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Abstract

In this study, we tackle the problem of pharmaceutical supply chain optimization using a multi-objective
model that simultaneously considers cost minimization, environmental impact minimization, and
maximizing of service level equity (minimum ratio). This represents the three alms of sustainability
which are key in manufacturing. Furthermore, we developed a disruption model capable of effectively
managing disruptions within the supply chain and compared the capabilities with the baseline model.

The result shows how the supply chain network behaves under different objectives. Minimizing costs led
to maximizing capacity utilization, while environmental objectives result in reduced production levels to
meet coverage requirements, and maximizing the minimum ratio expands more facilities. Using an
epsilon constraint, the trade-off shows that the environmental budget limits the flexibility between the
other total cost achievable and the minimum ratio. Comparing the baseline model and the disruption
model underscores the importance of proactive disruption management in maintaining service levels
and managing costs effectively. Ultimately, our study offers practical insights for optimizing
pharmaceutical supply chains, balancing economic efficiency with social responsibility to navigate
disruptions and challenges successfully.

Keywords: Pharmaceutical Supply Chain Optimization, Multi-Objective Optimization, Disruption- Model,
Supply Chain Resilience, Sustainability.

1.0 Introduction and Literature

The pharmaceutical industry occupies a crucial position in the global economy, experiencing a
remarkable sixfold increase in the trade value of pharmaceutical goods from $113 billion in 2000 to $629
billion in 2019(McKinsey, 2023a; Gonzalez Pefia et al., 2021; PwC, 2021). In tandem with this growth, its
supply chain—the Pharma SC—has become an extensive, global network characterized by numerous
stages and participants(GEP Blogs, 2023; McKinsey, 2023; Moosivand et al., 2019). However,
globalization has ushered in additional complexities - including inflations, geopolitical tensions,
emergence of novel medicinal modalities, and evolving work practices- necessitating a proactive and
adaptable management strategy for sustained success. Effectively navigating the complexities of
managing the Pharma SC network is non-trivial, given the consequences of inefficiencies, which can
manifest in significant delays, and compromised product quality, thereby posing pressing challenges for
industry leaders(Doshi, 2022). The Pharma SC plays a critical role in ensuring drug availability and
access, yet it remains susceptible to various risks, such as dependence on single-source inputs and
inadequate awareness of supplier-related risks(GEP Blogs, 2023). Threats like natural calamities, cyber-
attacks, trade disputes, and pandemics loom large, posing substantial hazards to the supply chain's
integrity. To mitigate these risks, strategies such as digitalization, bolstered supply chain visibility,
rigorous risk management protocols, and incorporation of cutting-edge technologies are imperative.
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Further, optimizing production schedules, managing inventory more effectively, and diversifying sourcing
strategies are essential for enhancing resilience(Badejo and lerapetritou, 2023a; Chopra and Sodhi, 2014;
Ivanov, 2020). Pharmaceutical leaders must adopt a strategic, integrated approach, from focusing on
continuous improvement to addressing broader, long-term challenges.

Given the pharmaceutical industry's pivotal role, it is crucial to adopt optimization techniques in its
supply chain. Mathematical modeling is an effective method to streamline operations, improving
economic and environmental efficiency and overall effectiveness(Shah, 2005, 2004; McKinsey, 2023).
These models significantly enhance supply chain visibility, aid strategic planning, and promote
stakeholder collaboration. This paper proposes developing mathematical model strategies to optimize
the pharmaceutical supply chain. The proposed model considers feasible production schedules,
inventory management, and interactions to optimize tactical decisions while focusing on long-term
objectives.

Modeling the Pharma SC involves navigating challenges like service level expectations, market
uncertainties, and complex manufacturing processes. Optimizing drug inventory amidst manufacturing
constraints, demand volatility, and production variability is critical(Hansen et al., 2023; Sampat et al.,
2021). Uthayakumar and Priyan(Uthayakumar and Priyan, 2013), Sampat et al.(Sampat et al., 2021), and
Sabouhi et al.(Sabouhi et al., 2018) have proposed models that optimize inventory management,
minimize backorders, and enhance operational efficiency by integrating production with distribution,
addressing regulatory constraints, and preparing for disruptions through strategies like fortification and
diversified sourcing. These models aim to improve supply chain efficiency by focusing on critical service
levels, reducing reactive scheduling, and accommodating various disruptions, offering a comprehensive
approach that considers multiple products, lead times, and spatial constraints. Subsequent research by
Hasani et al.(Hasani and Khosrojerdi, 2016), Goodarzian et al.(Goodarzian et al.,, 2021), Sabouhi et
al.(Melangon et al., 2021), and Zandkarimkhani et al.(Azadehranjbar et al., 2021) further emphasizes
efficiency and adaptability improvements in the pharmaceutical sector's supply chain. The strategic and
tactical pharma SC design has placed efforts on balancing competing objectives(Amaro and Barbosa-
Pévoa, 2008; Meijboom and Obel, 2007; Mousazadeh et al., 2015), Duartes et al.(Duarte et al., 2022b,
2022a) developed a tool for creating equitable and sustainable Pharma SC through a multi-objective
mixed integer linear programming model that considers social, economic, and environmental
sustainability. This tool, applied to the meningococcal meningitis vaccine supply chain, reveals tradeoffs
and opportunities, highlighting the benefits of integrating sustainability into supply chain design.
Similarly, Torabi et al.(Mousazadeh et al., 2015) and Rekabi et al.(Rekabi et al., 2022) have explored
decision-making under uncertainty and developed models that address congestion, job scheduling, and
environmental impacts, offering solutions that balance multiple objectives. Collectively, these models
contribute to advancing Pharma SC management by prioritizing efficiency, adaptability, and
sustainability.

