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Canada   

A R T I C L E  I N F O   

Handling Editor: Cecilia Maria Villas Bôas de 
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A B S T R A C T   

To reach climate neutrality goals, European countries need to reduce their transportation sector emissions. To 
this end, implementing effective incentive policies to accelerate electrical vehicle (EV) adoption plays a vital role. 
With this study, we highlight the important role of governments, showing that even with the provision of certain 
mild non-financial incentives, such as charging infrastructure development, EV adoption rates can be signifi-
cantly increased. We develop a multi-agent model of EV adoption within European countries up to the year 2030. 
This integrated framework can capture the interplay between technical, financial, and social aspects of the EV 
adoption process. We find that an annual increase of only 10% in the charging infrastructure incentives over ten 
years can increase the average European EV adoption rate to 46%. We observe that countries that have both a 
low level of charging point density and a high population density would benefit more from the provision of 
charging infrastructure incentives. Countries with lower overall achieved EV shares, on the other hand, are found 
to be relatively insensitive to such provisions. We also characterize how a higher level of charging point density 
will lead to more rapid EV adoption.   

1. Introduction 

Governments around the world, motivated by specific targets for 
climate change mitigation, have set several goals to increase electric 
vehicle (EV) adoption. The European Commission has aimed at cutting 
greenhouse gas emissions by at least 55% by 2030, which sets Europe on 
a responsible path to becoming climate neutral by 2050. To this end, the 
transportation sector will be one of the focus areas, as more than 90% of 
energy needs of this sector in 2020 were supplied via petroleum prod-
ucts, making it one of the largest contributors to greenhouse gas (GHG) 
emissions (International Energy Agency, 2021). After the US, Europe has 
the highest road transport emissions of around 0.90 GtCO2 in 2021 
(BloombergNEF, 2021). Since 2014, the GHG emissions of the trans-
portation sector has increased every year, estimated to be 29% higher in 
2018 than in 1990 (European Environment Agency, 2020). In recent 
years, however, thanks to the increasing share of EVs, the transportation 
sector is experiencing the largest reduction in energy demand (Inter-
national Energy Agency, 2021), as EVs are around three times more 
efficient than conventional internal combustion vehicles. In this regard, 

the adoption rate of EVs is expected to increase in recent years due to 
their contribution to global and local emissions reduction, and also 
because of the accelerating actions taken by governments (Broadbent 
et al., 2021a). Decreasing the EU’s reliance on fossil fuels will require 
putting on roads at least 30 million zero-emission vehicles by 2030 
(European Commission, 2020). At least 90 per cent drop in mobility 
emissions are needed to attain climate neutrality by 2050. 

A lot hinges on how fast EVs will be adopted by motorists. This is not 
easy to predict due to complex interactions between stakeholders (such 
as EV adopters, non-adopters, policy makers, industries etc.) as well as 
the uncertainties in decision parameters. 

Social interaction and behavioral factors are shown to be important 
drivers of EV adoption (Hu et al., 2020; Shafiei et al., 2012; Yang et al., 
2019). The perceptions of motorists, determined by their values, atti-
tudes and knowledge, could influence their willingness to purchase EVs 
(Haustein and Jensen, 2018; Wang et al., 2021). In particular, social 
interaction with EV adopters and the word-of-mouth effect is an 
important driver of EV adoption. Sahoo et al. (2022) conduct an online 
survey among potential EV users to determine the motives of Indian 
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youths toward EVs. Their findings highlight the importance of the 
word-of-mouth effect in EV adoption. A key factor in the diffusion of 
battery electric vehicles (BEVs) is consumer behavior, including atti-
tudes and perceptions towards technology, price, availability, and 
knowledge (Secinaro et al., 2022). Social and psychological factors, such 
as socio-demographic characteristics and subjective norms, also influ-
ence consumer behavior. BEVs are generally viewed in a positive light 
due to their environmental benefits, operating costs, and government 
policies, while negative views abound due to concerns regarding battery 
recycling, energy sources, and increased driving distances. To effectively 
diffuse BEVs, a multi-scale approach that considers technology as well as 
behavior is necessary (Carlucci et al., 2018; Tran et al., 2012). 

