜𝑓𝑓𝑐 = 𝑚𝑎𝑥(𝑥[𝑛]), for 𝑛 ∈ (𝑃 𝑡_𝑜𝑓𝑓𝑐 , 𝑃 𝑡_𝑜𝑓𝑓𝑐 +𝑊 5)
24: 𝑃 _𝑝𝑒𝑎𝑘𝑐 = 𝑚𝑖𝑛(𝑥[𝑛]), for 𝑛 ∈ (𝑃 _𝑜𝑛𝑐 , 𝑃 _𝑜𝑓𝑓𝑐 )
25: 𝑓𝑙𝑎𝑔𝑃 ← 0
26: end if
27: end if
28: 𝑐 ← 𝑐 + 1
29: end for
30: T wave extraction
31: if 𝑒𝑛_𝑡 == 1 then
32: Repeat P block with 𝑛 ∈ 𝑊 6
33: end if

𝐶𝐷3 coefficients for this chosen window are examined, and the
inimum and the maximum values of the coefficients are obtained.

f the minimum value is obtained before the maximum value, then P
ave is considered to be positive else it is considered as inverted. The
ositions of the minimum and the maximum values of 𝐶𝐷3 coefficients
re multiplied by a factor of 23 to obtain a temporary position of start
𝑃 _𝑜𝑛) and end (𝑃 _𝑜𝑓𝑓 ) of P wave in the original ECG signal. For
efining the delineation, a window (𝑊 5) of 40 ms is chosen on both
he sides of initial values of 𝑃 _𝑜𝑛 and 𝑃 _𝑜𝑓𝑓 . The window 𝑊 5 is
hosen adaptively considering the sampling frequency of 250 Hz to get
he accurate delineation results on the ECG excerpts. The minimum
alues of the respective windows are taken as the final boundaries
f P waves. The maximum value of the window is considered if P
ave is inverted in nature. Value of P peak is extracted by finding the
aximum/minimum value in the interval 𝑃 _𝑜𝑛 and 𝑃 _𝑜𝑓𝑓 as per the

rientation of P wave.
As we know, last characteristic of a heartbeat is T wave. Its duration

s of 125–200 ms in normal ECG, whereas, the QT interval is less
han 425 ms [18]. Considering these circumstances, a window 𝑊 6 of
00–400 ms after the QRS complex marked to extract the T wave.
owever, this window should never exceed half of the RR interval.
est of the procedure to find T wave is similar to P wave delineation
entioned above.

. Hardware implementation

The proposed architecture contains three main modules; QRS mod-
le and an optional P wave module and T wave module. The P and
wave modules are subdivided into boundary detection and peak
99
Fig. 3. Block diagram of ECG feature extraction algorithm.

detection modules. The modules are enabled and disabled according
to the medical requirements or when they are nonoperational.

The hardware implementation of the proposed algorithm is realised
in Verilog using Xilinx 2016.4 development environment Vivado and
Xilinx Zynq™−7000 FPGA platform [19]. The modules are validated
for the desired functionality through simulation using Vivado. Later
these modules are ported on FPGA for further verification of the
proposed algorithm at the hardware level. The basic architecture of
ECG delineation algorithm is illustrated in Fig. 3. The architecture
blocks are controlled by a finite state machine presented in Fig. 4.
Different ECG signal samples have been utilised for the analysis of
our proposed algorithm. ECG signal is fed serially as input into the
system and is stored in a memory. The position of ECG features is
obtained as output. Initially, the ECG signal is decomposed into its
DWT coefficients utilising a cascaded filter bank structure, as shown in
Fig. 2. The IHT block is designed to decompose a signal into detailed
and approximate coefficients using integer Haar transform as shown in
Fig. 5. Three such IHT blocks are pipelined to obtain 𝐶𝐷3 coefficients
making a complete DWT block. The coefficients are stored in memory
for further processing. The DWT and comparator blocks are pipelined
to obtain third scale wavelet coefficients along with their absolute
maximum, which reduce delay in the calculation of R peak threshold.
Fig. 6 represents the architecture to compute threshold of R peak.