Supply chain resilience is fundamental to sustaining operations during disruptions or perturbations,
focusing on both proactive and reactive capabilities to manage and mitigate potential impacts. This
concept refers to a firm's ability to maintain, execute, and adapt its strategies to achieve planned
performance outcomes despite challenges (lvanov, 2018). Strategic design principles such as low
vulnerability and high recoverability are critical, ensuring that supply chains can withstand and quickly
recover from disruptive events at minimal cost. These events can severely affect operations and overall
performance. Without adequate resilience, firms may experience financial losses, mismatches between
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demand and supply, and destabilization of operational policies in production, distribution, and inventory
control, underscoring the necessity of resilient practices (Gupta et al., 2021; Ivanov et al., 2016; Pavlov et
al., 2019; Yoon et al., 2020).
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Figure 1: Resiliency in Supply Chain Network

In addressing supply chain resilience, it is essential to balance design-for-efficiency with design-for-
resilience (Ilvanov and Dolgui, 2021). The former utilizes lean and agile principles to optimize the use of
resources—material, time, capital, technology, and workforce—to reduce waste and enhance
profitability. Meanwhile, design-for-resilience prepares supply chains to cope with severe disruptions,
employing strategies like maintaining strategic redundancies such as inventory levels, capacity buffers,
and backup suppliers. These measures help supply chains absorb shocks without degrading performance
and, if necessary, reactive capabilities are employed to restore operations. The recovery process,
however, can be costly and time-consuming. Thus, building resilience involves a continuous commitment
to risk mitigation, preparedness for disruptions, stabilization of operations post-disruption, and effective
recovery strategies to either return to or improve upon previous performance levels. The diagram
presented in Figure 1 illustrates the comprehensive framework of supply chain resilience, encompassing
both resistance and recovery strategies. Resistance strategies, employed pre-disruption, focus on
minimizing the initial impact of disruptions and enhancing the supply chain's robustness. These include
inventory optimization, capacity reservation, and node and arc fortification, which collectively ensure a
buffer against unexpected supply interruptions. On the other hand, the recovery strategies, activated
post-disruption, aim to restore and potentially enhance supply chain operations. Key recovery tactics
involve process flexibility with multi-product facilities and capacity scalability, which allow for rapid
adaptation and scaling of operations to meet changing demands and conditions. By integrating both
resistance and recovery strategies, this paper provides a strategy to enhance the resiliency of a
pharmaceutical supply chain network. Detailing how organizations can effectively prepare for disruptions
and recover from them, ensuring operational continuity and competitive advantage. The complexity and
interconnectivity of pharmaceutical supply chains significantly increase their vulnerability to disruptions,
as highlighted by the COVID-19 pandemic's impact on global supply networks. This situation underscores
the urgent need for resilience through optimization strategies and mathematical models(Badejo and
lerapetritou, 2023b, 2022a, 2022b; Montoya-Torres, 2021; Sawik, 2017; Xu and Song, 2020). Research,
including studies by Jlassi, Halouani, and Mhamedi (2021)(JIassi et al., 2021) and Ivanov et al.(lvanov et
al., 2019, 2017; Ivanov and Dolgui, 2021), emphasizes the importance of addressing regulatory,
inventory, counterfeit, and financial risks, and the necessity for adaptability in managing disruptions. The



role of flexibility, agility, and visibility in enhancing resilience is further supported by Shweta, Kumar, and
Chandra(2022), aligning with initiatives for green supply chain practices as Kumar et al. (2018) advocated
to promote sustainability. This body of work emphasizes resilience and sustainability, using a
combination of technological innovation, strategic planning and environmental considerations.

While existing literature has extensively explored supply chain design and the management of product
flow across various echelons in the pharmaceutical sector, our work introduces a novel model that
optimizes the tactical aspects of the pharmaceutical supply chain. The proposed approach ensures
feasible production schedules in multiproduct settings. We further developed an enhanced model which
efficiently addresses potential disruptions and demonstrates computational efficiency. Crucially, our
research elucidates the interplay among three objectives within the pharmaceutical domain: economic
viability, environmental sustainability, and social responsibility. This approach provides a holistic view of
supply chain optimization that ensures sustainability.

2.0 Methodology

2.1 Model Description

The Pharma SC under investigation is structured as a four-echelon network, from raw material sourcing
at the supplier echelon, through transformation and inventory at the manufacturing sites and
warehouses, to product delivery to the consumer echelon. The network initiates with the raw material
suppliers (s € S), tasked with providing raw materials (r € R € K ). These suppliers are divided into
two primary categories: suppliers of active pharmaceutical ingredients (APIs) and excipients (fillers), each
critical for the production of pharmaceuticals. These raw materials are transferred to manufacturing
facilities. (f € F), at the manufacturing facilities, the raw materials are subjected to processing and
formulation procedures to synthesize the intended pharmaceutical products. Within these facilities, it is
possible to produce various products p € P € K, which depends on the composition of active
ingredients. After the manufacturing phase, the finished products are packaged and routed to
warehouses w € W < W. At the warehouse, customer demands, and inventory are managed. Notably,
the warehouse echelon permits product sharing among warehouses, enhancing logistical flexibility. From
the warehouse, products are sent to consumers regions ¢ € C, satisfy the demands, . for products.
Products and raw materials can be shipped across nodes through m shipped by multiple m € M model
of transportation

The proposed framework is based on the following important assumptions:
(1) Multi-period Demand Forecast: A demand forecast for all products over several periods
facilitates figure 8strategic planning and resource allocation to meet anticipated needs.
(2) Known Cost Structure: The model assumes detailed knowledge of the cost structure, including:
o Transportation Costs: Expenses for moving goods across the supply chain.
o Product Allocation Costs: Costs related to distributing products to meet demand.
o Unmet Demand Costs: Financial implications of not meeting demand.
o Inventory Handling Costs: Expenses for storage and management of inventory.
o Raw Material Costs: Prices of inputs needed for product manufacturing.
(3) Multi-Modal transportation options : This offers a range of m € M modes of transportation to
guarantee the efficient transportation of raw materials and products. In the event of node
disruptions, the transportation modes can be interchanged to ensure uninterrupted logistics. It



should be noted that in this paper, we have addressed disruptions in nodes alone thus the multi-
modal transportation modes are included to adapt to changes in node capacity and ensure
distribution of raw materials and products.

(4) Fixed Facility Locations: The geographical positions of suppliers, manufacturing sites,
warehouses, and distribution centers are predetermined.

(5) Environmental Impact: The environmental impact is available and obtained from the work of
Duarte et al.(Duarte et al., 2022a, 2022b; Mota et al., 2018). The ReCiPe LCIA methodology was
used to quantify and evaluate the potential environmental impact associated with a product’s
life cycle. The method considers a range of impact categories (17 in this case) and using
normalization factors, standardizes the different impact categories into a common unit enabling
comparability(RIVM, 2022). Readers are directed to the supplementary information for further
details of the categories.

2.2 Constraints

Supplier constraints: At the supplier echelon, equation (1a) ensures that raw material supply by each s
does not exceed supplier capacity, and equation (1b) bounds the amount of raw material that flows
through each transportation mode at every time period. The integer variable sTrips is the number of
trips that are required to transport the required raw material r.

fm

Qs fme < STrips X tcapy, v(m,t) (1b)
1.8f
Manufacturing facilities : At the manufacturing facilities, equations (2a)-(2e) compute product

quantities and resource utilization associated with event scheduling. Equations (2a)- (2c) ensure these
events are properly scheduled, using binary variables ys: and X, r:, where yr. = lindicates an
operating facility and X;, r, = 1 denotes task i occurring at event nin facility f at time t. In this
context, events denote the initiation of a task. Equations (2d) limit the number of batches that can be
processed in a facility during an event, and equation (2e) is the mass balance that tracks the
concentration of each ingredient.