Availability of public charging infrastructure will be a key factor to 
motivate EV adoption. in fact, the insufficiency of the charging infra-
structure is identified to be one of the most significant barriers to EV 
adoption in many choice modelling studies (Candra, 2022; Fu et al., 
2021; Harrison and Thiel, 2017; Kumar et al., 2021; Potoglou and 
Kanaroglou, 2007). Public charging infrastructure investments are often 
incentivized by governments. The effect of government policies on EV 
adoption has been studied in literature for many countries (Ayyadi and 
Maaroufi, 2018; Peng and Bai, 2023; Srivastava et al., 2022). Haustein 
et al. (2021) study surveys of EV and conventional car owners that were 
conducted in 2017, 2018, and 2019 to assess the impact of fast charging 
installments in Denmark and Sweden. The authors suggest that EV 
adoption can be increased by improving the charging infrastructure 
among other actions. 

Another factor affecting the speed of EV adoption will be the relative 
energy (fuel) price; that is, the price of electricity compared to that of 
diesel. Münzel et al.‘s (Münzel et al., 2019) econometric study show 
energy prices to influence EV adoption positively and significantly in 
European countries. 

To have effective policies, it is required not only to understand the 
adoption mechanism to model its dynamics and intervention effects 
(Deuten et al., 2020), but also to consider the uncertainty arising due to 
technical issues, technology progress, consumer preferences, and social 
interactions (Liu and Lin, 2017). 

Based on these observations, we argue that the EV adoption rate in a 
country depends on three main factors: (1) social interaction, (2) 
availability of charging infrastructure, (3) relative energy price. To the 
best of our knowledge, no study in literature has addressed the interplay 
between these three variables on the rate of EV adoption for a given 
country. There is a need to understand how the interaction between 
charging infrastructure incentive provision of a government and the EV 
adoption rate will affect the dynamics of the EV adoption process in 
countries with different characteristics. 

With the current study, we aim to fill the gap in literature by 
developing a realistic EV adoption model that considers the interactions 
between the social interaction, charging infrastructure and energy price 
effects. We combine the effects of these three factors in a Bass-type 
diffusion model that predicts the EV adoption rate for a given country. 
This rate, in turn affects the government’s charging infrastructure 
incentive decision. We construct a multi-agent-based (MAB) simulation 
model and compare the simulation results between scenarios with 
different levels of charging infrastructure incentive by governments. The 
MAB approach allows us to capture the complex interaction (feedback 
effects etc.) between the government, “potential EV adapter” and “EV 
adapter” agents as well as letting us model uncertainties in the form of 
probabilistic input variables. We develop customized policy recom-
mendations for 23 European countries between 2022 and 2030 
depending on their population density and existing charging point 
density. 

The rest of this paper is organized as follows. Literature review is 
conducted in Section 2. Section 3 presents our modelling framework and 
methodology. Section 4 reports the results of our agent-based simula-
tion. Section 5 presents discussions about the implications of our model. 
Section 6 provides a summary of our work and elaborates on the 

limitations of our work and potential extensions. 

2. Literature review 

This work is related mainly to the literature on the driving forces of 
EV adoption, the literature on adoption modelling approaches, and the 
literature on implemented EV incentive policies in different countries. 
We discuss each of these in what follows. 

2.1. Driving forces of EV adoption 

Governments may drive the transition to EVs by means of several 
levers, including policy incentives, cost deductions and more strict 
environmental targets (Li et al., 2019). EV adoption in a country would 
be accelerated through stronger collaboration among governmental 
actors, financial services and technical assistance (Barkenbus, 2020). To 
make European policy instruments more effective, a step-up in ambition 
must be accompanied by an assessment of the policy mechanisms 
(Carley et al., 2019; Prakash et al., 2018). 

Across European countries, a large number of EV incentives have 
been available, from tax reduction to direct payments. These incentives 
can be classified into financial and non-financial (e.g., charging infra-
structure) types (Canals Casals et al., 2016; Fang et al., 2020). Financial 
incentives address reducing the vehicle’s ownership cost. They can be 
divided into two groups as one-time (e.g., rebate, tax reduction) and 
recurring incentives (e.g., waiver on fees). Despite these incentives, a 
multitude of political, technical, fiscal, as well as market obstacles 
(European Commission, 2020; Fluchs, 2020) stand in the way of EV 
adoption. 

Government policies aimed at reducing transport emissions alone 
would not be enough to fight climate change; in free-market economies, 
citizens must also take action (Broadbent et al., 2021a). A fundamental 
change in behavior by individuals and enterprises must drive the process 
of adoption (European Commission, 2018). Some consumers are shown 
to choose various types of EVs based on non-financial motives instead of 
meticulously calculating their lifetime costs (Contestabile et al., 2020; 
Heffner et al., 2007; Turrentine and Kurani, 2007). Furthermore, there 
are differences among individual consumers’ preferences and in-
teractions with other consumers regarding EVs diffusion (Broadbent 
et al., 2021b; Cho and Blommestein, 2015). 

