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• The proposed SMC can achieve a high performance with significant reducing of a chattering problem.
• A new adaptive reaching law is proposed to achieve very fast reachability convergence.
• Experiments and comparative results are presented to prove the superior performance of the proposed controller.
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a b s t r a c t

In this paper, a new sliding mode control (SMC) is applied to a physical nonlinear system. The novelty
of this approach is related to the proposed reaching law by overcoming the main limitations of
SMC. Unlike existing reaching laws, the suggested one can achieve high performance with significant
reducing of a chattering problem and has a very fast convergence time of the system trajectories
into the origin. This law benefits from the advantages and overcomes the limitations of both the
exponential reaching law (ERL) and the conventional sliding mode control (SMC). Simulation results
and comparison study with ERL and SMC are presented and applied on two degrees of freedom robot in
order to show the advantage of the proposed adaptive reaching law. Experiments results are performed
with electric cylinder (DC Motor) to confirm this proposition in real-time implementation.

© 2019 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

A practical control system should be designed to guarantee
the stability of the physical system. As well, its performance
should be unaffected by the disturbances generated from the vari-
ation of internal parameters of the system, unmodeled dynamics
stimulation, and external disturbances. For a nonlinear physical
system, the sliding mode control (SMC) is one of the most popular
strategies that is widely applied to robotics systems [1–6], and
accomplishes the robust performance requirement. In SMC, a
switching surface is selected so that the trajectory can start form
anywhere and is forced to reach the switching surface in reason-
able finite time. Once on the switching surface, the dynamics of
the system is reduced to a stable linear time-invariant system
which is unrelated to the disturbances regardless of its internal
or external sources [7]. Asymptotic convergence of the state tra-
jectories is then easily realized; however, conventional SMC like
other nonlinear approaches suffers from several imperfections.

∗ Corresponding author.
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In this context, two major shortcomings can be mentioned.
The first one is that SMC ensures an asymptotic convergence to
the equilibrium point with convergence time related with the
value of selected controls gain. Various control methods have
been extended to overcome this problem such as terminal sliding
mode control (TSMC) [8] that employs a nonlinear switching
surface to ensure the finite time convergence by including a
fractional order, which permits to the states trajectories to tend to
an equilibrium point faster. Recently, the precision performance
of TSMC is increased by enhancing new strategies, for instance,
fast TSMC [9] and non-singular TSMC [10].

The second major problem of conventional SMC is coming
from the control input that contains the switching function
signum (sign(.)). In real time implementation, the switching pro-
duced by this function appears in undesirable chattering by
the control effort. Therefore, the performance of the system
decreases, and the high-frequency unmodeled dynamics may be
excited. In some controllers, the switching function is replaced
by a continuous approximation, as a saturation function [2].
However, the robustness of the control performance is lost in
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the presence of even small disturbances [2]. Many solutions
have been developed to eliminate chattering and to reduce the
time convergence of the system state trajectories such as second
order sliding mode control (SOSMC) [11,12]. The main idea of
implementing SOSMC is to permit a switching surface and its
consecutive derivative to converge to the equilibrium point and
to maintain the switching control under an integral function,
which can reduce the undesirable chattering. The performance
of SOSMC is improved by introducing some actions such as
super twisting control [13,14] and modified super twisting al-
gorithm [15,16]. Nevertheless, the second-time derivative of the
switching surface might generate instability of the system, a risk
that the unmodeled dynamics and external disturbances amplify.

