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The attitude control of a quadrotor is a fundamental problem, which has a pivotal role in a
quadrotor stabilization and control. What makes this problem more challenging is the
presence of uncertainty such as unmodelled dynamics and unknown parameters. In this
paper, to cope with uncertainty, an H1 control approach is adopted for a real quadrotor.
To achieve H1 controller, first a continuous-time system identification is performed on
the experimental data to encapsulate a nominal model of the system as well as a multi-
plicative uncertainty. By this means, H1 controllers for both roll and pitch angle are syn-
thesized. To verify the effectiveness of the proposed controllers, some real experiments
and simulations are carried out. Results verify that the designed controller does retain
robust stability, and provide a better tracking performance in comparison with a well-
tuned PID and a l synthesis controller.

� 2019 Published by Elsevier Ltd.
1. Introduction

Quadrotors are widely considered due to their remarkable features and applications in a variety of areas such as moni-
toring [1,2], surveillance [3,4], search and rescue [5,6], agriculture [7,8], and delivery of goods [9,10]. Quadrotors are also of
paramount interest owing to the advantages of low cost, maneuverable, small size, simple design structure. The quadrotor is
a nonlinear system with coupled states. In general, there are six states including the robot position x; y; zð Þ and the angles
(yaw, pitch, roll) with only four inputs, resulting in an underactuated system. Despite the mentioned advantages of quadro-
tors, the open-loop instability, coupled states, and underactuation make their control challenging. A quadrotor control is
accompanied with several other serious challenges, particularly when it turns from a simple model in the theory to a prac-
tical problem in which many other key factors such as parameters uncertainty, unmodelled dynamics, and input constraints
need to be considered. The main focus of this paper is the stabilization and attitude control of a quadrotor considering such
uncertainties and input constraints.

Modeling and control of a quadrotor have been extensively studied in the literature. PID control is the most common con-
troller widely used in commercial quadrotoros [11–14]. In [12] three different PID structures are employed for the attitude
control. In [13] a robust PID controller is designed using affine parameterization. In [14] a cascade control for the attitude
control is employed and a robust compensator is added to reduce the wind disturbance effect. Linear Quadratic Regulator
(LQR) is another linear-based controller used for quadrotors [15,16]. In LQR controllers, setting proper weights is difficult
and needs trial and error. Linear-based controllers have simple designs and have been tested successfully on experimental
ntu.ac.ir
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and simulated platforms. Linear controllers, however, are based on a linear approximation of the actual system model by
neglecting the nonlinear behavior of the system which may increase the probability of the system failure. Moreover, they
are limited to low velocities as well as small angles of deviation, and their stability is guaranteed only near the selected oper-
ating point.

To transcend the limitations of the linear controllers, many nonlinear control approaches have been proposed. In [17], a
lyapunov-based controller is designed using singular perturbation theory for a quadrotor stabilization. Backstepping-based
control has also been developed by many researchers [18–21]. A backstepping controller using a lagrangian form of the
quadrotor dynamics is designed in [19]. In [20] an optimal backstepping controller using H1 is proposed. Sliding mode con-
trol is another nonlinear control method which is capable of dealing with some classes of uncertainties and external distur-
bances [22–26]. In [22,23], a combination of the sliding mode control and backstepping control techniques are used for the
control of quadrotors. Despite the mentioned capabilities, sliding mode control suffers from chattering, and it is necessary to
know the upper bounds of uncertainties.

In order to reduce the chattering effect, different approaches like fuzzy gain scheduling [24] and higher order sliding
mode have been proposed [25]. A fuzzy state observer is proposed in [27] to estimate the unknown nonlinear functions
of the uncertain system model, then an integral terminal sliding mode controller is used. Many other robust nonlinear con-
trol techniques have also been proposed to cope with the quadrotor uncertainties. In [28], a robust compensating technique
is used to control quadrotors with time-varying uncertainties and delays. The design of a nonlinear H1 controller is studied
in [29] to achieve the robustness. In [30], a nonlinear H1 output feedback controller coupled with a high order sliding mode
estimator is utilized to control the quadrotor in the presence of parameters uncertainty and external disturbances. The adap-
tive control is another approach for controlling systems with unknown model parameters and have been widely used for
controlling various practical systems [31–33]. An adaptive controller is employed in [34] for trajectory tracking of a quadro-
tor with considering the input constraints and uncertain parameters in its nonlinear model.