Undoubtedly, making smart energy-related decisions under the in-
fluence of internal and external factors and complex network models in 
an uncertain environment is challenging from the stakeholders’ 
perspective (Hu et al., 2020). As a result, there is a need for a modelling 
framework addressing this problem environment that can simulta-
neously consider the effect of stakeholders’ (EV adopters, policy makers, 
automakers and fuel suppliers) interaction with each other at the 
micro-level, as well as the effects of macro-level influences such as the 
energy and vehicle markets. This is what we do with the current study. 

2.2. Modelling approach of the adoption process 

Numerous aspects of energy system modelling and planning in the 
transportation sector have been studied in the literature (Reuter et al., 
2021). Energy models as valuable tools for dealing with these compli-
cated and complex problems have been dominated by “top-down”, 
“bottom-up”, and “hybrid” approaches (Neshat et al., 2014). 

Economists and government officials use the top-down approach to 
analyze the macroeconomic impacts of particular policies (Cho and 
Blommestein, 2015; Pagani et al., 2019; Prina et al., 2021). Models of 
this type show diverse perspectives on the future of EV diffusion at both 
national and international levels as a result of disciplinary and structural 
differences (Deuten et al., 2020; Ou et al., 2021). A key problem with 
top-down approaches is that they tend to focus on the attitudes of the 
central decision-makers and overlook other stakeholders. 

A bottom-up analysis focuses on a detailed investigation of energy 
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technologies, such as the penetration of EVs and the necessary in-
vestments to support them (Connolly et al., 2010; Kangur et al., 2017; 
Novizayanti et al., 2021). Models following the bottom-up approach are 
usually formulated as optimization problems (Böhringer and Ruth-
erford, 2008) that determine the most cost-effective technologies for 
satisfying a certain demand (Andersen et al., 2019), or as simulation 
models (Klinge Jacobsen, 1998). A detailed analysis of the elements and 
technologies found in the energy system is presented in (Gerossier et al., 
2019); (Messner and Schrattenholzer, 2000; Murphy and Jaccard, 2011; 
Wolf et al., 2015). Bsisu, for example, recommends that the Jordanian 
government pursue the bottom-up approach to increase public under-
standing of green vehicles among different inhabitants, as well as to 
establish a socially acceptable price (Bsisu, 2019). Ramchandran et al. 
(2020) creates a model to predict how EVs would be adopted in India, 
and recognizes the essential bottom-up mechanisms affecting EV uptake. 
The authors use the Bass Diffusion Model to build a system-dynamics 
model and an agent-based model. 

Agent Based Modelling (ABM) is a bottom-up method that aims to 
specify the macro behavior of a system by modelling individual agents 
and their interactions in simulation (Ding et al., 2018). ABM is useful in 
studying how system rules and patterns appear from agents’ behavior 
(Watkins et al., 2009). With ABM, separate components of a system are 
described by discrete agents that operate independently within a 
simulated environment that can lead to non-intuitive results at the 
population level (Nejat and Damnjanovic, 2012). A bottom-up ABM 
approach is able to fill the gap between microscopic behavior and the 
macro aspects within a system (Ding et al., 2014). Methods such as ABM 
or systems dynamics have been used in most studies examining EV 
development, based on either top-down or bottom-up modelling ap-
proaches (Ramchandran et al., 2020; Shafiei et al., 2012; Usher et al., 
2015). 

The top-down and the bottom-up modelling approaches may 
generate contradictory policy prescriptions; in the literature, bottom-up 
models often propose policies to eradicate obstacles to reaching low- 
GHG technologies, while top-down models often recommend price- 
based policies such as taxes and tradeable permits to reduce GHG 
emissions (Jaccard et al., 2004). Unlike the top-down approach, which 
focuses on how well goals are met over time and why, the bottom-up 
approach inquiries about the goals, strategies, activities, and contacts 
of the individuals and groups within a system. The best way to avoid 
these either-or choices is to combine the best aspects of the two ap-
proaches (Sabatier, 1986). For instance, most researchers use macro-
economic models to assess climate change policy’s economic influences. 
Nevertheless, such models fail to capture the exact physical properties of 
energy production and combustion technologies, and they often over-
estimate economic effects. A possible solution would be to connect 
top-down macroeconomic models with bottom-up energy sector models 
that can reflect technological elements (Timilsina et al., 2021) 
(Krook-Riekkola et al., 2017). 