The present and previously calculated 𝐶𝐷3 coefficients, 𝐶𝐷3𝑖 and
𝐶𝐷3𝑖−1 respectively, are compared to find the maximum and the process
is repeated for every new 𝐶𝐷3 coefficient being calculated using the
previous step. The threshold for R peak detection is then realised
using Eq. (6). This threshold is updated after every 800 input samples
making the proposed architecture adaptive to the variations in ECG.
Once the threshold is found, R peaks are detected in 𝐶𝐷3 coefficients,
as explained in the algorithm and are mapped to the primary ECG
signal subsequently by multiplying with 23. This multiplication by 23

is implemented as left shift operation in hardware by shifting 𝐶𝐷3 co-
efficients values by three bits. Once temporary R peaks are calculated,
the final R peaks are retrieved by searching a maximum 16 samples
before and after temporary R peaks using a comparator. Once the QRS
complex is extracted, P and T waves extraction can be performed. In the
proposed architecture, clock gating technique is utilised to minimise the
power consumption of the proposed design [20]. Clock gating controls
the activation of different blocks as per the requirement. Since all the
processes do not run simultaneously, blocks can be turned off, when
not in use, to save power. Clock gating is exhibited in Fig. 7. As shown
in Fig. 7, P and T modules are controlled by clock and an enable signal.

The module operates when enable signal (𝑒𝑛_𝑃 ) and (𝑒𝑛_𝑇 ) becomes
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Fig. 4. Main finite state machine for ECG feature extraction.

Fig. 5. Architecture of IHT module.

Fig. 6. Comparator block.

igh. P and T waves are then delineated as described in the algorithm.
oth the modules can operate in parallel, if required, and utilise a
imple comparator circuit to find the maximum and minimum values.
hen QRS module is active, then P wave and T wave module can be

isabled after completing their ongoing tasks, which reduces power
100
Fig. 7. Clock gating of different blocks.

consumption. The architecture designed utilises fixed point computa-
tions and simple hardware blocks making it computationally simple.

5. Results and discussion

In this section, experimentation of the proposed methodology and
its outcome is discussed in detail.

5.1. Validation of the proposed methodology

The proposed algorithm is first implemented in MATLAB to validate
its correctness. It is tested on excerpts taken from the AHA database
and on QT database of the Physionet [8]. It is observed that many of
the traditional ECG processing algorithms, such as Pan–Tompkins [3]
are implemented in software on a personal computer, which leads
to use of floating-point representation of ECG data. As we know,
FPGA based implementation of floating-point unit is complex, integer
representation is preferred for simplicity as well as to reduce power
consumption. Considering the associated constraints, the proposed al-
gorithm is validated, taking integer representation of ECG signal data.
Usually, ECG data is recorded in double-precision format. This double
precision format is converted into integer format by multiplying it with
10𝑁 , 𝑁 = 1, 2, .. and is rounded off to its integer value. As explained
n [15], we consider ECG data to be multiplied by a factor of 100 and
hen rounded it off to convert in the integer format. It is to mention that
ariations in the interbeat intervals are negligible; therefore, ECG is
ounded off by considering a factor of 100. Fig. 8 represents delineation
f the boundary and peak points for QT database (𝑠𝑒𝑙𝑒0122𝑚) recording
ampled at 250 Hz. Table 1 presents test result for QT database [8]
hich consists of 105 15 min excerpts of 2-lead ECG recordings.

𝑆𝑒% = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

𝑃𝑃𝑉 % = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(7)

These recordings are sampled at 250 Hz. For verification, these ex-
cerpts are manually annotated under the guidance of a medical expert.
The proposed algorithm works on a single lead channel. The compar-
ison of manually annotated and algorithmically annotated features is
performed by selecting a ECG signal. It is found that the algorithmic
annotation delineates the same points in (150 ms) proximity of the
manually annotated signal. The error metric considered is described
by the Association for the Advancement of Medical Instrumentation
(AAMI) [30]. As shown in Eq. (7) True Positive (𝑇𝑃 ) is counted when
a feature is correctly detected, then the respective error is calculated
between manually and algorithmically annotated features. If no posi-
tion is detected, then it is considered False Negative(𝐹𝑁). Any other
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Table 1
ECG feature extraction results from QT database.
Algorithm Implementation

Platform
Metric P wave QRS wave T wave

Kalyakulina et al. [6] Software Se% 97.49 98.42 97.2
PPV% 97.89 98.24 96.55

Sanjeev et al. [9] ASIC Se% 98.91 100 99.97
PPV% 91.07 100 97.76

Bote et al. [21] TI MSP430 series
microcontroller

Se% 98.23 99.88 98.18
PPV% 94.38 99.41 96.39

Rincon et al. [22] Shimmer TM
embedded platform

Se% 99.88 99.97 99.97
PPV% 92.04 98.66 98.70

Di Marco et al. [23] Software Se% 98.15 100 99.72
PPV% 91.00 – 97.76

Proposed Work FPGA Se% 97.93 99.46 98.12
PPV% 94.23 99.06 96.54
Table 2
Comparison of FPGA results of R peak extraction.