In order to design a nonlinear-based controller, the quadrotor nonlinear model is required, which is hard to obtain. For
instance, inertia matrix, center of gravity and some other parameters of a quadrotor are not easily accessible and it is difficult
to obtain their accurate values. In most of the previous studies, a symmetric model for the quadrotor is assumed, however in
real robots this assumption does not hold. Furthermore, some factors, like wind, cause environmental disturbances. Espe-
cially in an actual flight near obstacles or low attitude, undesirable wind effects on the stability and performance of a quadro-
tor is more obvious. Considering the wind model makes designing a nonlinear controller arduous and challenging. An
approach to overcome the model uncertainty, such as unmodelled dynamics and parameter uncertainty, is using system
identification techniques. In [35], a closed-loop multivariable extremum seeking algorithm (MESA) is suggested for param-
eter identification of a quadrotor. The black-box model identification using a continuous-time approach is adopted in [36] to
obtain a linear model for the dynamics of a quadrotor.

Linear robust control is a popular approach in the control theory that can help to mitigate the effect of unmodeled dynam-
ics in linear-based controllers. This approach has been used in many practical problems such as surgery robots[37], parallel
robots [38], harmonic drive systems [39], and vibration control of elastic gantry crane and 3D bar structure [40,41]; and the
results confirm its remarkable ability to deal with uncertainty. In [42,43], the linear robust H1 controller is employed for
attitude and altitude control of a helicopter. In order to utilize the H1 controller, a comprehensive identification phase is
required, which provides information about the linear model of the system and the associated uncertainty.

In this paper, there is no information available about the model and parameters (e.g. CAD model) of the quadrotor. Thus,
in order to overcome the aforementioned limitations of linear and nonlinear controllers, embracing lack of systemmodel and
different sources of uncertainty, a linear robust controller has been derived and implemented on a real quadrotor. In this
case, a continuous time system identification from the sampled data of the real robot is required to gather information about
both the system model and uncertainty. The main contributions and phases of this paper are as follows:

� The first phase is performing a system identification based on the experimental frequency response estimates to obtain a
nominal linear model aligned with a multiplicative uncertainty block. This phase is the principle and most challenging
part of control design because of system identification difficulties and its importance in designing an effective controller.
In this phase, the first step is designing appropriate experiments which provide us with informative and usable data for
system identification. Then, by applying existing tools and methods such as MATLAB identification and CONTSID toolbox,
the nominal models and uncertainty weighting functions are acquired.

� Having obtained information about the system in the previous phase, a linear H1 control is synthesized. In this phase, it is
important to choose proper sensitivity and input weighting functions to achieve desired tracking and regulating
performance.

� Finally, the controller is implemented on the robot and its high performance and robustness are shown by simulation and
experimental results. In addition, a PID and a l analysis controllers are designed to compare their performance with H1
controller.

2. System and uncertainty encapsulation

In many systems, uncertainty emerges due to the dynamical perturbation, such as unmodelled and high frequency
dynamics, in various parts of a system. To capture uncertainty in the system, we utilize the classical multiplicative pertur-
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bation model. This model helps to encapsulate the various sources of uncertainty, e.g. parametric and unmodelled dynamics,
in a full block of multiplicative uncertainty. Considering the nominal system transfer function as G0, the family of uncertain
systems may be shown as follows:
G ¼ G sð ÞjG ¼ 1þ DWð ÞG0f g; ð1Þ

where W is the uncertainty weighting function, and D is a stable perturbation satisfying kDk1 < 1.

Hence, for designing a robust control for a nonlinear system, an approximate linear model along with a weighting func-
tion providing information about the uncertainty profile, are required. In order to obtain a controller having proper perfor-
mance in practice, it is necessary to perform a system identification on the experimental data generated from the real
system. There are some challenges, however, for a quadrotor system identification:

� The quadrotor robots are inherent unstable, thus a closed loop identification method is recommended.
� For the robust control design a continuous-time model is needed.
� The quadrotor system is a multi-input multi-output (MIMO) system, but due to its open-loop instability and piloting dif-
ficulty, the experimental data is better to be obtained for each channel separately, then perform the system identification.

In what follows, we dwell on the closed loop system identification. For this, first we derive a theoretical model for the sys-
tem, then identify the system based on the gathered experimental data.

2.1. Theoretical model

Modeling the dynamic of quadrotors has been studied extensively in the literature. Many models attempt to consider
parameters and factors that are difficult to calculate or their values may vary in different situations such as the presence
of wind. The goal of this paper is to design a controller that is largely independent of modeling parameters. To this end, first
we model the dynamic of the robot. As shown in Fig. 1 for a drone with four rotors, which rotate in opposite directions (two
rotors rotate in a clockwise direction and two other rotate counterclockwise), the angular accelerations pertain to the pitch,
roll, and yaw angles are modeled by the following nonlinear models:
€/ ¼ Jr _h X1 þX3 �X2 �X4ð Þ
Ixx

þ Iyy � Izz
Ixx

_w _hþ
bl X2

2 �X2
4

� �

Ixx
;