Numerous conventional reaching laws reported in [17] such
as the constant reaching law, constant plus proportional reaching
law and power rate reaching law. The constant reaching law (CRL)
is commonly used in the control system due to its ability to
force the state system to converge to the origin with acceptable
convergence time. However, its major problem related to the
high control chattering can be obtained, where the attenuation
issue of the undesirable chattering becomes an expense of the
convergence speed option. This law was extended by the constant
plus proportional reaching law in order to overcome the limita-
tion of CRL and it succeeded to a certain degree to reduce the
chattering problem [17]. The power rate reaching law (PRRL) is
one of the strong propositions that was proposed to deal with
the convergence speed. Based on the power rate of the surface,
the PRRL ensures a chattering free process along with a fast
convergence speed. However, its robustness of the control perfor-
mance close to the surface may be reduced. Exponential reaching
law (ERL) [18] is considered as one of the most important so-
lutions and was proposed to overcome the restriction of CRL.
Its importance comes from its ability to reduce the undesirable
chattering dilemma for the same CRL convergence speed by using
a simple exponential adjustment. It succeeded to achieve a good
performance with different robotics systems [19–21]; however,
the major problem with this approach is its incapability to in-
crease the convergence speed without affecting or provoking the
undesirable chattering problem.

Motivated by the different limitations of the mentioned reach-
ing laws, the idea of this paper is to come up with a response on
how to increase the convergence time of the system trajectories
without influencing the chattering reduction. Based on that, a
new reaching law is introduced to address the mentioned prob-
lem by improving the convergence speed of the system trajec-
tories, meanwhile increasing the chattering attenuation process.
This law benefits from the properties of ERL and SMC, where it
employs a sinusoid term to reduce the chattering and utilizes
ERL advantage to provide a fast reaching time to the origin. A
simulation and comparison study are proposed and applied on
2-DOF robot to show the robustness of the proposed reaching
law and its fast convergence speed compared with SMC and
SMC combined with ERL. Experiments are applied on electric
cylinder (DC Motor) to prove the feasibility and easiness of this
proposition in real time implementation.

This paper is organized as follows. Problem formulation and
motivation are described in Section 2. Section 3 presents the
proposed reaching law in detail. A simulation and comparison
study with SMC and SMCERL are presented in Section 4. An
experimental study with electric cylinder (DC Motor) is given in
Section 5. Section 6 concludes the research.

2. Problem formulation and motivation

The theory of sliding mode control (SMC) of the non-linear
system is well-known in the literature [22]. However, we start

with a brief description of this approach to highlight its main ad-
vantages and shortcomings. These drawbacks stimulate us to pro-
pose a new and effective reaching law approach that will be de-
tailed in the next section. Let us start this section by considering
a general non-linear second-order dynamic system as follows:

ẍ = f (x, ẋ) + g (x, ẋ) u (1)

where f ∈ ℜ
n and g ∈ ℜ

n×n are two non-linear functions and g
is an invertible matrix. The tracking position error which goes to
zero can be defined: e = x− xd where, xd ∈ ℜ

n is the desired tra-
jectory. The design of SMC control always starts by the selection
of a switching function S in terms of tracking position/velocity
errors. Commonly, the sliding surface is chosen as follows:

S = ė + λe (2)

where λ ∈ ℜ
n×n is a diagonal positive definite matrix. It is

important to mention here that the selection of the value of λ

plays a dominate role in the convergence rate of the error tracking
to zero.

Let us determine the Lyapunov function as: V (S) =
1
2
ST S,

taking its time derivative, we find:

V̇ = ST Ṡ (3)

For stability analysis, V̇ < 0 which leads, Ṡ < 0 if S > 0 and
Ṡ > 0 if S < 0. That leads increase to the switching phenomenon
of the control law about S = 0. Based on (2) and its derivative,
we can propose the following control input:

u = g−1 [
ẍd − λė − f + Ṡ

]
(4)

It is noteworthy from (4) that Ṡ plays a significant role in the
expression of the control input, where it is clear that Ṡ determines
the rate of S and hence if Ṡ ≪ 0 for S > 0 (and contrary is
valid), then the system trajectory forced converges onto S = 0.
Therefore, the term of Ṡ is known as the ‘‘reaching’’ law. When
the state’s system is extremely near to S = 0, Ṡ < 0 determines
that the state system’s closeness to the sliding surface S = 0
while V̇ < 0. Consequently, there is a ‘‘switching’’ phenomenon
appearance to maintain the condition: SṠ < 0. Various reaching
laws have been proposed in literature, taking into consideration
the speed of the reaching time. These reaching laws can be
summarized as follows [17]:

1. Constant rate reaching law (CRL) [17]:

Ṡi = −Kisign(Si) (5)

where Ki > 0 with i = 1...n is positive constant. The
reaching law (5) makes the system trajectory (ei, ėi) con-
verge to the switching surface Si in reaching time given

by: Tri =
|Si (0)|

Ki
where Si(0) is the initial value of Si. So,

greater value of Ki is required to ensure a fast convergence;
however, it inevitably provokes a grown chattering when
the system trajectory moves in the sliding manifold.

