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a b s t r a c t

This paper develops a distributed model predictive control algorithm for linear quadratic optimal
consensus of discrete-time multi-agent systems. The consensus state and control sequence are both
optimized at every predictive step on a finite horizon and then implemented in the real system.
The stability of the closed-loop system is analyzed, establishing a distributed consensus condition
depending only on individual agent’s local parameters. The consensus condition is then relaxed for
controllable systems, making it easy to choose the weighted matrices and control period for each
agent. The proposed algorithm is applied to the formation control of multi-vehicle systems verified by
numerical simulations.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Cooperative control of multi-agent systems, inspired by the
ollective behaviors in nature such as swarming of insects and
locking of birds, has drawn notable attention from researchers in
ifferent fields and played an important role in practical applica-
ions including formation flight (Ren & Beard, 2004; Wang et al.,
019), distributed filtering (Duan, Duan, Chen, & Shi, 2020; Olfati-
aber), smart grids (Wen, Yu, Liu, & Yu, 2018), and many others.
onsiderable work has been devoted to addressing cooperative
ontrol problems from different perspectives, such as consen-
us (Olfati-Saber, Fax, & Murray, 2007), formation (Ren & Beard,
004), tracking (Lv, Wen, & Huang, 2019) and flocking (Zhan &
i, 2013), where in particular consensus is a focal topic because
f its potential ability in solving many other related problems.
The critical task for solving the consensus problem is to design

istributed control protocols based on local information, that is,
he information of each agent and its neighbors, to achieve an
greement globally on a certain quantity of common interest. A
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M. Zavlanos under the direction of Editor Christos G. Cassandras.

∗ Corresponding author.
E-mail addresses: wangqishao@buaa.edu.cn (Q. Wang), duanzs@pku.edu.cn

Z. Duan), yzlv@seu.edu.cn (Y. Lv), nmqingyun@163.com (Q. Wang),
egchen@cityu.edu.hk (G. Chen).
ttps://doi.org/10.1016/j.automatica.2021.109505
005-1098/© 2021 Elsevier Ltd. All rights reserved.
theoretical framework is introduced in Olfati-Saber et al. (2007)
for multi-agent systems, where basic concepts of consensus, de-
sign and analysis methods, and some consensus algorithms are
developed. Thereafter, the control theory for solving consensus
problems has gained remarkable progress for different scenarios
(see Lv et al., 2019; Ren & Beard, 2005; Wen & Zheng, 2018 and
the references therein). In order to get better performance of
consensus, latest results are obtained for optimal consensus of
multi-agent systems with different optimization objectives, such
as faster convergence rate (Zhao, Liu, Wen, Ren, & Chen, 2019),
less energy consumption (Sardellitti, Barbarossa, & Swami, 2012)
and stronger robustness (Li & Chen, 2017).

Model predictive control (MPC), where the process model is
used to forecast system dynamics for control input modification,
is a powerful technique for solving the optimal consensus prob-
lem of multi-agent systems. MPC mechanism is incorporated into
the classical consensus protocol of some pinning nodes so as
to accelerate the convergence of consensus in Zhang, Chen, and
Stan (2011). This predictive pinning control method, however,
requires global information of the network, which fails to work
in real time because of the huge computational and communica-
tional burdens caused by the large scales of the networked sys-
tems. Therefore, distributed model predictive control (DMPC) has
attracted increasing attention in recent years. Decomposition–
coordination technique and estimator-based predictive control
scheme are presented in Fawal, Georges, and Bornard (0000)
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nd Gomez, Rodellar, Vea, Mantecon, and Cardona (0000), respec-
ively, to decompose a large-scale centralized MPC problem to
everal small-scale local optimization problems for decentralized
omputation. Then, DMPC problems of networked systems are
olved in Camponogara (2000) and Dong and Krogh (0000) for
ituations where information is allowed to be exchanged at any
ime and only during each control interval, respectively. On the
asis of these results, some representative design methods and
tability analysis for DMPC are summarized in Camponogara, Jia,
rogh, and Talukdar (2002), focusing on different information
nteraction mechanisms.