Resources [24] [25] [26] [27] [28] [29] Proposed design

Available Utilised Available Utilised Available Utilised Available Utilised Available Utilised Available Utilised Available Utilised

LUT 9312 3443 9312 3061 124467 3734 9312 2328 1248012480 14081408 303600 88456 53200 2004

Slice reg 4656 2901 4656 1809 34240 1712 4656 1489 1248012480 10861086 607200 5728 106400 503

MUX – – – – – – – – – – – – 26600 42

FF – – 9312 544 216750 4335 9312 651 – – – – – –

LUT-FF pair 9312 2283 – – – – – – 1440 1054 93996 188 – –

IOB/IO 232 18 67 67 – – 232 88 172172 8282 700 114 200 34

BUFG – – – – – – – – 32 2 32 1 32 1

MULT 20 8 – – – – – – – – – – – –

GCLKs 24 1 – – – – 24 1 – – – – – –

Total resources 23556 8654 23347 5481 375457 9781 23536 4557 26604 3632 1005528 94487 186432 2584

Comparative
resource
Utilisation

3.34X 2.12X 3.78X 1.76X 1.40X 36.56X X
Fig. 8. ECG delineation.

point not related to any of the annotated features is regarded as False
Positive(𝐹𝑃 ). On this basis, we consider Sensitivity(𝑆𝑒%) and Positive
Predicted Value(𝑃𝑃𝑉 %) metrics for performance evaluation of the pro-
posed algorithm. For validating the algorithm’s architecture, different
test benches are created to validate the outcome of the proposed
algorithm with the manual annotations. It is seen from Table 1 that
101

the proposed architecture gives a better or comparable sensitivity as
compared to state-of-the-art methods for delineating an ECG signal
verifying the efficacy of the proposed research work.

5.2. Experimental results

As stated earlier, the proposed method is implemented using MAT-
LAB and Verilog both. Later, execution of the algorithm proposed in this
paper is validated through FPGA. It has been found that the MATLAB
based implementation of the proposed algorithm is in close correlation
with its FPGA based implementation. It is observed that the position
of R, P and T peaks obtained through MATLAB and Verilog HDL
implementation match without any variations. However, a difference
of just one sample is noticed in delineation of onset and offset of P
and T waves in a few ECG beats. It is to mention that variation in
the delineation of P and T waves is still in the error range reported
in [30]. In literature, various methods have been reported focusing on
the detection of R peaks because many heart diseases can be diagnosed
by evaluating variability in the R peaks only. Therefore, R peak module
is implemented first and is compared with already existing methods
to showcase its effectiveness in terms of efficient hardware utilisation.
Comparison details are presented in Tables 2 for completeness.

It can be observed from Table 2 that the proposed architecture for R
peak detection utilises only 2584 resources out of total available FPGA
resources, which is the least among all the previous works reported.
It can also be noticed in Table 2 that the design proposed in this
paper does not include any compute and power intensive elements,
such as multiplication units. This makes our proposed design to be
more efficient in term of area and power as compared to previously

reported designs. It can be observed in Table 2 that our proposed design
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Table 3
Comparison of FPGA results of ECG feature extraction architecture.

Resources [31] [32] [33] [34] Proposed design

Available Utilised Available Utilised Available Utilised Available Utilised Available Utilised

LUT 40960 29389 343680 119256 239616 131072 69120 24784 53200 6894
Slice reg 20480 15459 687360 130598 18752 3532 69120 14670 106400 1080
MUX – – – – – – – – 26600 126
FF 40960 4845 – – – – – – – –
IOB/IO 565 30 – – 152 128 640 58 200 66
BUFG – – – – – – – – 32 1
MULT 40 3 – – 52 20 – – – –
GCLKs 8 3 – – – – 32 6 – –
BRAM – – 2528 786 – – 148 24 – –
DSP blocks – – 864 458 – – 64 7 – –
Total resources 103013 49729 1034432 251098 258572 134752 139124 39549 186432 8167

Comparative resource
Utilisation

6.08X 30.74X 16.49X 4.84X X
Table 4
Comparison of synthesis results of ECG feature extraction architecture.