€h ¼ Jr _/ �X1 �X3 þX2 þX4ð Þ
Iyy

þ Izz � Ixx
Iyy

_w _/þ
bl X2

3 �X2
1

� �

Iyy
;

€w ¼
d X2

1 þX2
3 �X2

2 �X2
4

� �

Izz
þ Ixx � Iyy

Izz
_h _/; ð2Þ
where /; h, and w stand for the roll, pitch and yaw angles, respectively. The remaining parameters are listed in Table 1.
Iyy � Izz
� �

_w _h; Izz � Ixxð Þ _w _/ and Ixx � Iyy
� �

_h _/ are body gyro effects. Considering Xr ¼ X1 þX3 �X2 �X4ð Þ; Jr _hXr and Jr _/Xr repre-
sent propeller gyro effects.

In order to analyze the quadrotor model in the presence of a PID controller, the gyroscopic effects can be ignored com-
pared to the motors’ action. Thus, Eq. (2) is rewritten as:
€/ ¼
bl X2

2 �X2
4

� �

Ixx
;

€h ¼
bl X2

3 �X2
1

� �

Iyy
;

€w ¼
d X2

1 þX2
3 �X2

2 �X2
4

� �

Izz
:

ð3Þ
The dynamics of the rotor is considered as T1
sþT2

, in which T1; T2 2 Rþ and T2 is the pole of the system and T1=T2 is the DC gain.

Thus, the model of the robot is obtained as follows:
/ sð Þ ¼ T2
1bl

s2 sþ T2ð Þ2Ixx
u2
4 sð Þ � u2

2 sð Þ� �
;

h sð Þ ¼ T2
1bl

s2 sþ T2ð Þ2Iyy
u2
3 sð Þ � u2

1 sð Þ� �
;

w sð Þ ¼ T2
1d

s2 sþ T2ð Þ2Izz
u2
1 sð Þ þ u2

3 sð Þ � u2
2 sð Þ � u2

4 sð Þ� �
; ð4Þ



Fig. 1. Quadrotor body frame, rotor arrangement and corresponding forces.
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where u1; u2; u3, and u4 are motors inputs. Assuming the motors have fast response, the Eq. (4) can be rewritten as follows,
which is a double-integrator unstable system:
/ sð Þ ¼ A1

s2
U1; U1 ¼ u2

4 sð Þ � u2
2 sð Þ;

h sð Þ ¼ A2

s2
U2; U2 ¼ u2

3 sð Þ � u2
1 sð Þ;

w sð Þ ¼ A3

s2
U3; U3 ¼ u2

1 sð Þ þ u2
3 sð Þ � u2

2 sð Þ � u2
4 sð Þ; ð5Þ
where A1; A2, and A3 2 Rþ. The system model in the presence of a PID controller, as shown in Fig. 2, is obtained as:
Groll sð Þ ¼ A1 kdr s
2 þ kpr sþ kir

� �

s3 þ A1 kdr s2 þ kpr sþ kir
� �U1;

Gpitch sð Þ ¼
A2 kdp s

2 þ kpp sþ kip
� �

s3 þ A2 kdp s2 þ kpp sþ kip
� �U2;

ð6Þ
where Kpr;p ; Kdr;p , and Kir;p are the nonnegative proportional, derivative, and integral gains, respectively. These equations give
a useful insight into the number of poles and zeros of the system in the identification phase.
2.2. Control problem

Attitude control is the integral part of the stabilization problem and helps to reach the desired 3d orientation. In this
paper, we focus on the roll and pitch angles because they play the main role in the stability of the quadrotor. Due to the cou-
pling of the system’s states, the performance of roll and pitch has considerable effect on other states. For example, when the
quadrotor moves forward, the pitch angle changes and then returns to zero. Thus, a fast and reliable control on roll and pitch
angles is crucial. In addition, the disturbance exerts significant influence on the performance and stability of roll and pitch
angles and consequently the overall performance of the robot.
Table 1
List of symbols in Eq. (2)

Symbol Description

Ixx;yy;zz Inertia moments
Jr Rotor inertia
Xi Propeller angular rate
d Drag factor
b Thrust factor
l Horizontal distance: propeller center to CoG*

Center of Gravity.



Fig. 2. PID control structure for quadrotor.
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By considering X ¼ /; _/; h; _h
� �

, the control problem is to reach Xd ¼ /d; 0; hd;0ð Þ in which /d and hd are desired roll and

pitch angles. In our case, the /d and hd are set to zero to stabilize the quadrotor. However, as mentioned before, overcoming
model uncertainty is the main goal of this paper which should be achieved with considering two following conditions.

1. Having a high tracking performance and disturbance rejection
To achieve this goal, we need that the controller provides a short settling time (about 0:3s) and a small overshoot (about
10�6rad).