Xi,n,f,t < yf,t v(ll n, f; t) (Za)

z Xinpr =1 v(n,f,t) (2b)
i

Z Xi,n,f,t <1 V(f: t) (zc)
in

Binst < B™ X Xinrr v (i,n,f,t) (2d)

chlk X Bi,n,f,t = Q}(’t V(k, f, t) (26)
in

During production, the total number of batches produced is limited by the facility's capacity; this is
shown in equation (2f). To hedge against sourcing uncertainty, raw materials are stored in the facility;
the inventory of the raw material is tracked by equation (2g). Furthermore, the products are shipped to
the warehouses, and the total amount of products shipped to the warehouse cannot exceed the number



of products manufactured at the facility; this is captured by equation (2h). Equation (2i) ensures that
the products being shipped from facility to warehouse do not exceed the available quantity of products.

Qf ¢ < fCapy v(f,p.t) )
s,m
Q.= ) 0 V(. f,t)
it fwmt p.J, (2h)
w,m
Z Q;’,W_m_t < FWTripsy: X tCap, v(m,t) (20)
p.fw

Warehouse constraints : At the warehouses, equation (3a) tracks product inventory, while (3b) restricts
the quantity of material stored to the capacity of the warehouse. Finally, equation (3c) ensures that the
product flowing from warehouses to the consumer stays within the bounds of the capacity of the
transportation modes.

p p
InvWy,, = InvW,; ., + Z wamt + Z wa "mt

(3a)
- z chmt V(W' t)
cm
ImvWpP, < wCaph, v (p,w,t) (3b)
Z QL ... < WCTripsy, X tCapy, v(m,t) (3¢)

pw,C
Consumer Constraints: Equations (4a) shows the continuity equation for the products and captures the

backorder from all consumers; equation(4b) represents the social constraints which ensures that each
consumer’s demand is satisfied to a level determined by the minimum coverage rate for each product
07, and equation (4c) computes the aggregated service level constraints at the given period t.

Z Queme = dee — Bey v(p,ct) (4a)

dp X 9P < z chmt V(p,c,t) (4b)

serviceLevel(t) = M v (t) (4¢)
Zp,t ct

2.3 Objective Functions

Economic Objective: This focuses on minimizing the overall operational costs within the supply chain,
which includes various components such as raw material costs, production costs, inventory costs,
transportation costs, and backorder penalties.

max(TotalCost) (5a)
TotalCost = rmCost + prCost + InvCost + tranportCost + backorderCost

The raw material cost rmCost is calculated based on the unit cost of each material required for
production. This is shown in equation (5b).



rmCost = Z Qsfme X CT (5b)
sfmt
The production cost (prCost ) has two components, which are the fixed and the variable cost. The fixed

cost is constant regardless of the product produced. The binary variable X;,r. determines if the
equipment is used for a given task. The variable cost depends on the level of production output.
Equation (5¢) shows the combination of these cost components.

prCost = Z fixedCs X Xinsr + ZvarC}’ x QF, (5¢)
inf,t pft
The inventory cost is computed by equation (6d) and involves the cost for raw materials and each

product.

InvCost = Z hCF X InvF}, + Z hey, x InvWy, (5d)

r.ft pw,t
The backorder cost is the penalty paid for unmet demand and computed with equation (5e).

backorderCost = Z bCk, x BY,
Pt (5e)

The transportation cost calculates the cost of moving commodities across arcs. There are two
components: the fixed cost for using a particular transportation mode and the variable cost, which
depends on the distance traveled. The expression in Equation (6f) shows the calculations.

STripSme +
trportCost = Z fixedCp, X |FWTTipsy,,  +| + Z varCm X 8yt X wa'.m.f )
(md) WCTTipsm: (k! mt)

Environmental objective: This seeks to minimize the ecological footprint of the entire supply chain
network, focusing on minimizing emissions generated across all operations. The objectives are defined
using the Life Cycle Analysis (LCA) methodology. This is shown in equation (6). Equations (6a) and (6b)
show the total impact of emissions from facility operations and product transportation.

min(envimp) (6a)
envimp = facilityImpact + transportimpacts (6b)

Equation (6¢) computes the emissions from facilities by multiplying the environmental impact
characterization factor for producing one unit of product for each category ( sTm?™") by the quantity of
products manufactured and the normalization factor for each category. It should be noted that the factor
ensures that various environmental impact categories are comparable.
facilitylmpact = Z K X sJmP x QF, (6¢)
nf
Similarly, the emission from the transportation is computed by multiplying the environmental impact
characterization factor of transporting a unit of product through a distance d?m:’n by the distance

traveled and the quantity of products that is transported. Equation (6d) reflects this component of the

k

! mt (6d)

transportimpact = Z KT X dIm)] X 8,0 X Q

(n,kmm' m,t)



environmental objective.

For both equations (6c) and (6d), there are 17 environmental impact categories with varying units, this is
different for each product as well as the transportation. The normalization term k" in these equations
provides coefficients for each category (), standardizing the assessment of diverse impacts onto a
common scale(Duarte et al., 2022b; RIVM, 2022).

Effectiveness Objective: This objective maximizes the minimum of all service levels as detailed in
equation (7).

max{mitn(ratioPharmet } (7a)
¢ Un,
minRatio < ratioPharmD}, v (p,c,t) (7b)
P
ratioPharmD}, = [Zw'mD#mt] V(pct) (7¢)
ct

Equation (7a) shows that the objective is a max-min objective, which is reformulated by equations (7b)
and (7c¢)(Floudas, 1995; Grossmann, 2012). To reformulate the Equation (7a), we introduced a new
variable minRatio and ensures that the value of the minRatio is less than or equal to the values of the
calculated ratio that is shown in equation (7b). Equation (7c) calculates the delivery ratio for each of the
products delivered to each consumer. By maximizing the minRatio, the lowest ratio is driven up. This
objective strategically focuses on enhancing equity in product distribution within the supply chain,
explicitly targeting maximizing the least satisfied consumer's service level. Doing so addresses disparities
in demand fulfillment across different consumer segments. The essence of this approach lies in ensuring
that product delivery is efficient and inclusively distributed among all consumers, regardless of the
variability in their demand patterns.