Parameter [7] [9] [35] [36] [37] [38] Proposed work

Technology 65 nm 130 nm 180 nm 180 nm 180 nm 180 nm 180 nm
Operating frequency 7.5 kHz 4 kHz 1 MHz 1 MHz NA 0.12 kHz 1 MHz
Supply voltage 0.6 v 0.9 v 1.8 v 1.2 v 1.0 v 1.2 v 1.62 v
ECG features P-QRS-T P-QRS-T P-QRS-T P-QRS-T QRS QRS P-QRS-T
Power 0.642 uW 0.384 uW 9.47 uW 32 uW 0.410 uW 5.97 uW 0.88 uW
Energy 85.6 pJ 96 pJ 9.47 pJ 32 pJ NA 49.75 nJ 0.88 pJ
H

is 28.86% more efficient in terms of resource utilisation as compared
to the previous best known method reported in [28]. The hardware
resource utilisation of complete ECG feature extraction algorithm is
presented in Table 3. It can be seen that the proposed architecture
utilises only 4.38% of the total available resources, which is the least
among all other methods reported. It can also be observed that our
proposed implementation of complete ECG feature extraction algorithm
is 79.35% better than the previous best known method reported in [34].
This is primarily due to designing our proposed architecture using
multiplexers, which not only reduces design complexity and makes it
simpler but also optimises power consumption. In Tables 2 and 3, ‘‘-
’’ indicates information not available for comparison in the reported
works.

The entire design is synthesised using 180𝑛𝑚 SCL PDK using Synop-
ys DC and IC Compiler tools, and its power consumption is compared
ith some of the most relevant previous known designs, as per our
nowledge, and is shown in Table 4. It is observed that the power
onsumption of the architecture proposed in this paper is 0.88𝜇𝑊 while
perating at 1.62𝑉 at a maximum operating frequency of 1 MHz. It can

be observed that the architecture proposed in [7] consumes 0.642𝑢𝑊
f power when operated at 7.5 kHz, which is less than the power
onsumption of the proposed design. But, it is reported in [7] that
he power consumption of their design is 1.33𝑢𝑊 , if it operates at
00 kHz. Moreover, our proposed work consumes 0.66𝑋 less power
hile operating at 10𝑋 (1𝑀𝐻𝑧) frequency with respect to the design
roposed in [7] with the same delineation accuracy. This indicates that
he proposed architecture is efficient in terms of power consumption
mong all the reported state-of-the-art architectures for ECG feature
xtraction.

Further, for a fair comparison, the proposed research work is com-
ared with different architectures in terms of energy dissipation. It
s concluded that the energy utilisation of the proposed design is
.88𝑝𝐽 , which is the least among all other methods as depicted in
able 4. The primary challenge of IoT healthcare wearable devices is
o operate a device with minimal power resources providing longer
attery life [13,39] and should be compact in nature utilising minimal
esources. Therefore, based on the experimental analysis, it is observed
hat our design utilises minimal resources and can operate at a very
ow power with high accuracy making it suitable for the applications,
hich mandatorily require low power and area optimality. It can also
102
be inferred that at smaller technology nodes, the area and power
consumption of the proposed design would be lesser, thus, making it
a promising candidate for wearable healthcare applications.

6. Conclusion

The proposed research work presents a simple, optimised and effi-
cient VLSI architecture to delineate different ECG features, such as QRS
complex, P wave and T wave. It displays low computational complexity
in implementation while attaining comparable accuracy as compared to
other state-of-the-art implementations. The proposed method utilises
Discrete Wavelet Transform (DWT) incorporating Integer Haar func-
tion as the mother wavelet to avoid floating-point computations. The
algorithm can attain a sensitivity of about 99% on QT dataset. The
proposed architecture utilises only single scale wavelet enabling less
memory resources utilisation when compared to the previous reported
architectures which employ multiple scale of wavelets for complete
ECG feature extraction. The designed architecture exploits only 4.38%
of total available resources, which is the least among all other best
known methods. Incorporation of clock gating further optimises power
consumption. The architecture described in this paper can operate at a
maximum operating frequency of 1 MHz consuming 0.88𝜇𝑊 power. A
remote real-time cardiovascular disease monitoring system is employed
predominantly for assessing health condition of a patient round the
clock; therefore, it must have minimal area and power utilisation .
Thus, due to high accuracy, low resource requirement and minimal
power consumption, our proposed design can be suitably employed in
real time ECG signal analysis applications for wearable IoT healthcare
devices. The proposed work can also be extended for extracting features
in multi-lead ECG and to perform cardiovascular disease detection
using different machine learning algorithms.
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