2. Constant plus proportional rate reaching law (CPPRL) [17]:

Ṡi = −K1isign(Si) − K2iSi (6)

where K1i, K2i are positive constants. This law can ensure a
convergence rate with reaching law Tr1i
=

1
K1i

ln
K2i |Si(0)| + K1i

K1i
. Expression (6) is one of the

strongest reaching laws that provides a fast convergence
rate without reducing the chattering phenomenon.

3. Power rate reaching law (PRRL) [17]:

Ṡi = −Ki |Si|σ sign(Si) (7)
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where 0 < σ < 1. The law (7) is able to provide a

reaching time given by: Tr2i =
|Si(0)|(1−σ )

(1 − σ )Ki
. The advantage

of this law is its capability to vary the reaching time speed
which depends on the position of the state system from
the sliding surface. When the system trajectory is far away
from the surface, the control law increases the reaching
speed and vice-versa is true. The term |Si|σ can guarantee
a chattering free process along fast convergence of the
desired state which leads to the loss of the robustness
which depends on the choice of the power term σ .

It has appeared from the analysis of the three reaching laws
that they are very helpful and easily applicable to the design
of the SMC. Nevertheless, each of them also has its own minor
shortcomings which leads always to the trade-off between the
convergence rate speed and chattering reduction or between the
chattering reduction and robustness of the control. The common
remark between them (the three laws) is that the large value of
gain Ki (coefficient of sign(Si)), is required to ensure a fast con-
vergence rate to the desired surface, and in the same time leads
to chattering which is damaging as this produces high-frequency
dynamics. A kind of adaptive reaching has been proposed in
named Exponential Reaching law (ERL) [18] to deal with value
of the gains. The ERL is given by:

Ṡi = −
Ki

µi + (1 − µi) e−αi|Si|pi
sign(Si) (8)

where µi, αi and pi are strictly positive constants with 0 <

µi < 1. As shown in (8), the ERL approach has overcome the
drawback related to the gain in the mentioned reaching law (5) by
permitting the controller to dynamically adjust to the variations
of the switching function Si. This operation permits to the gain
Ki to vary easily between Ki and Ki/µi. So, the ERL method can
ensure the convergence rate in reaching time [18]:

Tr3i ≈ µi
|Si(0)|
Ki

(9)

if αi in (8) achieves the following condition [18]:

αi ≫

(
1 − µi

µi |Si(0)|

)1/pi
(10)

Clearly that ERL concentrates much more on reducing chat-
tering using the innovative law (8). However, the shortcomings
observed in ERL are in its capability to eliminate chattering (when
the term Kisign(Si) is maintained, the ability of chattering reduc-
tion is restricted) and its limitation to increase the convergence
speed without influenced chattering attenuation as shown in
(9) (when we decrease the reaching time, the term Ki increases
which causes the chattering phenomenon. It is remarked that
the state of the controller system not overlap perfectly to the
reference trajectory due to continuing low degree of chattering.
As a promising solution in this paper, we enhanced the reduction
of the chattering by the ERL by nearly eliminating the chattering
and improving the reaching speed without any effect on the chat-
tering elimination via a sinusoid term adjustment. The proposed
adaptive reaching law is chosen in such a way that it will able to
associate the advantages of the reaching laws (5) and (8).