Recently, DMPC has been applied in consensus control of
ulti-agent systems due to its great efficiency and scalability.

n Ferrari-Trecate, Galbusera, Marciandi, and Scattolini (2009),
MPC schemes are proposed for consensus of single- and double-
ntegrator multi-agent systems with time-varying communica-
ion networks and constraints on agents’ inputs. The results are
hen extended to derive analytical solutions and stability condi-
ions for the DMPC flocking problem of double-integrator multi-
gent systems in Zhan and Li (2013), based only on position
easurements. For a group of agents with second-order nonlin-
ar dynamics, a DMPC algorithm is proposed to track a desired
ynamic reference in Gao, Dai, Xia, and Liu (2017), where the
ecursive feasibility and closed-loop stability are guaranteed by
proper design of terminal ingredients and compatibility con-

traints. With the application of alternating direction method of
ultipliers, a DMPC framework is developed in Summers and
ygeros (0000) to achieve consensus of general linear multi-
gent systems, using local copies of states and inputs over a
inite horizon of neighbors, which requires the local copies to be
ame across all coupled agents. For linear multi-agent systems
ith uncertainties including disturbances, estimation errors and
easurement noise, in Dai, Xia, Gao, Kouvaritakis, and Cannon

2015) a cooperative stochastic DMPC algorithm is proposed to
uarantee the stability of the overall system for any structure
f cooperation of agents. Although the existing work provides
nteresting results on DMPC consensus, there is still much more
o be explored for improving the consensus performance by op-
imizing the final consensus state as well as the control input,
hich greatly motivates the present investigation.
In this paper, a DMPC approach is proposed for the linear

uadratic optimal consensus problem of discrete-time multi-
gent systems. With the introduction of a consensus manifold,
he final consensus state and input sequence are both regarded as
ecision variables of the optimization problem at every predictive
tep. In this approach, not only transient but also steady-state
esponses are optimized, which leads to better consensus perfor-
ance in general. This is the main contribution of the paper. Then,

he finite-time optimal solution solved by the method developed
n Wang, Duan, Wang and Chen (2019) at the predictive step is
xtended to an infinite horizon through the MPC approach, where
he closed-loop stability is ensured by some constraints on the
eighted matrices of the agents, which constitutes another con-
ribution of this paper. Finally, the stability condition is relaxed
or controllable dynamics and a simplified condition is derived
n a decentralized setting, where the individual agent’s weighted
atrix and control period are determined independently, thereby

mproving the scalability of the algorithm.

Notation: Rn and Rm×n denote the sets of n-dimensional real
olumn vectors and m× n real matrices, respectively; ⊗ denotes
he Kronecker product of matrices; ∥ · ∥ denotes the Euclidean
orm of vectors. col{x1, . . . , xm} ≜ [xT1, . . . , x

T
m]

T denotes the
ollection of vectors xi ∈ Rni , i = 1, . . . ,m and diag{A1, . . . , Am}

enotes the block diagonal matrix consisting of Ai ∈ Rmi×ni , i =

1, . . . ,m; for matrices A ∈ Rm×n, B ∈ Rm×m, ∥A∥
2 ≜ ATBA.
B

2

2. Preliminaries and problem formulation

Consider a discrete-time multi-agent system consisting of N
linear time invariant (LTI) dynamical agents:

xi(τ + 1) = Axi(τ ) + Bui(τ ), i ∈ {1, 2, . . . ,N}, (1)

where xi ∈ Rn is the state of the ith agent, ui ∈ Rm is its control
input, and A ∈ Rn×n, B ∈ Rn×m are constant matrices.

The agents are assumed to exchange information through a
communication network described by an undirected and con-
nected graph G. The adjacency matrix and Laplacian matrix of G
are denoted by A = (aij) ∈ RN×N and L = (lij) ∈ RN×N .

Lemma 1 (Diestel, 1997). If the graph G is connected, then its Lapla-
cian matrix L has a simple eigenvalue 0 with associated eigenvector
1, and the other n − 1 eigenvalues are positive.

For the N agents, define the consensus manifold as

Z =
{
Z ≜ col{z1, z2, . . . , zN} ∈ RNn

|(L ⊗ In)Z = 0
}
. (2)

From Lemma 1, it follows that consensus is achieved if the states
of agents stay on the consensus manifold, that is, ∥xi − xj∥ = 0
for all i, j ∈ {1, 2, . . . ,N} if col{x1, x2, . . . , xN} ∈ Z . Then, the
optimal consensus problem to be solved for τ ∈ [tk, tk + T ),
k = 0, 1, 2, . . ., is formulated as follows.