2.4 Extension to Consider Disruptions.

The equations governing the production capacities of facilities and warehouses have been revised to
enhance the model's resilience against disruptions. Recognizing that disruptions may reduce or eliminate
capacity, buffer mechanisms were introduced. These buffers enable capacity expansion at unaffected
nodes within the network, effectively managing fluctuations in demand. Additionally, to strengthen the
supply chain's robustness, the available transportation modes were diversified, thus contributing directly
to the resilience of the network's arcs. It should be noted that in this paper, we have addressed
disruptions in nodes alone thus the multi-modal transportation modes are included to adapt to changes
in node capacity and ensure distribution of raw materials and products. Furthermore, we categorize
node disruptions into two distinct modes: full disruption and partial disruption. Nodes experiencing full
disruption completely lose their operational capacity, rendering them unavailable for use. Conversely,
nodes subject to partial disruption exhibit reduced operational capacity. Regardless of the disruption
level, expansion of disrupted nodes is not feasible. Furthermore, recovery from any form of disruption
requires one week.

Mathematically, we introduced new integer variables yEf;,. To modify equations (2d) and (2f)
incorporating additional integer constraints to address the adjustments in capacity level. In equations
(8), the parameters yDiss., indicates a facility's status, where Omeans disrupted and 1 means
operational. Equation (8a) states that capacities can only be expanded if the facility is undisrupted, and
equation (8b) ensures that the expansion levels for facilities follow a predefined order. The predefined
order comprises three expansion levels, with expansion level I preceding expansion level II, and
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expansion level II preceding level IIl. Facilities in this case includes both manufacturing sites and
warehouses.

VEf 1+ < yDiss; vV(f,,t)|ord() =1 (8a)
YEr 1t < YErue v (f, LUt ord(l) <ord(ll)) (8b)

Following the determination of expansion decisions, equation (9) computes the potential capacity
expansions at manufacturing sites and warehouses relative to their existing capacities. Equation (9a)
calculates the expansion at the facilities as the sum of the capacity associated with the expansion level
selected. Similarly, equation(9b) calculates the expansion needed at the warehouse. Finally equation
(9¢) computes the increased batch size using the expansion in the facility divided by the number of
event points.

fexpCapj’frt = Z VE¢,: X expCapy v (k,f,t) (9a)
1
wexpCapl,, = Z YEyw1t X expCapy V(k,w,t) (9b)
]
Zkfexpcapfk t
Bexps, = — v(f,t) (9¢c)
£t = TR X ] v

The model incorporates expansions into the facility operating level and maximum batch size equations,
capturing the nodes' enhanced capacity. Equation (10a) and (10b) presents the updated capacity for
manufacturing facilities and warehouses, respectively, while equation (10c) computes the new batch
size so as to account for the extra capacity. In equation (10), the new capacity is derived by multiplying
the old capacity with the disruption indicator, denoted as & € [0,1]. These expressions substitute
equations (2f) and (3b) limiting the capacity level for the facilities and warehouses.

newFCap}"t = fCap}‘ X 6+ fexpCap}"t Vv (f,k,t) (10a)
newWCap]'frt = wCap]’cc X6yt wexpCap]’f,t VY(w, k,t) (10D)
Bfy = B™** + Bexps, v(f,t) (10¢)

Once the updated capacities are computed, the quantity of products and inventory amount that can be
stored are bounded by the new capacity. These are shown in equation (11a) and (11b).

Q]’f’t < newFCap]’f_t v(f, kt) (11a)
InvW,t, < newW—Cap* v(w,k,t) (11b)

It should be noted that the maximum batch size, By, also becomes variable computed in equation
(10c¢). If directly employed, such as in the equation (2d), a bilinear term - which is a product of
continuous variable By ; and binary variable X; , r .- arises as shown in equation (12a). This makes the
model non-linear.

Bi,n,f,t < Bf,t X Xi,n,f,t A (l, Tl,f, t) (12a)

To maintain linearity in the model, a linearization technique is employed, as illustrated in the equation
(12b) — (124)



Bingt < Bv™™ X Xip st v (,nf,t) (12b)
Binfe = Bry v(@inf,t) (12¢)
Binfs 2 Brp — BV x (1= Xingr) v(inf,t) (12d)
The linearization is a bigM linearization for a Bilinear term(Floudas, 1995; Mohammadi and Harjunkoski,
2020), where Bv™%* is the bigM value, chosen so that the equation (12d) is satisfied. It should be
noted that this approach is crucial in enabling us to explore a larger feasible solution space efficiently
and to find near-optimal solutions within a practical computation time(Floudas, 1995; Grossmann et al.,
2016).

The extra capacity increases the operational cost by adding a new term to equation (6a); this is the cost
of expansion and recovery of the disrupted facility. The new cost terms are shown in equation (14).
Equations (6b) and (6¢) are modified to (13a) and (13b):

prCost = Z fixedCs X Xinsr + Z varCf x QF, + Z fCrix YEf 14 (13a)
inf,t p.ft f.Lt)
+ Z fRse X yDisg,
7
InvCost = Z hCf X InvFf, + Z hel x InvWp + Z hel x InvDY, (13b)
r.fit pw,t p,d,t

+ Z wCy; X YE 1+ + Z WR e X yDis,,
w.Lt) .0
As shown in the cost expression, the network's resilience depends on effectively managing consumer

demands, achieved through the cost tradeoff between handling backorders and investing in expanding
facilities, at manufacturing sites and warehouses. This balance is essential in assessing the network's
ability to adapt and respond to demand volatility amid disruptions, ensuring its robustness, flexibility,
and capacity to maintain operational efficiency in the face of demand variability. Such an approach
positions the network for long-term sustainability.

The modified model corresponds to a Mixed Integer Linear Programming (MILP) problem with the
continuous variables determining the flows, binary variables determining the operational status (task to
be performed at the facilities and sequence), and the integer variables determining the transportation
selections modes and the number of trips between arcs. In the following section, we elaborate on the
solution procedure and the strategies employed to mitigate the computational complexity of the model.

2.5 Solution Procedure

The section describes the approach taken towards handling integer variables and delineates the solution
procedures utilized for addressing the multi-objective problem.