3. Proposed adaptive reaching law

This section presents the development mathematics of the
proposed adaptive reaching law that can associate the advantages
of the mentioned reaching laws, and ensures a convergence time

less than the provided by ERL. The proposed adaptive law is
designed using damping sinusoid in nature, and is given by:⎧⎨⎩ Ṡi = −

Ki

H(Si)
sign(Si)

H(Si) = ζi + (1 − ζi) e−αi|Si| cos(βi|Si|)
(11)

where βi and αi are strictly positive constants. the gain 0 < Ki <
1 and 0 < ζi < 1. Note here that ζi in (11) is the same like µi
in (8). The both βi and αi belong to the following second order
polynomial:{
S2i + 2αSi + ω2

n = 0
ω2

n = α2
i + β2

i
(12)

The proposed reaching law (11) is worked as following:

• Initially Si ̸= 0 and is large because of the initial condition
of the closed loop system;

• The selection of βi and αi is done to fulfill: e−αi|Si| cosβi|Si| ≈

0 which leads to H(Si) = ζi ≪ 1;

• Since H(Si) ≪ 1 leads to
Ki

H(Si)
≫ 1, in such case, the

trajectory will slowly converged to Si = 0;
• While |Si| ≈ 0 and H(Si) → 1 leads to extremely low

chattering of the system’s outputs due to: H(Si) = Ki < 1.

The term e−αi|Si| cosβi|Si| able to cross the zero many times
before reaching the origin or equilibrium point. This property may
give this term the ability attending to the origin prior to whatever
exponential function. It worthy to mention that the exponential
function is a constantly asymptotic function with respect to the
origin and consequently relatively coincides to the equilibrium
point on finite time.

Proposition 3.1. The reaching law obtained in (11) provide always
a faster convergence to equilibrium point than the provided by
ERL [18], for the identical Ki,.

Proof. Let us start by presenting the reaching time provided by
the ERL proposition [18]:

Tr3i =
1
Ki

(
µi |Si(0)| + (1 − µi)

∫
|Si(0)|

0
e−αi|Si|pi dSi

)
(13)

Now, we can find the reaching time (Tr4i) given by the proposed
adaptive reaching law. The reaching law (11) can be rewritten as
follows:

(ζi + (1 − ζi) e−αi|Si| cos(βi|Si|))dSi = −Kidt (14)

Integrating (14) between zero and Tr4i and it should be noted that
Si(Tr4i = 0), one has:

Tr4i =

∫ 0

Si(0)

(
ζi + (1 − ζi) e−αi|Si| cos(βi|Si|)

)
dSi

−Kisign(Si)

=

∫ Si(0)

0

(
ζi + (1 − ζi) e−αi|Si| cos(βi|Si|)

)
dSi

Kisign(Si)
(15)

If Si < 0 for all ti < Tr4i:

Tr4i =

∫
−Si(0)

0

(
ζi + (1 − ζi) e−αi|Si| cos(βi|Si|)

)
dSi

Ki
(16)

If Si > 0 for all ti < Tr4i:

Tr4i =

∫ Si(0)

0

(
ζi + (1 − ζi) e−αi|Si| cos(βi|Si|)

)
dSi

Ki
(17)

According to (16) and (17), we have:

Tr4i =

∫
|Si(0)|

0

ζidSi
Ki

+

∫
|Si(0)|

0

(
(1 − ζi) e−αi|Si| cos(βi|Si|)

)
dSi

Ki
(18)
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As result of the integration of (18), the reaching time is given as:

Tr4i =
1
Ki

(
ζi|Si(0)| + (1 − ζi)

×

[
αi

α2
i + β2

i
(1 − e−αi|Si(0)| cos(βi|Si(0)|))

])
+

1
Ki

[
βi

α2
i + β2

i
e−αi|Si(0)| sin(βi|Si(0)|)

] (19)

Now let us prove that the proposed reaching law provides a
reaching time less than the reaching time provided by ERL [18].
if the value of |Si(0)| ≫ 1, the reaching law (19) can be approxi-
mated as follows:

Tr4i ≈
1
Ki

(
ζi|Si(0)| + (1 − ζi)