Problem 1. At any update time tk, for every agent i = 1, . . . ,N ,
given xi(tk), solve

min
ui(τ |tk),zi(τ |tk)

J(ui(τ |tk), zi(τ |tk))

s.t. xi(τ + 1|tk) = Axi(τ |tk) + Bui(τ |tk), τ ∈ [tk, tk + T − 1],
xi(tk|tk) = xi(tk),
Z(τ |tk) ∈ Z, τ ∈ [tk, tk + T ],

where Z(τ |tk) = col{z1(τ |tk), z2(τ |tk), . . . , zN (τ |tk)} is an auxiliary
vector of decision variables defined on the consensus manifold;
the cost function with given weighted matrices QiT ≥ 0,Qi ≥

0, Ri > 0, is defined as

J(ui(τ |tk), zi(τ |tk)) =

N∑
i=1

{tk+T −1∑
τ=tk

[
∥ xi(τ |tk)

− zi(τ |tk) ∥
2
Qi

+∥ui(τ |tk)∥2
Ri

]
+ ∥xi(tk + T |tk) − zi(tk + T |tk)∥2

QiT

}
,

(3)

in which T is the prediction horizon and ∆t = tk+1 − tk is the
control period, satisfying 0 < ∆t ≤ T , and k = 0, 1, 2, . . ..
This quadratic cost function indicates the overall energy of the
consensus error signal and the control input signal over the
prediction internal, used as a performance index to measure the
transient performance with a free consensus endpoint.

Applying the DMPC scheme, Problem 1 can be solved by the
distributed algorithm (Algorithm 2) proposed in Wang, Duan
et al. (2019) and the first portion of the optimal solution u⋆

i (τ |tk),
τ ∈ [tk, tk+1) can be implemented as the real-time input. Follow-
ing this pattern, the detailed DMPC algorithm to achieve linear
quadratic optimal consensus is presented in Algorithm 1.

Remark 1. In the cost function (3), not only the control input
sequence ui(τ |tk) but also the consensus manifold Z(τ |tk) are
regarded as decision variables used to optimize both the tran-
sient and the steady-state responses. Compared to the case with
a fixed consensus trajectory (Ferrari-Trecate et al., 2009; Gao
et al., 2017), i.e., Z(τ |t ) = Z fix(τ |t ) ∈ Z , the agents here will
k k
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etermine the optimal consensus point Z⋆(τ |tk) according to the
ctual operation situation. From the principle of optimality, it can
e concluded that J(u⋆

i (τ |tk), Z⋆(τ |tk)) ≤ J(u⋆
i (τ |tk), Z fix(τ |tk)) for

fix(τ |tk) ∈ Z . Therefore, the proposed mechanism leads to better
onsensus performance in general.

emark 2. In Problem 1, finite-time optimization is solved
ecause of real computation limits. In order to achieve steady
tate consensus, the MPC technique is utilized to extend the
inite-time control sequence. However, MPC is a repeated open-
oop optimal control method. Whether the MPC controller can
tabilize the closed-loop system remains a question, which will
e discussed next.

. Stability analysis

The stability of the closed-loop system based on the proposed
PC algorithm is analyzed in this section.

heorem 1. For the multi-agent system (1) with an undirected
nd connected communication topology, if the weighted matrices
iT ≥ 0,Qi > 0, Ri > 0, and there exist matrices Ki such that

Πi ≤ 0, i ∈ {1, 2, . . . ,N}, (4)

here Πi =
∑∆t−1

m=0 ∥(A+BKi)m∥
2
Qi+KT

i RiKi
+∥(A+BKi)∆t

∥QiT −QiT ,

then the consensus can be achieved asymptotically by the DMPC
algorithm, that is, as tk → ∞, ∥xi(tk) − xj(tk)∥ → 0 for all
i, j ∈ {1, 2, . . . ,N}.

Proof. With the optimal solution u⋆
i (τ |tk), z⋆

i (τ |tk) of Problem 1
for τ ∈ [tk, tk +T ) at sampled time tk, construct a feasible control
input at time tk+1, inspired by Gao et al. (2017), as follows:

ûi(τ |tk+1) =

{
u⋆
i (τ |tk), τ ∈ [tk+1, tk + T ),

uk+1
i (τ |tk+1), τ ∈ [tk + T , tk+1 + T ), (5)

and a feasible consensus state as
ẑi(τ |tk+1)