2. Avoiding actuator saturation
Due to the limitations of the motor, the control effort should be in a feasible range. In addition, actuator saturation may
cause instability of the system.

Briefly, the problem is finding a controller providing the stability for the quadrotor by striking a balance between robustness
and performance of the system, in the presence of uncertainty and the actuator saturation.

2.3. Experimental setup

The quadrotor used in the experiments (Fig. 3a) is based on a typical quadrotor design with some structural modifica-
tions. The power management circuit board and the carbon fiber tubes are used as the frame hub and motors arm, respec-
tively. The main goal in the design of this quadrotor is achieving a compact integration of the mechanical structure and
electronic devices in order to reduce the weight while maintaining a symmetric mass distribution with a center of gravity
close to the center of the cross. The vehicle propeller-tip to propeller-tip distance is 38 cm. This robot, embracing all the
modules, sensors, battery, motors, and props has a mass of 570 g, and provides a total thrust of 850 g. The flight time is
approximately 9 min with a 3-cell 1300 mAh Li-Po battery.
Fig. 3. Experimental setup.



6 A. Noormohammadi-Asl et al. /Mechanical Systems and Signal Processing 135 (2020) 106358
Three main units which play significant roles in the control of the robot are explained below, and the block diagram of
their structure and interconnections are illustrated in Fig. 3b.

Embedded electronics: The robot configuration consists of a flight control, Inertial Measurement Unit (IMU), radio control
unit, telemetry module, and external IO. The flight control board, which is the main board of the robot, runs on an ARM
STM32F407 micro-controller, which can operate up to 168 MHz. Other units interface with this controller via I2C and UART
protocols. Each brushless motor has its own ESC (Electronic Speed Control) units, which is connected to the main board.
PWM (Pulse-Width Modulation) is used to communicate with ESC at the speed of 400 Hz, and the main board sends control
signals to ESC to adjust the rotational speed of the motor.

Inertial Measurement Unit (IMU): The IMU utilized in this quadrotor is MPU-6050, which contains a 3-axis gyroscope, 3-axis
accelerometer, 3-axis magnetometer. The main board communicates with theMPU-6050 via I2C bus and runs a sensor fusion
algorithm with the frequency of 500 Hz. The quadrotor attitude is computed by using Mahony filter algorithm [44], which
estimates the absolute roll and pitch angles via fusing the acceleration vector and angular speedsmeasured by the gyroscopes.
The angular speed which is measured by the gyroscope associated with yaw axis is used for estimating the yaw angle.

Wireless communication systems: We established two types of system to support real time communications between the
flying quadrotor and our personal computer as a ground control system (GCS): a digital radio telemetry unit (915 MHz) and
an analog radio link (2.4 GHz). We use NRF modules as a digital radio telemetry for data acquisition. The telemetry wireless
interfaces with the main board using a UART serial protocol. Necessary flight data can be either saved on the internal mem-
ory of the micro-controller or sent to the GCS at rates of up to 115,200 bps using telemetry communication. Futaba remote
controller is used as the analog radio link. The radio control (RC) receiver is connected to the main board through the SBUS
protocol that allows to receive flight commands at the speed of 100 K bps.

2.4. System identification

The problem of system identification of an aircraft or rotorcraft is a topic of interest and have been widely studied. In
most of the studies, the system identification methods are used to obtain parameters value in the model of the system. How-
ever, in this paper, a black-box system identification, merely based on input and output experimental data, is performed.

The first and basic step in the identification phase is selecting a proper input for applying to the system. In the frequency-
domain identification, which is desired in this paper, a periodic excitation input is much preferred because it helps to cover
and sweep the desired frequency spectrum effectively. The excitation inputs are better to be applied automatically (e.g pro-
grammed on the microcontroller) rather than manually (e.g radio controller). Thus, in order to obtain a continuous time
model, a frequency-domain identification method is performed in which periodic chirp functions with different frequencies
and amplitudes are implemented on the on-board micro-controller, and are used as exciting inputs. During the experiments,
the identification for the pitch and roll angles are executed separately, and the quadrotor is supposed to track the reference
chirp input. For example, if the chirp signal is selected as a reference input for the roll angle, the quadrotor uses the imple-
mented simple PID controller for the roll angle to track the reference. Setting proper frequencies and amplitudes for chirp
functions is important, because an improper frequency or amplitude, which are beyond the quadrotor ability to track, may
cause inappropriate tracking and produces misleading information for identification. In this identification, the frequency
and amplitude range vary in 0:05 Hz;5 Hz½ � and 5�;11�½ �, respectively, which are feasible and reasonable pitch and roll angles.
Fig. 4. The coupling effects.
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Prior to the identification phase, the probable existence of delay is studied using correlation analysis method, and accord-
ing to its results, the delay of the system is negligible. Secondly, the effect of exciting the roll angle on the pitch angle, and
vice versa, is analyzed. In Fig. 4a, the pitch angle, the desired reference pitch angle, and the roll angle are plotted, for one of
the experiences. As shown in this figure, the coupling is negligible and the roll angle is almost independent of the pitch angle,
thus their coupling can be considered as an unmodelled system uncertainty. The same condition holds for the pitch angle as
well (Fig. 4b). As a result, off-diagonal elements of the system model can be considered zero, which implies that the system
can be represented by two SISO subsystems. Although this assumption may make the controller task more difficult at high
frequencies, the controller design becomes much easier.