[
αi

α2
i + β2

i

])
(20)

As second condition, the gain Ki must satisfy:

Ki ≈
1

Tr4i

(
ζi|Si(0)| + (1 − ζi)

[
αi

α2
i + β2

i

])
(21)

Since the comparison of the proposed reaching law will be with
the one given by ERL [18]. Now, subtracting (20) from (9) as:

Tr3i −Tr4i ≈ µi
|Si(0)|
Ki

−
1
Ki

(
ζi|Si(0)| + (1 − ζi)

[
αi

α2
i + β2

i

])
(22)

As mentioned in (11) that µi = ζi. The eq (22) becomes as:

Tr3i − Tr4i ≈
(1 − ζi)

Ki

[
αi

α2
i + β2

i

]
(23)

As we remark the term
(1 − ζi)

Ki

[
αi

α2
i +β2

i

]
is always positive, while

0 < ζi < 1 positive. we can write that:

Tr3i − Tr4i > 0, (24)

Consequently, the reaching time provided by the proposed adap-
tive reaching law is always less than the ERL reaching time. The
proof is complete.

4. Simulation study

In this section, three numerical simulations are shown for
trajectory’s tracking of a manipulator with 2-DOFs Pelican pro-
totype robot as shown in Fig. 1. The simulation is done in Mat-
lab(2018a)/Simulink software. The dynamics of the 2-DOFs is
written in the form of (1) and the applied control input is given
by (4). For each simulation, we substituted the reaching laws (5),
(8) and the proposed reaching law (11), respectively. The goal of
the simulation study is to compare and to confirm the advantage
of the suggested adaptive reaching law.

The dynamic model of the 2-DOfs manipulator is defined as
follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (25)

where q ∈ R2 denotes the generalized coordinates vector; M(q) ∈

R2×2, C(q, q̇)q̇ ∈ R2, and G(q) ∈ R2 are respectively inertia
matrix, which is symmetric and bounded, Coriolis and centrifugal
torques, and the gravitational torques. τ ∈ R2 is the torque input
vector. These matrices is defined as follows:

M(q) =

(
M(1, 1) M(1, 2)
M(2, 1) M(2, 2)

)
with, M(1, 1) = l2c2m1 + m2[l21 + l2c2 + 2l1lc2 cos(q2)] + I1 + I2;
M(1, 2) = M(2, 1) = m2[l2c2+l1lc2 cos q2]+I2;M(2, 2) = l2c2m2+I2;

C(q, q̇) =

(
−m2l1lc2 sin(q2)q̇2 −m2l1lc2 sin(q2)[q̇1 + q̇2]
m2l1lc2 sin(q2)q̇1 0

)

Fig. 1. Two-link of the Pelican prototype robot [23].

Table 1
Parameters of the 2-DOFs robot manipulator [23].
Symbol Definition Value Unit (s)

l1 Length of the first link 0.26 (m)
l2 Length of the second link 0.26 (m)
Ic1 Distance to the center of mass (Link 1) 0.0983 (m)
Ic2 Distance to the center of mass (Link 2) 0.0229 (m)
m1 Mass of link 1 6.5225 (kg)
m2 Mass of link 2 2.0458 (kg)
I2 Inertia rel. to center of mass (Link 1) 0.0229 (kg m2)
I2 Inertia rel. to center of mass (Link 2) 0.0229 (kg m2)
g Gravitational constant 9.81 (m/s2)

and

G(q) =

(
(m1lc1 + m2lc1)g sin(q1) + lc2m2g sin(q1 + q2)

lc2m2g sin(q1 + q2)

)
The parameters of the 2-DOFs manipulator are given in Ta-

ble 1.
The robot’s dynamics (25) can be rewritten as the general form

of the nonlinear system given in (1):

q̈ = f (q, q̇) + g (q, q̇) u (26)

where, g (q) = M−1(q), u = τ and f (q, q̇) = −M−1(q)
(C(q, q̇)q̇ + G(q)). Now, we can apply the control input 4 easily.
The control objective is to force the real trajectories of the robot
to follow the reference trajectories given by:

q1d = 1.25 − (
7
5
)e−t

+ (
7
20

)e−4t

q2d = 1.25 + e−t
− (

1
4
)e−4t (27)

All initial joint positions and velocities of the robot are chosen as:

q1 = 0.4 rad, q2 = 1.8 rad

and

q̇1 = q̇2 = 0 rad/s.