2.5.1 Dealing with the integer variables:

Tightening constraints were used to enhance the model’s computational efficiency. The constraint was
used to improve the estimation for the integer variables(Floudas, 1995). Estimated upper bound is
added as a ceiling of the total products divided by the available capacity as shown in equations (14a)
and (14b). This provides a good guess for the integer variables(Brunaud, 2019). Mathematically, it
signifies that the number of trips between two nodes during a given time cannot exceed the maximum
number of trips needed if there is just one transportation mode. For example, if a shipment of 10
pounds requires a truck with a 4-pound capacity, the constraint indicates a maximum of 3 trips to fulfill
the transport.
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Zk,n,n’ Qn,n’ mt

nTripsy: = v(m,t) (14a)

tcapy,

k
Zk,n,n’ Qn,n"m't

nTripsm: <1+ v(m,t) (14b)

tcapy,

2.5.2 Dealing with the multiple objectives:

The multi-objective problem is addressed using the Pareto approach, which identifies the optimal
tradeoff among the objectives. The procedure requires reformulating the problem as shown in equation
(15a).

min{f; (), f, (), ~f()} (150)
In equation (15a), x represents both integer and continuous decisions. Here, f; (x) represents the Total

cost, f,(x) denotes the Environmental Impact (envimp), f5(x) is MinRatio, and FF is the set of feasible
boundaries defined by the constraints.

To address the multi-objective optimization problem, we employ a structured approach as outlined
below(Badejo and lerapetritou, 2022c):
e Step 1: Initially, we solve each objective independently to ascertain the optimal solution for that
objective. This process is formalized in equation (15b) as follows:

n=: min{fi(x)} Vi€ {123} (15b)
this step establishes the baseline performance for each objective.

e Step 2: Based on the outcomes of Step 1, we determine the range of epsilon (€) values,
delineating the bounds for feasible solutions. This range is derived from the upper and lower
limits identified in the solutions of (15b) forming a vector of € vectors.

¢ Step 3: The problem is then reformulated into a single objective framework by selecting one
objective as the primary focus and applying epsilon constraints to the others. This method,
known as epsilon constraint optimization, is depicted in the equation(15c¢).
o =: min i) Vjed

j (15¢)

fimsejm v me{1,..,M}

This step effectively transforms the multi-objective problem into a series of single-objective
problems, each with its constraints defined by €. It is important to note that m represents the
discretization level, correlating to the desired number of Pareto points to be identified in the
solution set.

e Step 4: Each epsilon-constrained optimization problem is solved, yielding solutions that illustrate
the various tradeoffs between the primary and secondary objectives.

2.5.3 The rolling horizon framework:

Rolling horizon framework are typically adopted to solve either operation problems affected by the
uncertainty of the input data forecasts or large-scale optimization problems (Bhosekar et al., 2021;
Kopanos and Pistikopoulos, 2014). In this case, we used the framework with the model for the optimal
decisions. As depicted in Figure 2, at each time step, the supply chain model is solved repeatedly,
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considered future time slots, and the initialization is determined by the current states of variables. Only
the solutions for the current time step are implemented. In this way, the decisions of the optimal
operations are updated with the current parameters and more accurate forecasts.

Horizon
Considered

(Iteration 1)

Implemented

Period(s) _1

........ ) Horizon ‘
(Iteration 2) - . . . .77 7" Considered
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Implemented
Period(s)
Time

Figure 2: Rolling Horizon Framework

The subsequent section applies this framework to a case study, offering a detailed examination of the
results and discussion.

3.0 Results and Discussion

This section provides a comprehensive discussion of three case studies, each demonstrating different
capabilities of the model. The first case study showcases the model's effectiveness in a more
straightforward context involving two products and two raw materials. Subsequently, the second case
study extends the complexity by introducing multiple products and raw materials, incorporating the
dynamics of competing resources. These cases were approached with a focus on single and multi-
objective optimization. The third case study underscores the importance of the extended model in
addressing disruptive events within the supply chain. By incorporating disruption scenarios into the
model, we showcase the model's resilience and its capacity to guide decision-making during unforeseen
events. This case study shows the significance of the extended model in enhancing supply chain
robustness and adaptability. In what follows, we describe the supply chain network in detail, followed by
each case study.

3.1. Description of Supply Chain Network:

The network, as shown in Figure 3, comprises four distinct echelons: suppliers represented by red nodes,
manufacturing sites denoted by green nodes, and warehouses indicated by blue nodes, all
interconnected to fulfill the demands emanating from ten consumers, illustrated as orange nodes.
Within this network, the suppliers provide the essential raw materials for pharmaceutical production.
The manufacturing sites, operating on weekly production cycles, undertake the conversion of these raw
materials into final products. Each manufacturing facility possesses the capacity to produce a specified
number of batches per week, with each batch adhering to a predefined Bill of Materials (BOM) to ensure
the accurate composition of products during the manufacturing process. Notably, only one product can
be manufactured in each batch. Warehouses within the network serve as storage hubs where products
are stored, and their quality is maintained before being dispatched to consumer locations. Within each
warehouse, inventory levels of products are optimized to mitigate the impact of production and demand
volatility. Finally, at the consumer locations, product demands are realized and transmitted to the
warehouses at the onset of each week.
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Figure 3: Supply Chain Architecture

The problem under consideration involves a multi-period optimization scenario spanning 10 discrete
time periods, each representing a week. The primary objective is optimizing production processes to
address spatial and temporal product demand fluctuations effectively. Demand from consumer nodes is
observed at the beginning of each week, while product deliveries to these consumer nodes are
scheduled for the end of the week. Within each week, supply chain operations must strategize
production levels and inventory management to align with demand fluctuations and guarantee future
demand fulfillment. This optimization task is guided by three overarching objectives that must be
concurrently met.

3.2. Case Study I: Multi-Objective Two Products Two Raw Materials:

For the supply chain network described above, we examine a scenario involving two products derived
from two distinct raw materials. The production recipe for these products and their periodic demand
from consumers is shown in Figure 4a and Figure 4b respectively. The primary goal of this supply chain
network is to fulfill consumer demands while balancing the economic, environmental, and social
objectives. To solve the problem, each objective is solved independently, and subsequently, we apply
the multi-objective optimization approach to holistically address the problem, balancing the competing
objectives of the network.
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Figure 4: Case | description; (a) Production recipe; (b) demands profile of products 1 and 2

Individual Objectives:

Following the solution procedures outlined in Section 2.5, the model was formulated and solved using
GAMS/CPLEX (version 38.2.1) on a PC equipped with an Intel Core i7-10510U processor, running at
2.30GHz and 16 GB of RAM. The complexity of the resulting model features a total of 4911 variables, of
which 560 are discrete, and 2450 constraints bind it. The results are presented in Table 1.