=

{
z⋆
i (τ |tk), τ ∈ [tk+1, tk + T ],

Aẑi(τ − 1|tk+1), τ ∈ [tk + T + 1, tk+1 + T ],

(6)

which satisfies the constraints stated in Problem 1. Denoting the
state associating with the feasible control input (5) along with
the dynamics (1) from the initialization x̂i(tk+1|tk+1) = x⋆

i (tk+1|tk)
as x̂i(τ |tk+1), and the optimal solution at update time tk+1 as
u⋆
i (τ |tk+1), z⋆

i (τ |tk+1) for τ ∈ [tk+1, tk+1 + T ), one has

J(u⋆
i (τ |tk+1), z⋆

i (τ |tk+1)) − J(u⋆
i (τ |tk), z⋆

i (τ |tk))

≤J(ûi(τ |tk+1), ẑi(τ |tk+1)) − J(u⋆
i (τ |tk), z⋆

i (τ |tk))

=

N∑
i=1

⎧⎨⎩
tk+1+T −1∑

τ=tk+1

[
∥êi(τ |tk+1)∥2

Qi
+ ∥ûi(τ |tk+1)∥2

Ri

]

+ ∥êi(tk+1 + T |tk+1)∥2
QiT

−

tk+T −1∑
τ=tk

[
∥e⋆

i (τ |tk)∥2
Qi

+ ∥u⋆
i (τ |tk)∥2

Ri

]
−∥e⋆

i (tk + T |tk)∥2
QiT

}
,

(7)

where êi(τ |tk+1) = x̂i(τ |tk+1)− ẑi(τ |tk+1) and e⋆
i (τ |tk) = x⋆

i (τ |tk)−
z⋆
i (τ |tk). Design the terminal controller of (5) as uk+1

i (τ |tk+1) =

Kiêi(τ |tk+1) for all τ ∈ [tk + T , tk+1 + T ). Then, it follows from (1)
that

ê (t + T + m|t ) = (A + BK )mê (t + T |t ), (8)
i k k+1 i i k k+1

3

for m ≥ 0. Substituting (8) into (7) yields

J(u⋆
i (τ |tk+1), z⋆

i (τ |tk+1)) − J(u⋆
i (τ |tk), z⋆

i (τ |tk))

≤

N∑
i=1

⎧⎨⎩
tk+1+T −1∑
τ=tk+T

[
∥êi(τ |tk+1)∥2

Qi
+ ∥ûi(τ |tk+1)∥2

Ri

]

+ ∥êi(tk+1 + T |tk+1)∥2
QiT

−

tk+1−1∑
τ=tk

[
∥e⋆

i (τ |tk)∥2
Qi

+ ∥u⋆
i (τ |tk)∥2

Ri

]
−∥e⋆

i (tk + T |tk)∥2
QiT

}

=

N∑
i=1

{
∆t−1∑
m=0

∥(A + BKi)mêi(tk + T |tk+1)∥2
Qi+KT

i RiKi

+ ∥(A + BKi)∆t êi(tk + T |tk+1)∥2
QiT

−

tk+1−1∑
τ=tk

[
∥e⋆

i (τ |tk)∥2
Qi

+ ∥u⋆
i (τ |tk)∥2

Ri

]
− ∥e⋆

i (tk + T |tk)∥2
QiT

}
.

(9)

ith the first portion of the feasible controller (5), one gets
ˆi(tk + T |tk+1) = x⋆

i (tk + T |tk), ẑi(tk + T |tk+1) = z⋆
i (tk + T |tk),

nd (9) gives
∆t−1∑
m=0

∥(A + BKi)mêi(tk + T |tk+1)∥2
Qi+KT

i RiKi

+ ∥(A + BKi)∆t êi(tk + T |tk+1)∥2
QiT

− ∥e⋆
i (tk + T |tk)∥2

QiT

≤∥x⋆
i (tk + T |tk+1) − z⋆

i (tk + T |tk+1)∥2
Πi

≤0,

(10)

here the last inequality is guaranteed by the constraints (4) on
i. Substituting (10) into (9), one concludes that

J(u⋆
i (τ |tk+1), z⋆

i (τ |tk+1)) − J(u⋆
i (τ |tk), z⋆

i (τ |tk))

≤ −

N∑
i=1

⎧⎨⎩
tk+1−1∑
τ=tk

[
∥e⋆

i (τ |tk)∥2
Qi

+ ∥u⋆
i (τ |tk)∥2

Ri

]⎫⎬⎭
≤0,

(11)

hich indicates that {J(u⋆
i (τ |tk), z⋆

i (τ |tk)), k = 0, 1, 2, . . .} is non-
ncreasing. Therefore, e⋆

i (τ |tk) and u⋆
i (τ |tk) are bounded for all

k. From Proposition 1.10 in Lasalle (1986), it follows that the
ositive limit set Ω , which collects all positive limit points of
ol{e⋆

i (τ |tk), u⋆
i (τ |tk)} as tk → ∞, is a non-empty, compact, posi-

ively invariant set. Since J(u⋆
i (τ |tk), z⋆

i (τ |tk)) ≥ 0, it follows that
J(u⋆

i (τ |tk), z⋆
i (τ |tk)), k = 0, 1, 2, . . .