Combining the two modelling approaches will enable analyzing 
more complicated matters such as regulation of the transport sector and 
households, as well as energy tax policies that take into account the 
linkages between the energy system, the society, and the economy. 
Numerous studies have recently been carried out involving the soft- 
linking of energy models specific to different countries. For example, 
using the Electric Vehicle Regional Market Penetration tool, Noori et al. 
(Noori and Tatari, 2016) address the intrinsic uncertainties and hybrid 
policies related to EVs. They assess the potential market share of EVs in 
the United States for 2030 based on the determined policies. Eppstein 
et al. (2011) investigate the interconnections among different hybrid 
policies on plug-in hybrid vehicle acceptance using a spatially detailed 
agent-based vehicle consumer choice model. Table 1 illustrates a short 
description of some studies in which top-down, bottom-up and hybrid 
modelling paradigms have been used. Most of the articles reviewed in 
Table 1 deal with forecasting EV adoption over a long-time period 
(Deuten et al., 2020; Wolf et al., 2015). Ta
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Several studies have addressed path of transition to electric mobility 
using parametric methods, such as system dynamics, in which there is no 
support for parameter uncertainty. Luo et al. (2022) determine an 
optimal subsidy for EV adoption using a dynamic game approach that 
includes the cross-side effects of EV adoption and charging infrastruc-
ture expansion. Rahman et al. (2021) develop a model based on 
agent-based simulation to compare EVs, plug-in hybrids, and gasoline 
vehicles comprehensively. Huang et al. (2022) develop an agent-based 
evolutionary game model that incorporates consumers’ microscopic 
behavior into the dynamics of the diffusion of charging stations. 
Charging stations and EVs are simulated and their impact on the 
network topology is explored. Noori and Tatari (2016) identify the po-
tential market share of EVs in the US by 2030 using the Electric Vehicle 
Regional Market Penetration tool that they developed. The authors also 
use exploratory modelling approaches to assess market share un-
certainties. Our study tries to tackle this problem by considering the 
uncertainties arising from the complex interaction between EV adopters 
and policy makers, which is often neglected with the exception of some 
works in the literature such as that of Noori and Tatari (2016). 

2.3. Implemented policies of EV adoption 

Adoption of electric mobility is influenced by a wide range of policies 
and factors which has been studied for many countries using a variety of 
methods (Ayyadi and Maaroufi, 2018; Corradi et al., 2023; Debnath 
et al., 2021; Ledna et al., 2022; Neshat et al., 2018; Zheng et al., 2022). 
Liu and Lin (2017) analyze socioeconomic data from 28 countries to 
develop a prediction model for the adoption of EVs. Three independent 
variables were used to develop the model: per capita GDP, percentage of 
renewable energy consumption, and gasoline price. Held and Gerrits 
(2019) conduct a study of e-mobility policies in 15 European cities. The 
authors identify national policy initiatives that were successful in pro-
moting EVs. Li et al. (2022) integrate vehicle attributes, policy attri-
butes, and psychological characteristics to examine personal carbon 
trading, tradable driving credit mechanisms, and consumer preferences 
for different policy instruments for Chinese consumers. 

Through an online survey, Peng and Bai (2023) demonstrate that city 
incentives may increase EV uptake but are not sufficient to achieve a full 
transition. Sæther (2022) conducts an analysis of electric mobility pol-
icies and charging infrastructure in Europe from 2009 to 2019. The 
implementation of charging infrastructure is found to be essential to the 
electrification of transportation systems. Martins et al. (2023) classify 27 
EU Member States according to how they promote EV technology. The 
authors find that EV deployment is still heavily influenced by financial 
incentives, whereas the charging infrastructure plays an equally crucial 
role in making or breaking their deployment. 

Governments can also use business models to deploy EVs since they 
provide a framework for sustainable and profitable market growth 
(Secinaro et al., 2020). Business models can address challenges such as 
high upfront costs, lack of charging infrastructure, and limited consumer 
acceptance, which are often cited as obstacles to the widespread adop-
tion of EVs (Afentoulis et al., 2022; Huang and Qian, 2021). As well as 
attracting private investment and entrepreneurs, a sound business 
model can facilitate partnerships with other stakeholders for the rapid 
deployment of EVs (Bohnsack et al., 2014). As a result of leveraging 
business models, governments can develop policies and strategies that 
will support the growth of EV markets (Ziegler and Abdelkafi, 2022). 