The gains used in the simulation of all controllers are chosen
manually based on ‘‘ trial error’’ and given in Table 2. It is worthy
to mention here that we have used the same value of the param-
eters common between the proposed approach and SMCERL to
evaluate the both approaches under the same conditions.

4.1. Discussion

Classical SMC: The tracking trajectories of q1 and q2 is shown
in Fig. 2. It is clear from this figure that the SMC controller pro-
vides a good convergence to the reference trajectories with small
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Fig. 2. Evolution tracking of Sliding Mode Controller (SMC).

Fig. 3. Evolution tracking of Sliding Mode Controller with Exponential Reaching law (SMCERL).

Table 2
Parameters of the controllers.

Gains SMC SMCERL PRL

Ki 25 2 2
λi 2 2 2
αi – 20 20
pi – 1 1
ζi, µi – 0.06 0.06
βi – – 85

errors of tracking. However, the chattering is very important as
shown in the last line of Fig. 2 because of the high selection of
gains which gives inadmissible torques controls.

Sliding mode control (SMC) with ERL: Fig. 3 presents the
tracking trajectory of joints position (q1 and q2). It is obvious
from this figure that SMCERL provides good results, where the
real trajectories are overlapped the reference trajectories. Also,
the chattering phenomenon has been reduced compared with the
SMC controller that shown in the last line of Fig. 3.

Sliding mode with proposed reaching law (PRL): The per-
formance of the proposed controller is shown in Fig. 4. The
important remark is that the proposed controller save the same
high performance of SMC and SMCERL, and eliminate totally the
chattering phenomenon as shown in the last line of Fig. 4 which
proves the feasibility of this proposed approach.

Fig. 5 shows the evolution of the surfaces given by the SMC,
SMCERL and proposed PRL. Clearly all controllers drive the sur-
face to meet the origin in finite time, however, the proposed
PRL is faster than the two others. Through these results, we
conclude that the proposed control proves his superior perfor-
mance, efficiency, and feasibility compared with conventional
approaches.

5. Experiments study

5.1. System characterization

The process that will be controlled in this paper is the electric
cylinder shown in Fig. 6. The movement of the moving part of
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Fig. 4. Evolution tracking of Sliding Mode Controller with proposed reaching law (PRL).

Fig. 5. Evolution tracking of Sliding Mode Controller (SMC).

Fig. 6. Electric Cylinder.

this cylinder is actuated by a DC motor which is powered by a
power amplifier whose input voltage can vary between −10 and
+10 volts. As shown in Fig. 6, the position of the movable part of
the cylinder is measured by an incremental encoder.

Fig. 6 shows the working environment of our system. It indi-
cates, among other things, that the inputs/ outputs of the process
to be controlled (cylinder) are connected to an acquisition card
which is inserted inside a computer running the Windows operat-
ing system. Indeed, the input of the power amplifier is connected
to the first digital to analog converter (D/A) of the acquisition card
while the incremental encoder is connected to the position de-
coder of this same card. These input–output signals are accessible
through the LabVIEW software.

Simplified linear dynamic model of a DC motor is given by:

ẍ = f (x, ẋ) + g (x) u (28)

where, g (x) = J−1, u = Kυ and f (x, ẋ) = −J−1 (Bẋ + Rτ). With:
J is rotor’s inertia, B = fm + ( KaKbRa

) where fm is rotor’s friction
coefficient with respect to its hinges. Ka and Kb are motor-torque
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Fig. 7. Diagram scheme of the proposed approach.

Fig. 8. Tracking trajectory performed by SMCERL.