Table 1:Tradeoff table for the best and worst solutions for each objective

Objectives Total cost ($) Environmental Impact minRatio
Min (Cost) 71201.1 70502.6 78.6%
Min (Envimp) 94506.5 51979.3 75.0%
Max(minRatio) 91001.2 73336.4 100%

Addressing each objective individually reveals a tradeoff, as outlined in Table 1. When the total cost was
minimized, the environmental impact was 70502.6, and the minRatio was 78.6%. Minimizing the
environmental impact increases the total cost by 33%, to 94506.5, while this minRatio decreased to 75%.
And maximizing the minRatio increases the total cost to 91001.2 (28% increase) and the environmental
impact to 73336.4, a 41% shift from the optimal value. These results highlight a tradeoff between the
three objectives, as optimizing one without affecting the other objectives is impossible.

Analyzing strategies across different objectives, Figure 5 shows the aggregated production profiles over
all periods. For a detailed scheduling profile, we direct the reader to the supporting document. The
figure indicates that minimizing total cost and maximizing the MinRatio increases the facility activity
level compared to minimizing environmental impact. This is because increased production level
increases the environmental impact; thus, for the environmental impact, the strategy is to achieve a
minimum delivery level of 75%. Examining the strategies for the other two objectives more closely, we
see that cost minimization schedules, Figure 5a, which represents the cost objective, dedicated facilities
for a given products. This way, it can leverage the economy of scale due to the fixed cost of producing a
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particular product. Conversely, maximizing the minimum ratio, Figure 5c uses facilities to produce
enough to satisfy demands.
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Figure 5: Aggregated scheduling profile for objectives (a) Cost; (b) Env. Impact; (c) Max Ratio

Multi-Objective Solution

following the procedure in section 2, the multi-objective problem was solved. The results are depicted as
the Pareto frontier in Figure 6. In Figure 6(a), the vertical axis represents the total cost, serving as the
primary objective, while the horizontal axis denotes environmental impact, with color codes indicating

the minimum ratio value. Figure 6(b) employs the same axes, with color codes representing aggregated
service levels.
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Figure 6: Pareto Frontier for Case I: (a) Total cost vs Environmental Impact with minimum ratio ; (b) Total
cost vs Environmental Impact with service level.

The result shows that the environmental impact value significantly influences the interactions between
the cost and minRatio objectives. For instance, as illustrated in Figure 6 (a), when the environmental
impact value is lower (e.g., restricted to 51000), the achievable minRatio is 75% (minimum coverage
level). However, relaxing the environmental constraint increases the flexibility to explore combinations of
total cost and minimum ratios within the limits of the environmental bounds. This flexibility emphasizes
the opportunity cost between total cost and minimum ratio: with a fixed environmental budget,
increasing the minimum ratio results in an increased total cost. However, while the minRatio ensures

that products are distributed to all consumers, it reduces the overall service level achievable, as shown in
Figure 6 (b).
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Observing the interactions between the minRatio and the total cost, it is noticed that satisfying all
consumers reduces the overall service level and increases the total cost. This observation underscores
that, within the constraints of satisfying all consumers to a certain degree (social constraint of ensuring
equity), there is a higher penalty, such as reducing satisfaction for other consumers who are more
profitable. In managerial terms, social constraints are crucial in ensuring fair treatment for all consumers
and guaranteeing an equitable distribution of products, but they come at a higher cost. The
environmental budget determines the limit of achievable outcomes, prompting a strategic tradeoff
between cost and fairness.

3.3. Case Study II: Multi-Objective, Multiproduct Interacting raw materials.

In the second case study, we expand the scope of the problem to capture the manufacturing of ten
products utilizing four raw materials. The recipe table for the product formulations is provided
supporting document for reference. These products are categorized into five distinct types, each
featuring two dosage variants. The broader product range shows the formulated model's capacity to
handle problems of higher dimensions (scalability). While retaining its fundamental structure, the supply
chain network is now tasked with managing the interactions between the product portfolios. Product
demand for all products is available for 10 periods, and the minimum demand coverage is 40%. The goal
is similar to that of the first case study: determining the solution for each objective and analyzing the
tradeoff from the multi-objective problem.

Individual Objectives

Following a goal similar to the small case study, we explore the solutions obtained from the different
objectives and the interplay between these objectives when a multi-objective problem is solved. The
model was formulated and solved in GAMS/CPLEX (v 38.2.1) on a PC with intel corei7-10510U, 2.30GHz,
and 16 GB of RAM. The model (MILP) includes 21951 variables (2160 discrete) and 10390 constraints,
considering a 5% optimality gap and a maximum computation time of 1,000 seconds., and the
computational time required to solve for the minimum cost, minimum environment impact, and
maximum minRatio were 400, 320, and 800 seconds, respectively. The resulting tradeoff table is shown
in the Table 2:

Table 2: Tradeoff table for the best and worst solutions for each objective’s case Il

Objectives Total cost ($) Environmental Impact MinRatio
Min (Cost) 83739.5 128415.0 40%
Min (Envimp) 190578 51567.4 40%
Max(minRatio) 141894 105093.0 79.4%

The nature of the results obtained for the total cost and minimum ratio columns is similar to that
observed in Case |. Specifically, minimizing cost, we noticed that the minRatio obtained in this case was
40%, which means the environmental impact level was 128,415.0. Furthermore, minimizing
environmental impact increases the cost by about 100% while the minRatio stays the same at 40%.
Finally, when the minRatio is minimized, the cost increases to 141,894 and the environmental impact to
105,093. Itis important to highlight that although the minimum ratio for total cost was 40%, the overall
service level was 97.5%. This suggests periods when only 40% of a product’s demand was met. However,
increasing the minRatio to 79.4% reduces the service level to 81.2% while increasing cost and
environmental impact.
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Multi-Objective Solution

The multi-objective problem was solved following the solution steps outlined in Section 2.5. The
computational time required to solve the problem was 4,516 seconds. The resulting Pareto Frontier is
presented in Figure 7. The solution reveals that the environmental budget determines the flexibility
between the achievable total cost and minimum ratio. Unlike the first case study, in this case, it is
established that if we minimize the cost, the minimum coverage value we can achieve is 40%.

Thus, at lower environmental limits, there is a higher cost penalty to pay to achieve a higher minimum
coverage. For instance, in Figure 7, two achievable minimum ratios are observed when the
environmental impact is confined to 70,000. In Figure 7a, point one attains a 40% minimum ratio with a
cost of 147,000, and the corresponding point in Figure 7b has a service level of 60.85%. Conversely, point
two achieves a 50% minimum ratio with a higher cost of 153,000 and a lower service level of 57.4%.
Increasing the minimum environmental budget from 70,000 to 90,000 increases the number of feasible
points along the iso-environmental impact line, and points with a higher minimum ratio have a lower
service level. Also, the marginal penalty for increasing the minimum cost is lower. This case study
establishes that a higher number of products increases the complexity of the problem since they
compete for resources (raw materials and production times); it is more challenging to balance the three
objectives, particularly ensuring that the products are equitably distributed.
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Figure 7: Pareto Frontier for Case Il: (a) Total cost vs Environmental Impact with minimum ratio; (b) Total
cost vs Environmental Impact with service level.