By using a system dynamics model and combining it with a policy 
analysis framework, Setiawan et al. (2022) consider the effectiveness of 
policies aimed at developing EV market share in Indonesia. Their results 
suggest that the government should reduce consumer taxes on EVs. In 
the case of lagging in EV technology advancement, the role of these 
incentives is found to be more considerable. McCoy and Lyons (2014) 
simulate the adoption of EVs among Irish households using an 
agent-based threshold model of innovation diffusion. A nationally 
representative and heterogeneous agent population is developed using 

detailed survey microdata. A number of geographic areas of interest are 
then used to calibrate the agent population. By using a latent class bi-
nary model, Lu et al. (2022) examine how substitutional incentive pol-
icies affect the adoption preference of EVs after the phase-out of 
purchase subsidies. Our study contributes to this literature by inte-
grating a bottom-up ABM model to a top-down one to capture the 
interaction between the energy system, the society, and the economy as 
well as allowing us model uncertainties. 

3. The modelling framework and methodology 

This section explains the underlying methodology and the modelling 
framework of our study in details. Our model development comprises 
three main phases: (i) Descriptive representation of the drivers of EV 
market adoption; (ii) Development of the agent-based simulation model; 
and (iii) Establishment of a calibrated baseline (Business as Usual) sce-
nario and a number of policy intervention scenarios. In what follows, we 
first explain these phases. Then we discuss our data sources and explain 
how we group European countries for our policy analysis. 

3.1. The multi-agent based (MAB) framework 

We have developed a multi-agent-based model to estimate the 
market penetration of EVs in a country based on the interactive behavior 
of two agent types: “the policy maker” and “adopters”. The main focus of 
the model is on the interaction between the interacting decisions of the 
EV adopters and the policy maker. Other effects are considered as 
exogenous variables. Adopters’ adoption decisions are based on finan-
cial (energy prices), non-financial and social factors. Adoption decisions 
in turn influence the policy makers’ incentive policy decision. 

The policy maker agent represents the government that determines 
the level of public incentives to support EV adoption. The other agent 
type, “potential adopter” is an individual who may consider adopting an 
EV but is not sufficiently motivated to do so. “Non-potential adopters”, 
on the other hand, do not consider adopting an EV even if this is 
financially attractive. A certain percentage (potential rate coefficient, ⱷ 
%) of a country’s population (P) are assumed to be potential adopters. 
Both adopters and nonadopters are assumed to be members of an ab-
stract network. In each period t, a potential adopter becomes an adopter 
by adopting an EV with probability AdRatet as shown in Fig. 1. Based on 
our discussion in Section 1, three significant factors affect AdRatet at 
period t:  

− The word-of-mouth effect (AdWOMt) arising from social interaction 
with adopters,  

− The incentive effect (Inct) that arises from the incentive provision 
decision of the policy maker,  

− The energy prices effect (EneEfft) that is related to the relative price 
of electricity compared to price of diesel. 

We have developed three modules, i.e., the WOM Module, the 
Incentive Module and the Energy Market Module for the simulation 
algorithm such that the behavioral, financial, technical, and social as-
pects of the model can be considered simultaneously. In what follows, 
we first describe each of the three modules in detail, and then explain 
how their results are combined to calculate the AdRatet value using a 
Bass-type diffusion model. Lastly, we introduce our overall simulation 
algorithm and scenarios. 

3.1.1. The word-of-mouth (WOM) module 
Social network structures are mainly used to define the patterns 

through which already-adopter agents interact with one another, mainly 
to calculate the word-of-mouth, imitation, and social influences over 
time. In order to simulate the interaction among such “connected 
agents”, we use the k-means Clustering Algorithm (Liu et al., 2018). 
Cluster analysis is used as an unsupervised task of grouping a set of 
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agents such that the sum of distance squares is minimized within each 
group. The aim of the k-means algorithm in our model is to divide po-
tential adopters within certain dimensions (which we do not model or 
explain explicitly) into k clusters where k denotes the number of 
adopters (αt-1) at time t-1. The objective of the algorithm is to minimize 
the squared error which is: 

MSE =
∑k

i=1

∑

x∈CI

‖x − μi‖
2 (1)  

where Ci, {i = 1,2, …, k} stand for clusters and μi is the mean vector of 
cluster Ci denoted as: 

μi =
1
|Ci|

∑

x∈CI

x (2)  

In our model, each adopter agent contacts other agents (adopter or 
potential adopter) in its nearest neighborhood at the rate of ContRt, 
forming a cluster of “connected agents” in the network. The potential 
adopters in this cluster are likely to adopt an EV based on the AdFract 
value. Accordingly, the “effect size” of WOM at time t, ∀ i, i = {1,2, …, αt- 

1} is calculated as: 

AdWOMt = (ContRt × AdFract ×
∑∝t− 1

i=1
τit)/nt (3)   

where τi
t = Max j, and j is the index of connected agents to the adopter 

i in a cluster at time t. The term nt represents the number of potential 
adopters. 