After performing several experiments for both pitch and roll angles, a linear transfer function should be fitted for each of
them to obtain the stable closed-loop system model. We use MATLAB identification toolbox for obtaining continuous-time
transfer function using time-domain data. In this step, it is important to select a proper number of poles and zeros. For this
purpose, in each identification, we use different combinations of zeros and poles. However, to reduce the number of these
combinations, the number of poles and zeros can be assumed close to the approximate analytical transfer function of the
system, obtained in Eq. (6). Finally, for the model identification, the number of poles and zeros are considered in the ranges
of 2;5½ � and 0;3½ �, respectively. Consequently, for each experiment, fifteen proper transfer functions are obtained, and one of
them is selected as the best-fitted model. In order to select a transfer function, fitness percentage of different fitted models
has a decisive role. However, there are two other factors which must be considered. First, it is preferred that the selected
transfer functions have similar frequency responses, meaning that the zero/pole numbers should be close to each other. Sec-
ond, the transfer functions with right hand-side zeros are not selected because the quadrotor system does not show the char-
acteristics of a system with right half-plane zeros.

Based on the obtained transfer functions, for the pitch angle, the real part of poles mainly lie in the range of �6;0½ �, and for
the roll angle, real part of poles are in the ranges of �7;0½ � and �10;�8½ �. In both cases, the zeros lie in the range of �1;1½ �.
These zeros, which are located near the imaginary axis, mostly appear in pairs with poles very close to them, and therefore,
they may be ignored due to the zero-pole cancellation.

By analyzing the obtained transfer functions according to the three aforementioned criteria, it is observed that in the most
cases, transfer functions with three poles and no zero can suitably describe the quadrotor system behavior. Fig. 5a and b
show the histogram of the real part of poles in the transfer functions of the pitch and roll angles, with three poles and no
zero, respectively. According to these figures, it is expected that poles lie in the range of �7;�3½ � and �10;�8½ �. In Fig. 6,
the Bode diagram of the transfer functions obtained for the pitch and roll angle are depicted. It is clear from Fig. 6 that
the behavior of the transfer functions is similar, especially in frequencies less than 15 Hz where the robot mostly operates
in. Now, by having the system transfer functions pertain to both axes of pitch and roll, we select one of them as the nominal
transfer function. Hence, the transfer function which lies near to the median of all responses, is considered as the nominal
model. The selected nominal model transfer function for the pitch and roll angle are as follows:
Gpitch sð Þ ¼ 1547:4
sþ 5:373ð Þ s2 þ 10:12sþ 390:4ð Þ ; ð7Þ

Groll sð Þ ¼ 2049:8
sþ 6:764ð Þ s2 þ 19:03sþ 426:2ð Þ : ð8Þ
Fig. 5. Distribution of poles in transfer functions with 3 poles and no zero.



Fig. 6. Bode diagram of selected transfer functions in the experiments.

Fig. 7. Comparison of transfer functions time-response and real data (for the same input).
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In order to verify the nominal models, the real experimental data (dashed) and the time-domain response (solid) are
depicted in Fig. 7a and b. For the sake of brevity, only two of the experiment results are shown. In these figures, the applied
inputs to the nominal model are the same as the real experiments.

2.5. Uncertainty weighting function

As mentioned before, based on Eq. (1), W is a fixed transfer function for normalizing D. In other words, WD expresses the
normalized system variation away from unity at each frequency, and based on Eq. (1), may be obtained by
G jwð Þ=G0 jwð Þ � 1 ¼ D jwð ÞW jwð Þ. Since kDk1 < 1, the following can be concluded, which provide a practical approach for
obtaining the uncertainty weighting function:
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G jwð Þ
G0 jwð Þ � 1
����

���� 6 W jwð Þj j 8w: ð9Þ
After selecting a nominal model between all best-fitted transfer functions, other systems can be considered as a perturbed
model of the nominal system, and jG jwð Þ=G0 jwð Þ � 1j is plotted for each experiment (as illustrated in Fig. 8). As a result, by
estimating a transfer function, which is an upper bound for those variations, the uncertainty weighting function (the dashed
red line in Fig. 8a and b) is acquired. The uncertainty weighting functions for pitch and roll angles are obtained as follows:
Wpitch ¼
1659:6 s2 þ 2:868sþ 60:44