3.4. Case Study lll: Model study under disruption

This case study compares the performance of the nominal model with the disruption model for
situations under disruption. Case study | of two products and two raw materials examples were used for
comparison. Furthermore, to ascertain the computational efficiency of the disruption model, we solved
the large case study problem using the rolling horizon approach and see how well the model adapts to
the demands and disruption variation. In what follows, we show the results for the model comparison
case and the rolling horizon case.

Comparison with base model

For this problem, we investigated a scenario involving disruptions in manufacturing facility and
warehouse nodes. The disruption scenario here is temporal; any facilities (manufacturing facility and
warehouse) can shut down or partially produce. Figure 8 shows the disruption profile of the facility and
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the warehouse in terms of capacity. As indicated, there are periods when the available capacity plus
expansion cannot meet the actual facility level due to the level of disruption (weeks 5 and 6). If a facility
is disrupted, it can operate at a partial level (partial disruption), or it cannot operate for the week (total
disruption), and a disrupted facility cannot be expanded.
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Figure 8: Capacity profile for manufacturing facility and warehouses. (a)available capacity and the
expansion levels at manufacturing facility; (b)available capacity and the expansion levels at warehouses;
(c) comparison of capacity levels used by the models for manufacturing sites; (d) comparison of capacity

levels used by the models for warehouses.

Figure 8 presents the expansion profiles of manufacturing facilities and warehouses comparing the
optimal expansion levels attained across all models (illustrated in Figure 8c and Figure 8d). The results
reveal the supply chain network’s adaptive capacity in response to disruptions. For the baseline model,
there is no room for expansion at both the facility and the warehouse, which limits the production level,
reducing the raw material consumed as well as the product demands satisfied. Conversely, when the
disruption model is solved, the economic objective is constrained by the MinRatio of 75%, this will make
the expansion more evenly distributed between facilities available for expansion, increasing the total
cost. The dynamics of the result here is such that there was an anticipatory capacity increase in weeks 3
and 4, where the capacity increased in preparation for the expected disruptions of weeks 5 and 6. This is
a proactive strategy. Finally, when the disruption model is relaxed, a similar trend of result is noticed
with that of the disruption model, the approach transitions to an economically driven strategy, which is
less conservative with capacity usage. This shift is demonstrated by a slight increase in utilized capacity,
suggesting a lean towards centralization and larger facility operations to attain economies of scale. The
presence of unused capacity under both models points to a complex balancing act between maintaining
operational readiness for disruptions and avoiding the inefficiencies of underutilized resources.

Further results for this case study are presented in Table 3 and Figure 8 where four models are solved.
The baseline model is the developed model, the baseline-relaxed model is the developed model relaxing
the social constraint or setting the minimum coverage to zero. The disruption model is the one
developed for disruption with active social constraint while the disruption-relaxed model is the
disruption model with relaxed social constraints. Since we solve the same problem, the complexity of
the baseline model is similar to case one (MILP with 4911 variables with 560 being discrete variables and
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2450 constraints), while for the disruption model, the number of variables was 5431 (800 are discrete
variables, and 4631 continuous variables) and there are 3550 constraints.

Table 3: Comparing results for nominal and disruption model.

Models Total cost ($) Env. Impact Min. Ratio Service Level Solution time
Baseline Infeasible model NA
Baseline-social 90369.3 67511.9 0% 76% 5 sec
Relaxed

Disruption 87963.3 73652.1 75% 86% 12 sec
Disruption-social 81426.2 77041.3 31% 93% 8 sec
Relaxed

The economic objective was solved for each of the models, and Figure 9 shows the distributions of the
economic and environmental budgets. For the baseline model, there was no feasible solution. This is
because of the social constraints on the minimum coverage. Relaxing the social constraints and solving
the baseline model (baseline-social relaxed) results in a solution with 0% minRatio and 76% aggregated
service level. Invariably, there is at least one period where the service level for a particular product for a
particular consumer was 0%. The increased in total cost because of the penalty incurred by backorder
(24% of the total demands are not met) as shown in Figure 9. Table 3. When the disruption model was
solved with active social constraint, the optimal solution ensures that a minRatio of 75%. Solution
guarantees all consumers at least 75% of every product requested. However, the service level is 86%.
There were expansions as indicated by the increased level of raw material consumption Figure 9a as well
as environmental footprint due to production level in Figure 9b. Finally, when the disruption-social
relaxed model was solved the service level increases (indicated by the lower backorder in Figure 9a), and
solution guarantees 31% delivery of all products to all consumers. Also, relative to the disruption without
relaxation model there was a higher production level as more raw materials were consumed, which
lowers the backorder.
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Figure 9: Objective distribution for all models; (a) Cost Distribution; (b) Environmental Distribution

There are two insights from these results: (i) The supply chain network exhibits a dynamic response to
anticipated disruptions, which is a proactive resource allocation strategy, (ii) relaxing the disrupted
model reflects a tradeoff between maintaining economic efficiency in operations and achieving social
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constraint during disruptions. When facility capacity is expanded, the transportation arcs are adjusted to
accommodate the increased flow of products. This expansion involves scaling up the capacity of
transportation modes to handle the additional volume. However, this adjustment comes with an extra
cost due to the fixed cost associated with deploying additional trucks of the same mode.

Rolling Horizon Approach for Large scale problem.

This case study demonstrates the computational tractability of disruption model applied to the big case
study. First, we conducted a sensitivity analysis by perturbing the minRatio from 0% until the model
becomes infeasible followed by a temporal analysis using the rolling horizon framework to assess the
model’s adaptability to the topological disruption for a selected minimum ratio. The model (MILP)
includes 23351 variables (2480 discrete) and 16350 constraints, considering a 5% optimality gap and a
maximum computation time of 1,500 seconds.