3.1.2. The incentive module 
In our model, the incentive is captured as the charging infrastructure 

support of the policy maker agent, i.e., the government. The variable Inct 
denotes the number of charging points at time t as the level of provided 
charging infrastructure. The value of the parameter IncEfft, which cap-
tures the “effect size” of incentives is the related regression coefficient 
that is provided in Table 3. 

Adopters’ EV adoption decisions and policy makers’ charging 

incentive provision decisions mutually affect each other. The autore-
gressive time series of Inct for the Business As Usual (BAU) scenario is 
considered as an exogenous variable and it is forecasted using the 
Anylogic software. 

3.1.3. The energy market module 
Energy carrier prices have a significant effect on transportation costs 

and hence, total cost of vehicle ownership. Based on our literature re-
view, they have been found to significantly influence the past sales of 
alternative fuel vehicles. We formulate the effect size of energy prices 
(EneEfft) as: 

EneEfft = βlog(ElecPrct /DiesPrct) (4)  

where ElecPrct and DiesPrct stand for the prices of electricity and diesel 
fuel at time t, respectively, and β2 is the related regression coefficient 
that is provided in Table 3. 

3.1.4. AdRate calculation 
The AdRatet is calculated based on the three aforementioned mod-

ules. To model the diffusion of EV adoption as an infant technology, we 
chose to use the Bass Diffusion model, which is the most widespread 
used model for this purpose (Ayyadi and Maaroufi, 2018).1 Accordingly, 
we calculate AdRatet for each time period t as: 

AdRatet =(
1 − e− t(p+q)

1 + (pq)e− t(p+q)). (5) 

The coefficient of innovation (p) in this standard Bass model is 
calculated based on the incentive effect and energy price effects of our 
model as follows 

log p=(IncEfft × Inct) + EneEfft (6)  

The coefficient of imitation (q) in the standard Bass model, on the other 

Fig. 1. The relations between the determinants of the EV adoption process.  

1 It should be noted that the Bass model considers the growth of adoption rate 
as exponential, which reaches a peak and then again decays at an exponential 
rate. This makes it a suitable model for modelling the EVs adoption. 
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hand, is taken to be the WOM effect in our model. 

q=AdWOMt. (7a) 

Table 2 summarizes the parameters and the variables of our model 
along with their assumed statistical distributions. 

3.1.5. The overall simulation algorithm and the scenarios 
The consolidated version of the EV adoption algorithm that we 

implement in AnyLogic2 Software is described in Fig. 2. Using this agent- 
based model, we simulate the following four separate scenarios:  

• Baseline scenario (BAU): No more policy intervention (following the 
historical trend),  

• Scenario-1: 10% increase in the number of installed charging points 
every year compared to BAU’s increase,  

• Scenario-2: 20% increase in the number of installed charging points 
every year compared to BAU’s increase,  

• Scenario-3: 30% increase in the number of installed charging points 
every year compared to BAU’s increase. 

These scenarios are designed to be optimistic and are hypothetical 
examples employed to understand the impact of increased infrastruc-
ture. We consider an annual time span. Each scenario is simulated 20 
times, and the number of adopters is averaged across these 20 runs. At 
the beginning of each run, there is a warm-up period. 

Each scenario corresponds to a round (r) of the simulation model in 
the flowchart of Fig. 2. We use a threshold value (ξ) to terminate the 
algorithm. A threshold value of zero is used to keep the value of Inct 
unchanged in the BAU scenario. For the other three scenarios, the 
threshold is assigned a large value to let the algorithm proceed to the 
subsequent scenarios. In this case, the value of Inct is increased as 

Inct← Inctλ (7b)  

where λ is a scenario-dependent parameter. 

3.2. Model data and parameters calibration 

We used the data from years 2014–2019 to develop the agent-based 
model, and used 2020 and 2021 data to test the model’s projections. The 
effect size of the considered variables as given in Table 3 were taken 
from Münzel’s findings (Münzel et al., 2019). This table displays the 
results of regression model coefficients for three variables while the 

effects of country-level are fixed. 
Based on the values in Table 3, for example, keeping all other factors 

unchanged, a 1000 Euro higher financial incentive increases the EV 
adoption rate by about 5.4% (with 95% confidence) according to the 
country-fixed effects. The regression on disaggregated incentives as-
sesses whether consumers react to the timing and kind of incentives 
differently. The estimated coefficient for overall financial incentives 
(0.054) is found to be less than that for non-financial incentives, that is, 
charging infrastructure (0.070). Interpreting the recurring incentive 
coefficient and effects may be misleading in some cases since the total 
savings generated relies on the vehicle holding time. 