� �
sþ 2:477e04ð Þ sþ 9:678ð Þ ; ð10Þ

Wroll ¼
1:9017 s2 þ 3:813sþ 91:61

� �
s2 þ 43:53sþ 545:3

: ð11Þ
The above mentioned steps for obtaining the nominal models of the systems and the uncertainty weighting functions are
summarized as below:

Step 1. Designing appropriate experiments and obtaining 8 and 9 data packages for pitch and roll angles, respectively.
Step 2. Fitting 15 transfer functions for each data package.
Step 3. Selecting the best-fitted transfer function for each data package.
Step 4. Selecting the nominal models among 8 and 9 transfer functions obtained for pitch and roll angles.
Step 5. Considering the other transfer functions as perturbed models, obtaining the kG jwð Þ=G0 jwð Þ � 1ks, and plotting
them for roll and pitch angles.
Step 6. Obtaining the uncertainty weighting functions, which are an upper bound for the variations obtained in Step 5, for
each roll and pitch angle.

3. Robust H‘ control synthesis

The goal of H1 controller is providing a robust stable closed-loop system with high performance tracking and disturbance
rejection, in the presence of uncertainty and the actuator saturation. Based on Fig. 9, in order to achieve this goal the follow-
ing objectives shall be met simultaneously:

1. kTz1ydk1 ¼ kWsSk1 6 1, where Tz1yd ¼ Ws
1þCP ¼ WsS is the transfer function from yd to z1, which is the nominal tracking per-

formance in an asymptotic sense.Ws is a frequency dependent sensitivity weighting function for normalizing and shaping
the closed loop performance specification.

2. kTz2ydk1 ¼ kWuUk1 6 1, in which Tz2yd ¼ WuC
1þCP ¼ WuCS ¼ WuU is the transfer function from yd to z2, and expresses the

nominal performance of the control effort. Wu is a frequency dependent weighting function for normalizing and shaping
the control input.
Fig. 8. Multiplicative uncertainty profiles.



Fig. 9. Block diagram of closed-loop system as a generalized regulator problem in H1 framework.
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3. kTz3ydk1 ¼ kWTk1 6 1, which is the result of the small gain theorem. Tz3yd ¼ WCP
1þCP ¼ WT is the transfer function from yd to

z3, and W represents the uncertainty weighting function.

Considering this system with input, yd, and output vector z ¼ ½z1; z2; z3�T , the aforementioned conditions can be merged in an
induced norm of the transfer function from yd to z, in which the goal is to find a controller to minimize this norm. This prob-
lem is called a mixed-sensitivity problem and is formulated as follows:
copt ¼ min
C

Tzydk k ¼ min
C

WsS

WuU

WT

�������

�������
1

: ð12Þ
In order to define the sensitivity weighting function, first an ideal closed-loop transfer function is designed. In this case,
based on the standard second order systems, xn and f are chosen such that the following overshoot and the settling time
are satisfied
Tcl ¼ x2
n

s2 þ 2fxnsþx2
n
; ð13Þ

ts � 4
fxn

¼ 0:3; ð14Þ

Mp ¼ e
�pfffiffiffiffiffiffi
1�f2

p
¼ 10�6; 0 < f < 1: ð15Þ
To achieve Ws, we use the inverse of the desired sensitivity function:
Tid ¼ 247:3
s2 þ 30:67sþ 247:3

; ð16Þ

Ws ¼ a
1
Sid

¼ a
1

1� Tid
¼ a

s2 þ 30:67sþ 247:3
s sþ 30:67ð Þ ; ð17Þ
where a � 1 is a tuning parameter. Eq. (17) is modified by inserting a non-dominant pole and by slightly transferring its
purely imaginary pole to the left half plane in order to convert Ws to a strictly proper and stable weighting function, respec-
tively. Hence, Ws is corrected as:
Ws ¼ a
s2 þ 30:67sþ 247:3
� �

sþ 1000ð Þ sþ 30:67ð Þ sþ 0:001ð Þ : ð18Þ
In the obtained nominal system, Eq. (7), the input of the system is the desired angle, which should be less than 20�. There-
fore,Wu is set to 0:05. Having set the weighting functions, the mixed sensitivity problem can be solved using the robust tool-
box of MATLAB. After a few correction steps, the controller for the pitch angle by tuning a ¼ 0:88 with copt ¼ 0:9929 is
synthesized as follows:
Cpitch sð Þ ¼ 3:3227e05 sþ 2:477e04ð Þ sþ 461:2ð Þ sþ 50:77ð Þ sþ 9:678ð Þ sþ 5:373ð Þ s2 þ 10:12sþ 390:4
� �

sþ 2:477e04ð Þ sþ 1:673e04ð Þ sþ 1000ð Þ sþ 30:67ð Þ sþ 8:082ð Þ sþ 0:001ð Þ s2 þ 80:13sþ 3556ð Þ :
The singular values of the closed-loop system, and the frequency response of each I/O pair are depicted in Fig. 10. The
solid blue line shows the maximum singular value of the closed loop system, which is flat within a large frequency range,
and is less than one in all range of the frequency domain. The dotted orange line shows the Bode diagram of WT in which
the maximum value is 0.42 indicating the robustness of the closed loop system with a margin of greater than two. The per-
formance transfer function and the control effort transfer function are shown by the red and green lines, respectively. Based



Fig. 10. The closed loop system singular values and Bode plot of WsS;WuU;WT (Pitch).
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on Fig. 10, the magnitude ofWT starts to reduce significantly in frequencies higher than about 30 Hz due to the limited band-
width of the system. About this frequency, a slight decrease also appears in the magnitude of WsS until roughly 900 Hz
where a dramatic drop occurs. Conversely, the magnitude of WuU increases in these frequencies to compensate for the lack
of the system stability and performance. However, since the robot working frequency is less than approximately 20 Hz, high
frequencies performance of the system can be ignored. In low frequencies, as expected, the magnitude ofWsS increases when
that of WT decreases.

As mentioned in Section 2, a PD controller has been employed to identify the system. Therefore, to implement the final
controller a cascade architecture must be used in which the PD controller is in the inner loop, and the H1 controller is func-
tioning in the outer loop as illustrated in Fig. 11. The closed-loop step response of the nominal (red) and some uncertain sam-
ples of the system are shown in Fig. 12a. It can be seen that the controller can robustly stabilize the system and provide a fast
response with a reasonable control effort, which is depicted in Fig. 12b.

The same procedure is applied to obtain the H1 controller for the roll angle.Wu is set to 0.05, andWs is same as that of the
pitch angle, in Eq. (18). After solving the mixed-sensitivity problem, copt value is obtained 0.9925, for a ¼ 0:92 and the fol-
lowing controller:
Croll sð Þ ¼ 4:3173e06 sþ 371:5ð Þ sþ 59:89ð Þ sþ 6:764ð Þ s2 þ 43:53sþ 545:3
� �

s2 þ 19:03sþ 426:2
� �

sþ 2:175e05ð Þ sþ 1000ð Þ sþ 30:67ð Þ sþ 27:95ð Þ sþ 19:41ð Þ sþ 0:001ð Þ s2 þ 80:99sþ 3749ð Þ :
The singular values of the closed-loop system and the frequency response of each I/O pair are illustrated in Fig. 13. The analysis
of this plot is the same as that of the pitch angle, which is omitted for the sake of brevity. The step responses of the nominal and
perturbed systems in the presence of H1 controller are depicted in Fig. 14a. The control efforts are also shown in Fig. 14b.

4. Experimental results

4.1. Real Implementation

In this section, we verify the performance and the applicability of the controllers which were designed in the preceding
section by implementing on the real robot. The control structure is the same as Fig. 11 for both pitch and roll angles. By set-
ting the time-step of the system to 0.001, the continuous controllers are discretized with the frequency of 1 kHz for the prac-
tical implementation. To make this task easier, an order reduction is performed that decreases the order of the controllers
from 8 to 6. Finally, the controllers for both axes after applying the order reduction are given by:
Cpitch ¼ 3:3227e05ðsþ 461:5Þðsþ 45:87Þðsþ 5:903Þðs2 þ 9:836sþ 388:1Þ
ðsþ 1:673e04Þðsþ 1000Þðsþ 25:13Þðsþ 0:001Þðs2 þ 79:66sþ 3577Þ ;

Croll ¼ 4:3173e06ðsþ 371:8Þðsþ 53:33Þðsþ 7:035Þðs2 þ 18:34sþ 428:1Þ
ðsþ 2:175e05Þðsþ 1000Þðsþ 27:87Þðsþ 0:001Þðs2 þ 80:84sþ 3820Þ :



Fig. 11. Block diagram of the control structure.