The sensitivity analysis reveals that the problem becomes infeasible at minRatio of 0.6. This outcome
suggests that even with the existing flexibility level, it may be impossible to meet the minRatio
requirements if products are competing for the same resources. To mitigate such challenges, two
approaches can be considered: outsourcing or grouping similar products together. For instance, if
product 1 and product 2 are similar— for example different dosage forms—they can be grouped to
aggregate their minRatio rather than calculating it individually. For cases within this feasible minRatio
threshold, the model required a computational time of 1,000 seconds. The computational time increases
with the minRatio level. Figure 10 shows the result of the sensitivity analysis, showing the relationship
between the total cost (y-axis), minRatio (x-axis), environmental impact (indicated by the size of the
markers) and the service level (indicated by the color gradients of the marker). The plot reveals a direct
relationship between the minRatio and the total cost, as the minRatio increases, there is also an increase
in the total costs. The environmental impact also increases with the minRatio and as the color gradation
suggests that higher service level is associated with lower minRatio.
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Figure 10: Cost against minimum ratio.

The slope of the curve in Figure 10 illustrates the rate of change in total costs relative to changes in the
minimum ratio (minRatio). A steeper slope indicates a more significant cost change, primarily driven by
facility expansion. Notably, the steepest slopes between minRatio values of 0.2-0.3 and 0.4-0.5 suggest
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substantial cost increases, potentially pointing to significant facility expansions during these intervals.
Conversely, less steep slopes observed in other segments imply that the focus shifts towards optimizing
production levels and managing inventory rather than expanding facilities.

The observed general trend is that Increasing the minRatio results in higher total costs and
environmental impacts, alongside a decline in service level, illustrating the trade-offs between social
constraints, environmental impact, and cost implications. The observation that higher service levels are
associated with lower minRatio suggests improved service efficiency at reduced ratios. This trend
highlights the significant operational benefits of maintaining lower minRatio. Relaxing these constraints
allows the supply chain greater flexibility and efficiency, enabling better resource allocation and cost-
effective distribution. Consequently, the system can prioritize more profitable consumer segments,
enhancing overall profitability. A reduced minRatio alleviates the burden of uniformly high service levels,
which may not be economically viable across all segments.Figure 11 represents the outcomes of solving
the supply chain problem across different minimum ratios (minRatio) of 0%, 30%, and 50%. This analysis
was conducted over five iterations, each spanning 10 horizons and two time periods were implemented
at each iteration, effectively covering a 10-week time horizon. The solution times recorded for these
minRatio were 4,200 seconds, 5,050 seconds, and 6,000 seconds, respectively, indicating that higher
minRatio requires longer solution times. In the graph, the horizontal axis labels the horizon from 1 to 5,
representing each set of two time periods over the 10-week span. The left y-axis quantifies the total
cost, depicted by the bars, which are color-coded and patterned to correspond with different minRatio—
solid red for 0%, striped, green for 30%, and blue hatch for 50%. This visual differentiation allows for an
immediate grasp of cost variations across different minRatio settings and horizons. The right y-axis
measures the service level, shown through line plots with different symbols indicating the respective
minRatio values—circles for 0%, triangles for 30%, and stars for 50%. These lines show a trend of
decreasing service level as the minRatio increases, which is typical in scenarios where higher minimum
thresholds may limit flexibility in response to demand fluctuations.
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Focusing on the 0% minRatio in Figure 11, we observe specific dynamics that illustrate how supply chain
costs and service levels are influenced under minimal constraints. At zero minRatio, the cost increases
result from capacity expansions undertaken to hedge against potential disruptions. Interestingly,
horizons that show lower costs correlate with periods of reduced disruption levels, which are also
associated with higher service levels. This pattern indicates that when disruptions are minimal, less
capacity expansion is necessary, leading to reduced operational costs and improved service delivery.

Furthermore, the general trend in Figure 11shows that increasing the minRatio leads to higher total costs
and reduced service levels. This relationship stems from two main factors: the need to expand
production capacity and the costs from backorders due to unmet demands. Expanding capacity requires
significant investment, especially at higher minRatio, where more facilities must operate at higher
utilization levels. Managing backorders involves addressing demand shortfalls, which are more
pronounced under higher disruption levels.

In low disruption scenarios (horizon 2 and 3) , it is feasible to expand production capacity, but the extent
and allocation depend on the minRatio. A higher minRatio necessitates capacity increases across more
facilities, leading to widespread but shallow enhancements. Conversely, at a lower minRatio capacity
expansion happens at fewer facilities, allowing for more significant upgrades at each site. This strategic
decision balances cost and operational flexibility. Under high disruption levels (horizon 1, 4, and 5), even
increased capacity might not meet demand, resulting in substantial backorder costs. This highlights the
complex balance between maintaining sufficient production capacity and managing service levels
effectively.

4.0 Conclusion and Recommendations

In this study, we explore the complexities of optimizing pharmaceutical supply chains, focusing on
tactical network strategies. Our approach integrates a multi-objective model formulation, considering
cost, environmental impact, and the minimum ratio objective. Furthermore, we developed an enhanced
model capable of effectively managing disruptions within the supply chain.

Our analysis reveals insights into the behavior of the supply chain network under different optimization
objectives. When minimizing costs, the network tends to maximize capacity utilization, leveraging
economies of scale. Prioritizing environmental objectives leads to reduced production levels to comply
with lower minimum coverage requirements. Maximizing the minimum ratio prompts a decentralized
operational approach, enhancing distributed demand satisfaction. Using the e-constraint approach, we
examine the trade-offs between minimizing environmental considerations, maximizing minimum ratio,
and minimizing total cost. Minimizing total cost yields higher service levels but often results in lower
minimum coverage, potentially limiting demand fulfillment in less profitable regions. Maximizing the
minimum ratio sacrifices overall service levels but increases minimum coverage, ensuring broader
consumer reach and the environmental budget limits the flexibility between the other two objectives.

Comparing the baseline and enhanced disruption models highlights the importance of disruption
management and mitigation strategies. During disruptions, the baseline model struggles to meet
minimum coverage targets, leading to reduced service levels and increased total costs. In contrast, the
enhanced disruption model demonstrates improved resilience, effectively responding to disruptions by
optimizing capacity utilization. Furthermore, examining cases with and without relaxed social constraints
shows the significance of social considerations in supply chain management. The social constraint acts as
a lower bound for minimum coverage, guiding facility expansions strategies to meet demand
requirements while maintaining social objectives. Overall, our study provides insights into the dynamic
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response of supply chain networks to disruptions. Balancing economic efficiency with social
considerations offers valuable guidance for optimizing pharmaceutical supply chains.

One limitation of our study lies in its primary focus on the tactical level of supply chain management,
potentially overlooking broader strategic or operational intricacies. Future research should explore the
interplay between regions with varying standards of living to better capture equity considerations,
particularly regarding minimum coverage requirements. Additionally, while our analysis considers the
expansion of all facilities during disruptions, further investigation is needed, after supply chain design, to
identify facilities that should be prioritized for fortification against disruptions, enhancing the resilience
of the supply chain network.
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