Table 4 lists the data sources on the variables and parameters of our 
model. The gasoline and diesel prices of four previous years (from 15 
January) were taken from the statistical pocketbooks of 2017 and 2020 
(European Commission, 2017, 2020). Because Iceland, Norway, 
Switzerland, and Turkey are non-EU-countries, their price data was 
gathered from the offices of the national statistics and the Word Banks’s 
world development indicators (German Agency for International 
Cooperation). The data of taxes and fees for ownership and acquisition 
of motor vehicles in European countries were obtained from ACEA Tax 
Guides (European Automobile Manufacturers’ Association). 

3.3. Classification of countries 

As shown in Table 5 and Fig. 3, we define nine potential country 
groups based on their population density and charging point density. 
Because no country falls into group 8, we have eight resulting country 
groups. 

We use population density as a grouping characteristic as it in-
fluences the strength of social interaction among citizens. The popula-
tion density affects the density of the abstract network of agents in our 
simulation model. As shown in Table 5, European countries vary 
considerably in population density (Worldometer). The charging point 
density, which is determined by the policy maker’s infrastructure 
incentive provision, is chosen as the second grouping characteristic. This 
is because the effect size of charging infrastructure incentives (0.336) is 
found to be about 6 times larger than the one for one-time financial 
incentives (0.049) (Münzel et al., 2019). Thus, the size of the charging 
infrastructure may have significant feedback influences on the number 
of future adopters and hence, it is considered as the parameter of 
sensitivity analysis in this study. The European Alternative Fuels Ob-
servatory (EAFO) estimates 13 public charging points for each 100 km2 

for the whole of Europe in 2020 (i.e., for 32 countries, consisting of The 
United Kingdom and the EFTA countries Liechtenstein, Iceland, 
Switzerland, and Norway). Because the charging point density highly 
depends on country, we categorize the countries into low, medium and 
high charging point density as shown in Table 5. Germany has the 
average of 12 charging points for each 100 km2. The Netherlands by the 
far has the highest value i.e., 130 points per 100 km2, followed by 
Norway with 41 points per 100 km2. Greece, Lithuania, Poland, Latvia, 
and Romania and Slovakia have the least number of charging points per 
100 km2 (Worldometer) . 

4. Analysis and results 

Here, we first compare our model’s estimations with observed data 
from years 2020 and 2021. We then compare the results of the four 
scenarios. Next, we report sensitivity analysis results on the level of the 
policy maker’s infrastructure incentive. 

4.1. Comparison of model predictions with observed values 

To validate the model, we analyze the results of one sample country 
from each of the 8 groups. As reported in Table 6, the absolute per-
centage error between our model’s AdRate estimations and observed 
values in years 2020 and 2021 is less than 8%. Thus, the model performs 

Table 2 
Overview of the parameters and variables of the model.  

Variable 
Parameter 

Description Unit Range or 
Reference 

Inct Number of charging points at time t N [0, 31120], St. 
D. = 3812 

IncEfft The effect size of incentives 
(regression coefficient) 

– Table 3 

ElecPrct The price of electricity at time t ct/ 
kwh 

[8.21, 33.87], 
St.D. = 4.9 

DiesPrct The price of diesel fuel at time t Euro/ 
l 

[0.92, 1.80], St. 
D. = 0.18 

AdWOMt The adoption rate of connected 
potential adopters at time t 

– Equation (3) 

ContRt The probability of connecting to an 
adopter 

– Uniform (0, 
0.03) 

AdFract The adoption rate of potential agents 
that are connected to an adopter at 
time t 

– Uniform (0, 
0.05)  

2 https://www.anylogic.com/. 
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reasonably well. The observed values (real data) is gathered from ACEA 
Tax Guides (European Automobile Manufacturers’ Association). 

4.2. BAU scenario for comparison 

After model validation, we have simulated the BAU scenario for each 
country to show the evolution of potential adopters’ EV choice behavior 
without further policy intervention. Fig. 4 (the upper diagram), for 

example, depicts a section of adoption rate evolution for countries in 
group 7 which has high population density and low number of charging 
points. The points that are in the neighborhood of each other are con-
nected by edges. If the state of an agent changes from potential adopter 
to adopter, it is marked with the orange color. Purple agents are those 
which are in contact with an adapter agent and have adapted through 
the WOM effect in the current period. 

In the lower diagram in Fig. 4, the process of changing the state of 

Fig. 2. The consolidated version of the EV adoption algorithm that was implemented in AnyLogic Software.  
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agents from potential adopters to adapters is depicted over time. After 
the warm-up period, this process proceeds based on the value of the 
adoption rate (AdRatet). In this graph, the blue colored line shows the 
number of adapters at any time and the grey colored line shows the 
decreasing trend of the potential adapters over time. 