Fig. 9. Tracking error of SMCERL performance (related with Fig. 8).

constant and back emf, respectively, and Ra armature resistance.
R =

1
r2
, where r is gear reduction ratio and K = ( KaRa )

1
r . υ is

armature voltage. Now, we can apply the control input 4 easily.
the closed loop diagram of the proposed approach is given in
Fig. 7. The experiments results are given in next section.

5.2. Experiments results

We applied SMCERL and proposed PRL in the electric cylinder
system to validate experimentally the superior performance of
the proposed approach compared with conventional approach
SMCERL. For both controllers, we use the same value of gains that
chosen manually as follows: K1 = 5, λ = 2, µi = ζi = 0.05,
αi = 0.03, pi = 5 and β = 8 (see Fig. 13).

Fig. 10. Control input of SMCERL performance (related with Fig. 8).

Fig. 11. Tracking trajectory performed by proposed PRL.

Fig. 12. Tracking error of proposed PRL performance (related with Fig. 11).
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Fig. 13. Control input of proposed PRL performance (related with Fig. 11).

5.2.1. Discussion
Clearly, both controllers SMERL and PRL present a very good

tracking trajectory, as shown in Figs. 8 and 10 and Figs. 11 and
13 respectively. However, the proposed control was able to asso-
ciate between the good tracking of trajectory and the chattering
reducing as shown in Fig. 13 compared with SMCERL (Fig. 10).
This claim is proved by the convergence the error of the tracking
trajectory to zero in Fig. 12. Contrariwise, the evolution of the
error of SMCERL converges to a value close to zero as shown in
Fig. 9. This phenomenon caused by the chattering effect. These
results confirm the efficiency and feasibility of the proposed
approach experimentally.

6. Conclusion

In this paper, a sliding mode control (SMC) with a new adap-
tive reaching law is employed to a nonlinear system. The pro-
posed adaptive reaching law proves its capability to overcome
and enhances the performance of SMC. Using the suggested
reaching law makes the SMC capable to achieve high perfor-
mance with significant reducing of a chattering problem. In
addition, it has a very fast convergence time of the system
trajectories into the origin compared with existing reaching laws.
Simulation results and comparison with existing successful ap-
proaches are done to show the advantage of the proposed reach-
ing law. Experimental results with electric cylinder system con-
firm the feasibility and easiness of this approach in real-time
implementation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Munje R, Patre B, Tiwari A. Sliding mode control. In: Investigation of
spatial control strategies with application to advanced heavy water reactor.
Springer; 2018, p. 79–91.

[2] Slotine J-JE, Li W, et al. Applied nonlinear control, vol. 199. Englewood
Cliffs, NJ: Prentice Hall; 1991.

[3] Khalil HK. Noninear systems, vol. 2(5). New Jersey: Prentice-Hall; 1996, p.
1–5.

[4] Utkin VI. Sliding modes in control and optimization. Springer Science &
Business Media; 2013.

[5] Fei J, Batur C. A novel adaptive sliding mode control with application to
mems gyroscope. ISA Trans 2009;48(1):73–8.

[6] Rahmani M. Mems gyroscope control using a novel compound robust
control. ISA Trans 2018;72:37–43.

[7] Young KD, Utkin VI, Ozguner U. A control engineer’s guide to sliding mode
control. IEEE Trans Control Syst Technol 1999;7(3):328–42.

[8] Feng Y, Zhou M, Han F, Yu X. Speed control of induction motor servo drives
using terminal sliding-mode controller. In: Advances in variable structure
systems and sliding mode control—theory and applications. Springer; 2018,
p. 341–56.

[9] Van M. An enhanced robust fault tolerant control based on an adaptive
fuzzy pid-nonsingular fast terminal sliding mode control for uncertain
nonlinear systems. IEEE/ASME Trans Mechatronics 2018.

[10] Wang H, Shi L, Man Z, Zheng J, Li S, Yu M, et al. Continuous fast
nonsingular terminal sliding mode control of automotive electronic throt-
tle systems using finite-time exact observer. IEEE Trans Ind Electron
2018;65(9):7160–72.