}
is convergent as tk → ∞,

.e., J(u⋆
i (τ |tk), z⋆

i (τ |tk)) → c. For any element Ωi ∈ Ω , there
s a subsequence {tki} such that col{e⋆

i (τ |tki), u⋆
i (τ |tki)} → Ωi

and J(Ωi) = c. Combining the fact that Ω is positively invari-
ant, it can be concluded that Ω ⊂

{
u⋆
i (τ |tk), x⋆

i (τ |tk), z⋆
i (τ |tk) :

J(u⋆
i (τ |tk+1), z⋆

i (τ |tk+1)) − J(u⋆
i (τ |tk), z⋆

i (τ |tk)) = 0
}
. Then, from

the inequality (11), it is easy to get that Ω ⊂

{
u⋆
i (τ |tk), x⋆

i (τ |tk),
z⋆
i (τ |tk) : ∥e⋆

i (τ |tk)∥2
Qi

= 0, ∥u⋆
i (τ |tk)∥2

Ri
= 0, τ ∈ [tk, tk+1), i ∈

{1, 2, . . . ,N}

}
, which implies that ∥e⋆

i (τ |tk)∥ → 0 as tk → ∞

for all τ ∈ [tk, tk+1) and i ∈ {1, 2, . . . ,N} since Qi > 0. From
the MPC scheme, it follows that the optimal solution x⋆

i (τ |tk) for
τ ∈ [t , t ) is the real-time state and col{z⋆(τ |t ), z⋆(τ |t ), . . . ,
k k+1 1 k 2 k



Q. Wang, Z. Duan, Y. Lv et al. Automatica 127 (2021) 109505

z

T
Z

1

t
t
c

i

⋆
N (τ |tk)} ∈ Z . Therefore, the consensus of multi-agent system is
achieved asymptotically by using the DMPC algorithm. □

Remark 3. The linear quadratic consensus problem of multi-
agent systems is solved distributedly in Wang, Duan et al. (2019)
by leveraging connections to the alternating direction method of
multiplier, in which finite-time control horizon is considered, that
is, only transient performance is optimized. As for the steady-
state response of the linear quadratic consensus problem, there
is still no affirmative result. Therefore, the DMPC scheme is ap-
plied in this paper to extend the finite-time control sequence to
the infinite horizon, with a condition of asymptotic consensus
derived.

Remark 4. In the above stability analysis, the feasible consensus
state (6) at update time tk+1 is constructed from the optimal
solution Z⋆(τ |tk) at the previous predictive step, which satisfies
the consensus constraint

(
L ⊗ In

)
Z⋆(τ |tk) = 0, τ ∈ [tk+1, tk +

], in Problem 1. From the dynamics (6), it is easy to get that
ˆ (τ |tk+1) =

(
In ⊗Aτ−tk−T

)
Z⋆(tk + T |tk) for τ ∈ [tk + T + 1, tk+1 +

T ], which implies that the consensus constraint is satisfied for
τ ∈ [tk + T + 1, tk+1 + T ] since

(
L ⊗ In

)
Ẑ(τ |tk+1) =

(
In ⊗

Aτ−tk−T
)(
L⊗ In

)
Z⋆(tk + T |tk) = 0. Therefore, Ẑ(τ |tk+1) defined in

(6) is always feasible, i.e., Ẑ(τ |tk+1) ∈ Z, τ ∈ [tk+1, tk+1+T ]. Then,
the consensus error of agent i can be formulated as x̂i(τ |tk+1) −

ẑi(τ |tk+1) without using the information of the whole network,
so that the stability condition (4) is formulated in a decentralized
form, which can be determined by each agent individually.

Remark 5. Referring to inequality (11), the weighted matrix Qi
is set to be positive definite for state consensus. Otherwise, only
part of the state xi will achieve consensus if Qi is positive semi-
definite, which opens the door to investigating the optimal output
consensus problem.

Remark 6. In the DMPC scheme, the processing model is used to
forecast system dynamics for controller design, where the predic-
tion accuracy has a great influence on the control performance.
Therefore, the proposed DMPC algorithm is more applicable for
periodic systems and slowly varying systems than fast dynamic
systems.