Fig. 12. Closed-loop control of nominal and uncertain systems for the unit-step input (Pitch).
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Based on the frequency response of each I/O pair, this reduction has a negligible effect.
Having implemented the controllers, some tests are performed in the outdoor and indoor environments to evaluate the

H1 controller ability in coping with uncertainties. In the first experiment, the operator drives the quadrotor using a radio-
controller to assess the qualitative performance of the robot in comparison with a well-tuned PID controller. The tuning
parameters of the PID controller for both roll and pitch angles are selected as follows:
1 http
Kp ¼ 2:6; Ki ¼ 0:2; Kd ¼ 0:65
According to this experience, the maneuverability has been enhanced, and the quadrotor can quickly regulate the roll and
the pitch angle in the presence of the external disturbances such as the unexpected wind effects (i.e. caused by the drone
itself while flying near the walls or the weather) or some manual disturbances applied by the operator. Since the states
of the quadrotor are coupled, a refinement on the altitude control of the robot is also observed. The video of this experiment
is also available online.1

To evaluate the robustness, stability and tracking performance of the proposed controllers, an experiment is done in
which the quadrotor should track the reference input in the outdoor environment, in the presence of light wind. Fig. 15a
shows the tracking performance of the pitch controller and the ability of the roll controller in regulating the roll angle close
to zero. In addition, as it is shown by data-tip in Fig. 15a, the performance of the system (e.g. settling time and overshoot) is
s://youtu.be/vAi4x2_XSQQ.

https://youtu.be/vAi4x2_XSQQ


Fig. 13. The closed loop system singular values and Bode plot of WsS;WuU;WT (Roll).

Fig. 14. Closed-loop control of nominal and uncertain systems for the unit-step input (Roll).
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close to that of the desired transfer function obtained in Eq. (16). The performance of the well-tuned PID controller is also
depicted in Fig. 15b. According to Fig. 15, the H1 controller has significantly enhanced the performance of the system.

4.2. Simulation results

After validating the practicability and efficiency of the proposed controllers through real experiments, in what follows,
the performance of the controllers are evaluated in the simulation and is compared with a well-tuned PID and another robust
controller obtained by l-synthesis method. The robust stability and robust performance of the controllers are also analyzed
using the structural singular values. The gains of PID controller are as below:
Roll : Kp ¼ 1:18; Ki ¼ 10:6; Kd ¼ 0:0329
Pitch : Kp ¼ 1:01; Ki ¼ 10:2; Kd ¼ 0:0132:



Fig. 15. Tracking and regualting performance of H1 and PID controllers.
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Fig. 16a illustrates the step-response of an uncertain system in the presence of the disturbances and uniform random sen-
sor noise. The amplitude of the disturbances is 0:1, and the maximum value of the random sensor noise is 0:02. Fig. 16b,
depicts the roll angle performance in a similar experiment. Based on these figures, the H1 controller’s overshoots for the
pitch and roll systems are about 1% and 0:1%, respectively, which are less than that of PID and l synthesis controllers which
are approximately 10%. In addition, the H1 controller regulates the system faster, and its settling time is roughly 0.35 s. The
settling times of both PID and l synthesis controllers are about 1 s. H1 controller also has better performance when distur-
bances occur.

In Fig. 17, the robust stability of the H1;l synthesis, and PID controllers are evaluated by structural singular values. As
expected, the H1 and l synthesis controllers fulfill the robust stability condition and their l values are less than 1. The
robust stability condition is also met for the PID controller, however, in frequencies about 20 rad/s gets close to 1. Moreover,
when the PID parameters are set in such a way that the system has a faster response, the robust stability will be lost. The
robust performance analysis of the roll and pitch systems using structural singular values are depicted in Fig. 18. Predictably,
the l synthesis controller offers the robust performance in contrast to H1 and PID controllers. The l synthesis controller is a
conservative approach to have the robust performance, which results in poor time-domain performance in comparison with
Fig. 16. H1 , PID and l synthesis controllers performance in the presence of disturbance and sensor noise.



Fig. 17. Robust stability of H1 , PID and l synthesis controllers.

Fig. 18. Robust performance of H1 , PID and l synthesis controllers.
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the H1 controller. Moreover, l synthesis method produces a high-order controller which makes its implementation on a real
robot challenging [45].

5. Conclusion

This research has studied the robust attitude control of a quadrotor with taking into account the uncertainty and inputs
constraints. Knowing that the model and parameters of the system do not exist, a continuous-time black-box model iden-
tification based on the real sampled data is adopted to acquire both nominated linear model of the system and the uncer-
tainty model encapsulating the deviation of the nonlinear system from the nominal model. Now, the essential prerequisites
for applying the robust H1 controller is provided. By solving the mixed-sensitivity problem, a robust stabilizing H1 con-
troller is obtained which satisfies tracking, disturbance attenuation and input saturation objectives. Having accomplished
that, the pitch and roll controllers are implemented on the robot, and qualitative and quantitative experiments are per-
formed to verify the performance of H1 controllers. According to both experimental and simulation results, the controllers
successfully fulfill the aforementioned objectives. Finally, by comparing the performance of the proposed controllers with
PID and l synthesis controllers, it is demonstrated that the H1 controller has a better performance.
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