[11] Tabart Q, Vechiu I, Etxeberria A, Bacha S. Hybrid energy storage system
microgrids integration for power quality improvement using four-leg
three-level npc inverter and second-order sliding mode control. IEEE Trans
Ind Electron 2018;65(1):424–35.

[12] Wang H, Ge X, Liu Y-C. Second-order sliding-mode mras observer based
sensorless vector control of linear induction motor drives for medium-low
speed maglev applications. IEEE Trans Ind Electron 2018.

[13] Derafa L, Benallegue A, Fridman L. Super twisting control algorithm for the
attitude tracking of a four rotors uav. J Franklin Inst B 2012;349(2):685–99.

[14] Kali Y, Saad M, Benjelloun K, Khairallah C. Super-twisting algorithm with
time delay estimation for uncertain robot manipulators. Nonlinear Dynam
2018;1–13.

[15] Defoort M, Djemaï M. A lyapunov-based design of a modified super-
twisting algorithm for the heisenberg system. IMA J Math Control Inform
2012;30(2):185–204.

[16] Fridman L, Davila J, Levant A. High-order sliding-mode observation
for linear systems with unknown inputs. Nonlinear Anal Hybrid Syst
2011;5(2):189–205.

[17] Gao W, Hung JC. Variable structure control of nonlinear systems: A new
approach. IEEE Trans Ind Electron 1993;40(1):45–55.

[18] Fallaha CJ, Saad M, Kanaan HY, Al-Haddad K. Sliding-mode robot control
with exponential reaching law. IEEE Trans Ind Electron 2011;58(2):600–10.

[19] Rahman MH, Saad M, Kenné J-P, Archambault PS. Control of an exoskeleton
robot arm with sliding mode exponential reaching law. Int J Control Autom
Syst 2013;11(1):92–104.

[20] Mozayan SM, Saad M, Vahedi H, Fortin-Blanchette H, Soltani M. Sliding
mode control of PMSG wind turbine based on enhanced exponential
reaching law. IEEE Trans Ind Electron 2016;63(10):6148–59.

[21] Zhang W-W, Wang J, et al. Nonsingular terminal sliding model control
based on exponential reaching law. Control Decis 2012;27(6):909–13.

[22] Utkin V, Guldner J, Shi J. Sliding mode control in electro-mechanical
systems. CRC Press; 2009.

[23] Kelly R, Davila VS, Perez JAL. Control of robot manipulators in joint space.
Springer Science & Business Media; 2006.

http://refhub.elsevier.com/S0019-0578(19)30346-5/sb1
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb1
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb1
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb1
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb1
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb2
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb2
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb2
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb3
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb3
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb3
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb4
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb4
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb4
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb5
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb5
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb5
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb6
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb6
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb6
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb7
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb7
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb7
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb8
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb8
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb8
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb8
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb8
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb8
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb8
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb9
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb9
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb9
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb9
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb9
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb10
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb10
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb10
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb10
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb10
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb10
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb10
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb11
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb11
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb11
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb11
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb11
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb11
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb11
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb12
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb12
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb12
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb12
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb12
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb13
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb13
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb13
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb14
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb14
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb14
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb14
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb14
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb15
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb15
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb15
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb15
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb15
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb16
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb16
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb16
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb16
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb16
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb17
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb17
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb17
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb18
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb18
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb18
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb19
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb19
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb19
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb19
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb19
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb20
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb20
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb20
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb20
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb20
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb21
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb21
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb21
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb22
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb22
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb22
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb23
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb23
http://refhub.elsevier.com/S0019-0578(19)30346-5/sb23

	Improvement of sliding mode controller by using a new adaptive reaching law: Theory and experiment
	Introduction
	Problem formulation and motivation
	Proposed adaptive reaching law
	Simulation study
	Discussion

	Experiments study
	System characterization
	Experiments results
	Discussion


	Conclusion
	Declaration of competing interest
	References