A sufficient condition to guarantee asymptotical consensus
of the closed-loop multi-agent system is established in Theo-
rem 1, which provides some theoretical guideline for the choice of
weighted matrices Qi,QiT , Ri and control period ∆t . However, it
is not easy to determine whether there exists a Ki satisfying the
stability condition (4), which brings difficulties in choosing the
weighted matrices in the DMPC algorithm. Therefore, the stability
condition (4) is relaxed to a simpler one in the following corollary.

Corollary 1. For the multi-agent system (1) with an undirected
and connected communication topology, assume that (A, B) is con-
trollable, ∆t ≥ n, and there exist QiT ≥ 0,Qi > 0, Ri > 0, K0i,
satisfying
n−1∑
l=0

∥(A + BK0i)l∥2
Qi+K0iT RiK0i

− QiT ≤ 0, (12)

for all i ∈ {1, 2, . . . ,N}, where K0i is a feedback gain matrix assign-
ing the closed-loop poles of system (1) to zero. Then, asymptotical
consensus can be achieved by the DMPC algorithm.

Proof. According to the linear systems theory (Ogata, 1995), the
closed-loop poles of system (1) can be placed arbitrarily by state
feedback control if (A, B) is controllable. Therefore, there exists a
 s

4

feedback gain matrix K0i making all eigenvalues of matrix A+BK0i
be zero, which can be transformed into a Jordan form as follows:

F−1(A + BK0i)F = diag{L1, L2, . . . , Lq}, (13)

where F is a nonsingular transformation matrix and Li ∈ Rli×li

are Jordan blocks corresponding to zero eigenvalues of the form

Li =

[
0 Ili−1
0 0

]
. Notice that the Jordan block Li is a nilpotent

matrix of degree at most n, so F−1(A + BK0i)∆tF = 0 holds for all
∆t ≥ n, which is equivalent to (A+BK0i)∆t

= 0. Then, for ∆t ≥ n,
the stability condition (4) becomes
n−1∑
l=0

∥(A + BK0i)l∥2
Qi+K0iT RiK0i

− QiT ≤ 0, (14)

which is in accordance with (12). □

Algorithm 1 DMPC-based Linear Quadratic Optimal Consensus
Algorithm
Require: At each update time tk = 0, ∆t, 2∆t, · · ·, initialize

x0i (τ |tk) = xi(tk), u0
i (τ |tk) = 0, z0i (τ |tk) = xi(tk), λ0

i (τ |tk) = 0,
ρ > 0, Gi > 0, Hi >

(
2ρlii + Lδi

)
In, q = 0, for every agent

i = 1, · · · ,N , with τ ∈ [tk, tk + T ]. Set the stop condition
Nq > 0. For subsystem i ∈ {1, 2, · · · ,N}, do in parallel:

1: repeat
2: for τ = tk + T − 1 to tk do
3: Compute the control input uq+1

i (τ |tk) =

−Ui(τ )
[
Vi(τ )x

q+1
i (τ |tk) − Wi(τ )

]
, where Ui(τ ), Vi(τ ) and

Wi(τ ) are gain matrices computed by individual agent
independently through dynamic programming technique
(refer to Theorem 3 in Wang, Duan et al. (2019) for more
details).

4: end for
5: Update xq+1

i (τ |tk), τ ∈ [tk, tk + T ] from (1);
6: Update zq+1

i (τ |tk), τ ∈ [tk, tk + T − 1] and zq+1
i (tk + T |tk)

with communication:

zq+1
i (τ |tk) = 2H−1

i Qie
q
xi(τ |tk) + eqij(τ |tk),

zq+1
i (tk + T |tk) = 2H−1

i QiT eqxi(tk + T |tk) + eqij(tk + T |tk),

where eqxi(τ |tk) = xq+1
i (τ |tk) − zqi (τ |tk), e

q
ij(τ |tk) = zqi (τ |tk) −∑N

j=1 aijH
−1
i

[
ρzqi (τ |tk) − ρzqj (τ |tk) + λ

q
i (τ |tk) − λ

q
j (τ |tk)

]
for

τ ∈ [tk, tk + T ];
7: Update the Lagrangian multiplier λ

q+1
i (τ |tk) = λ

q
i (τ |tk) +

ρzq+1
i (τ |tk), τ ∈ [tk, tk + T ];

8: Set q = q + 1;
9: until q > Nq;
0: return the optimal solution u⋆

i (τ |tk) = uq
i (τ |tk), z⋆

i (τ |tk) =

zqi (τ |tk) for τ ∈ [tk, tk + T ), and select the first portion
u⋆
i (τ |tk), τ ∈ [tk, tk+1), as the real-time input.

