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( Design and Optimization of Multistage Compressed Air Energy Storage System )
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Minimize f(x) = x4 + (i_) N (@)

Subject to  x, = 1 X, = X4 64 = x,
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9 025273%1 — xltr V%) = 3,83 % 102

ax,

;j = 0.25x;34[x; 174 — (64)'/4x;172] = —2.38 X 1072

Assuming that these values are not sufficiently close to zero, we continue

with step 2: Solve the LP problem
Minimize —3.83 X 1072y, — 2.38 X 107y,

Subject to Vi = ] Vs = Vi 64 = Y

The minimum will clearly occur when y, and y, are as large as possible,

namely y? = y9 = 64.

Step 3. Search the line
Yy o 2 64\ [ 2
()= () (&) - (s
for 0 = a = 1. Using, say, an interpolation method, we find that the

optimum occurs at « = 0.02732.
Step 4. The new point is

¥\ _ [ 2 62\ _ [ 3.694
(xs;l) B (10) " 0'02732(54) B (11.475)



As shown in Figure 2, the point xV is an interior point of the feasible
region. Since the search clearly has not yet converged, the iterations resume
with step 1.

Step 1.
VF(x®) = (3.97 X 1073, —4.56 X 1073)
Step 2. The LP subproblem becomes

Minimize +3.97 X 1073y, — 4.56 X 1073y,

Subject to y, = 1 y, =y, 64 = y,

The minimum is attained at the corner point at which y, is as small and
y, is as large as possible; thus,

vy =1 and vy = 64

4.4

Figure. 2 Feasible region, Example



Step 3. Search the line

x\ _ [ 3.6% " 1) [ 3.69%4

X, 11.475) © *\\ 64 11.475
for 0 = a = 1 such that f(x(«)) is minimized. The optimum occurs at «
= (0.06225.

Step 4. The new point is
¥\ _ [ 3.694 —2.694\ _ ( 3.526
(xge)) - (11.475) ¥ 0'06225( 52.525) - (14.745)

From Figure 8.2, this point is also an interior point. Moreover, it is still
sufficiently distant from the optimum. The process continues with the points

x® = (3.924, 15.069) x® = (3.886, 15.710)
and so on, until suitably tight convergence tolerances are met.
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Example

Suppose that the compressor system of the previous example is constrained
to satisfy the additional condition

X, =< 14 atm

Obtain the new optimum using as initial estimate x° = (14, 14).

Solution. The given initial point is a corner point of the modified feasible
region, as shown in Figure 8.3. At x°,

VFx®) = (1.67 X 1072, —8.25 X 1079)

The corresponding LP subproblem is



Figure 8.3. Feasible region, Example 8.2.

Minimize 1.67 X 1072y, — 8.25 X 107}y,

Subject to y, = 1 Y, =y, 14 =y,

The solution is obtained when y, is as small and y, is as large as possible.
Thus,
y? =1 and y) =14

Step 3, the line search, involves finding @, 0 =< « < 1, such that

x ) _ (14 1y (14

()= (28) o a) - (34
and f(x(«)) is minimized. This amounts to a search on the constraint y, =
14. The solution is

a = 0.7891

and the new point is



At this point, Vf(x") = (0, —1.275 X 1073
e

and. as shown in FIUIHP g

(L2310 9 e} B LW L.

, 1t lies in 1nt’\ = 14,
Note that if the addmondl constraint x, = 5

ine in

From the example, it is clear that even for boundary points the Frank—
Wolfe aleorithm amounts to a Ul‘Ale‘nf gsearch nroiected onto the constraint
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assumptlons continuously dlrreren[ldbl e f(x), bounded feasible 1‘egion, and
accurate LP and line search suupn’jmcm solutions. If JLA) is COIIVEX, ucauy
the solution will be the global minimum. It is awkward to analyze the rate of
convergence because of the involvement of the vertex points in the definition
of the descent direction. However, it is suthmently clear that there are no
grounds to expect a better rate than that eth
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fact w1th any algo
function), if the objectlve functlon is convex, then after each subproblem

solution it is possible to obtain a very convenient estimate of the remaining
the value of the ohiective function, Recall
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that for a convex function linearized at any pOll’lt x¥

v = x®) = s x)

for all points x. But this inequality implies that over all feasible points
min f(x) = min f(x; x©) = f(y©; x?)

Hence, the value of f(y; x) is a lower bound estimate of the value of f(x)
at the minimum point. On the other hand, f(y‘), or better yet f(x“*"), is an
upper bound estimate of the minimum value of f(x). Thus, after each cycle
of the algorithm, the difference

f(,t'("“)) — f(}__.fr); x®)

gives a conservative estimate of the attainable improvement in the objective
function value. This difference can thus be used as a good termination cri-
terion, supplementing those defined in step 5 of the Frank—Wolfe algorithm.
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special case of linearly constrained NLP problems. we continue with a dis-
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