Remark 7. It seems that the consensus condition in Corollary 1
is stricter than that in Theorem 1 because of the extra pole
placement requirement on K0i. Nevertheless, the coupling of Ki
and QiT in (4) is removed by selecting such Ki = K0i, which is easy
o realize for controllable systems. Invoking the Geršgorin disk
heorem (Horn & Johnson, 2012), the decoupled condition (12)
an be satisfied easily by choosing the weighted matrix QiT
diagonally dominant with the diagonal elements much greater
than the elements of Qi, Ri and K0i. This is reasonable because QiT
s the weight on the final consensus error. Note that the control
equence implemented in a real system is the optimal solution
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Fig. 1. The communication topology of a five-agent system.

Fig. 2. Schematic of the ith wheeled vehicle.

f Problem 1, calculated by Algorithm 1, therefore the selection
f K0i does not influence the control performance of the resulting
ystem.

For system with single input, the following example gives a
pecific method for parameter selection.

xample 1. Consider a single input multi-agent system of the
ontrollable canonical form, with the system matrices in (1) as
ollows:

=

⎡⎢⎢⎢⎢⎣
0 1 0 0
...

. . .
. . .

...

0
. . . 1

−a0 −a1 · · · −an−1

⎤⎥⎥⎥⎥⎦ ∈ Rn×n, B =

⎡⎢⎢⎣
0
...

0
1

⎤⎥⎥⎦ ∈ Rn. (15)

By designing a feedback gain matrix as K0i = [a0, a1, . . . , an−1],

here is A + BK0i =

[
0 In−1
0 0

]
. Selecting the weighted matrices

s Qi = diag{qi, qi, . . . , qi}, QiT = diag{2qi, 3qi, . . . , (n + 1)qi}
nd qi much greater than Ri and ∥aj∥, j = 0, 1, . . . , n − 1, the

condition (12) is satisfied since
n−1∑
l=0

∥(A + BK0i)l∥2
Qi+KT

0iRiK0i
− QiT

=

n−1∑
l=0


[
0 In−1
0 0

]l

2

Qi+K0iT RiK0i

− QiT

=

[
lpq

]
n×n

: lpq =

⎧⎨⎩
−qi +

∑p
j=1 Ria2j−1, p = q,∑p

j=1 ap−jaq−j, p < q,
lqp, p > q,

≤0,

(16)

where the last inequality is derived from the Geršgorin disk
theorem (Horn & Johnson, 2012).

4. Simulation results on formation control

The proposed MPC algorithm is applied to solve the formation
control problem of multi-agent systems in this section. Consider
a network of five wheeled vehicles with the communication

topology as shown in Fig. 1.

5

Let pxi, pyi and θi denote the Cartesian position and orientation
of the ith vehicle, as shown in Fig. 2, with its dynamics described
by

ṗxi = vi cos θi, ṗyi = vi sin θi, θ̇i = ωi,

v̇i = Fi/mi, ω̇i = Mi/Ji,
(17)

where vi and ωi are linear and angular velocities; mi and Ji
are mass and moment of inertia; Fi and τi are applied force
and torque, respectively. Referring to Ren and Beard (2008), the
dynamic equations (17) can be feedback linearized at a fixed
reference point qi = [qxi, qyi]T off the center of the vehicle, where

qxi = pxi + di cos θi, qyi = pyi + di sin θi. (18)

With the reference control input defined by ui = [u1i, u2i]
T ,

u1i =
Fi
mi

cos θi −
diMi
Ji

sin θi − viωi sin θi − diω2
i cos θi, u2i =

Fi
mi

sin θi +
diMi
Ji

cos θi + viωi cos θi − diω2
i sin θi, the linearized

dynamic equation of the ith vehicle can be formulated as

q̈i(t) = ui(t). (19)

Referring to the numerical control method developed in Ogata
(1995), the discretization form of (19) is obtained as[
qi(τ + 1)
q̇i(τ + 1)

]
=

[
I2 δI2
0 I2

][
qi(τ )
q̇i(τ )

]
+

[
1
2δ

2I2
δI2

]
ui(τ ), (20)

here q̇i is the velocity of the reference point, δ is the sampled
ime and the state variable is xi = [qTi , q̇

T
i ]

T . Based on the
iscretization model (20), the MPC sequence can be solved and
hen held by a zero-order holder to control the multi-vehicle
ystem (17).
To achieve formation control, the cost function (3) is mod-

fied as J =
∑N

i=1

{
∥xi(tk + T |tk) − zi(tk + T |tk) − xci∥2

QiT
+

tk+T −1
τ=tk

[
∥xi(τ |tk) − zi(τ |tk) − xci∥2

Qi
+ ∥ui(τ |tk)∥2

Ri

]}
, where xci

enotes the relative position between agent i and the consensus
oint in the desired formation pattern. Parameters of the ith vehi-
le are set as di = rand(0.115, 0.125) m, mi = rand(9.5, 10.5) kg,
i = rand(0.12, 0.14) kg m2, where rand(a, b) denotes a ran-
om number with a uniform distribution on the interval [a, b].
he sampled time, prediction horizon and control period are
elected as δ = 0.6 s, T = 5 and ∆t = 3, respectively.
he weighted matrices are chosen as Qi = diag{5, 4} ⊗ I2,

QiT = diag{100, 60} ⊗ I2 and Ri = diag{3, 3}, which sat-
isfy the consensus condition. The initial states of the ith vehicle
are set as pxi(0) = rand(−3, 3) m, pyi(0) = rand(−3, 3) m,
vi(0) = rand(−1, 1) m/s, ωi(0) = rand(−0.2, 0.2) rad/s and
θi(0) = rand(0, 2π ). The initial iterative values at update time
tk are selected as u0

i (τ |tk) = [0, 0]T and z0i (τ |tk) = xi(tk).
The desired formation pattern is defined as [qc1, qc2, . . . , qcN ] =

[0, −0.3, 0.5, −0.5, 0.3; 0.5, −0.4, 0.2, 0.2, −0.4], which forms a
regular pentagon.

The responses of the wheeled vehicle systems are recorded as
shown in Figs. 3 to 5. From Fig. 3, it can be seen that each ve-
hicle reaches the desired formation position and velocity rapidly.
Moreover, Fig. 4 shows that the control inputs are damped quickly
and satisfy the saturation constraints set in Ren and Beard (2008).
The trajectories of formation are depicted in Fig. 5, which illus-
trates the efficacy of the DMPC algorithm.

For comparison, the static state-feedback control (SSFC)
method (Li, Duan, Chen, & Huang, 2010) and the positively in-
variant terminal region-based DMPC (PITR-DMPC) method (Gao
et al., 2017) are simulated to evaluate the effectiveness of Al-
gorithm 1. Define the formation error cost function as Jx(t) =∑N

i=1
∑N

j=1 aij∥xi(t) − xci − xj(t) − xcj∥2
Qi
, the input cost function∑N 2
as Ju(t) = i=1 ∥ui(t)∥Ri

, and the composite cost function as
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Fig. 3. Position and velocity curves of the reference point.

Fig. 4. Control inputs of each vehicle.

Fig. 5. The vehicle trajectories of formation.

sum(t) = Jx(t) + Ju(t). The values of the cost functions generated
y the different control methods are recorded in Figs. 6–7, from
hich it can be seen that the proposed scheme provides faster
onvergence rate, less overshoot and lower energy consumption.
6

Fig. 7. Values of the composite cost function.

Note that although the PITR-DMPC method gets a faster conver-
gence rate of the formation error, it requires overlarge control
input in the initial stages, which is not reasonable in practice.
Therefore, it is concluded that the proposed DMPC algorithm has
overall better formation performances.

5. Conclusions

This paper studies the linear quadratic optimal consensus
problem for discrete-time multi-agent systems. Based on the
alternating direction method of multiplier algorithm proposed
in Wang, Duan et al. (2019), a distributed model predictive con-
trol approach is developed to optimize the steady-state response
in addition to the transient response of the consensus process.
The stability of the closed-loop system is analyzed by appropri-
ately constructing feasible solutions, which derives some con-
straints on the weighted matrices and sampled steps of all in-
dividual agents. For controllable systems, the consensus condi-
tion is relaxed for the convenience of parameter determination.
The proposed algorithm is then applied to solving the formation
control problem of multiple wheeled vehicles with numerical
simulations, which demonstrate the efficiency of the proposed
algorithm for performance optimization. In the future, heteroge-
neous and constrained dynamics will be addressed to extend the
applicability of the proposed algorithm in practice.
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