Fig. 5 shows the increasing trend of the EV adoption rate from 2022 
to 2030 for all country groups under the BAU scenario. The black dotted 
line shows the average trend over all European countries. We can see an 
S-shaped growth curve, in line with the diffusion curve of infant prod-
ucts introduced by Rogers (2003). On average, adoption rate in groups 1 
and 7 (blue- and yellow-colored lines) increases from 1.33% and 2.04% 
respectively in 2022 to 8.97% and 14.72% in 2030. Passenger vehicle 

sales in the pioneering countries, Norway and the United Kingdom 
(orange and grey colored lines), are anticipated to be totally based on 
EVs by the end of 2025 and early 2026, respectively. The adoption rate 
in groups 4 and 2 (green and pink colored lines) will increase from 
15.6% and 20.2% at the beginning of the time horizon to 36.14% and 
45.7. Also, the increase of the adoption rate in groups 9 and 6, to 26.1% 
and 28.01% at the end of 2030 is evident. 

4.3. Sensitivity analysis experiments 

Here, we investigate the effect of increasing the number of charging 
points, that is the infrastructure incentive decision of the policy maker, 
on the evolution of EV adoption. 

Table 3 
Münzel’s regression results related to EV adoption rate (Münzel et al., 2019).  

Model Aggregated 
Incentives  

Incentives by 
Recurrence 

Incentives by 
Type 

(1)  (2) (3) 

Financial incentives 
(1000 Euro) 

0.054*  0.051* 
(0.031)  (0.021) 

Non-financial 
incentives (1000 
Euro)♣   

0.070** 
(0.033)  

One-time incentive 
(1000 Euro)  

0.049    

(0.031)  
Recurring incentive 

(1000 Euro)  
0.336***    

(0.087)  
Log (electricity price/ 

diesel price) 
− 0.196 − 0.224   

(0.569) (0.576)  
Trend 2.224*** 0.202***   

(0.113) (0.113)  
Observations 226 226  
Adjusted R2 0.75 0.75  
F statistic 237.700*** 180.161***  

*p < 0.1, **p < 0.05, ***p < 0.01. 
♣ The coefficient is calculated only for charging infrastructure. 

Table 4 
Overview of sources.  

Variable/Parameter Source 

ContRt Noori and Tatari (2016) 
AdFract Linder (2011) 
DiesPrct EuroStat (2019) 
ElecPrct EuroStat (2021) 
IncEfft Table 3 
Inct ACEA (2021) 
Population Densitya EuroStat (2021) 
ⱷb EuroStat (2022)  

a The average number of the people living in a specific area. 
b The number of passengers’ cars per inhabitant. 

Table 5 
Country groups.  

Group 
Number 

Population Density (N/Km2) Charging Point Density (N/100 Km2) Countries 

Low (≤164) Medium (165–375) High (≥376) Low (≤40) Medium (41–90) High (≥91) 

Group 1 ✓   ✓   The other European countries 
Group 2 ✓    ✓  Sweden, France, Spain 
Group 3 ✓     ✓ Norway 
Group 4  ✓  ✓   Luxembourg, Italy, Switzerland 
Group 5  ✓   ✓  The United Kingdom 
Group 6  ✓    ✓ Germany 
Group 7   ✓ ✓   Malta, Belgium 
Group 8   ✓  ✓  – 
Group 9   ✓   ✓ The Netherlands  

Fig. 3. Country groups.  

Table 6 
Comparing model predictions and observed values.  

Country 
Group 

Representative 
Country 

Estimated 
AdRatet/Real 
data (2020) 

Estimated 
AdRatet/Real 
data (2021) 

Absolute 
% Error 

Group 1 Finland 1.32/1.39 1.39/1.47 5.3 
Group 2 France 20.29/21.55 21.31/22.59 6.1 
Group 3 Norway 51.01/55.09 57.6/61.98 7.8 
Group 4 Italy 15.75/16.54 16.25/17.03 4.9 
Group 5 UK 32.10/34.83 34.77/36.05 3.6 
Group 6 Germany 28.54/30.74 30.19/32.51 7.7 
Group 7 Belgium 2.16/2.29 2.32/2.45 5.9 
Group 9 Netherlands 26.03/28.03 28.20/30.26 7.5  
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4.3.1. Policy intervention in low population density country groups 
The results of implementing the incentive policies for group 1 

countries, which are Finland, Hungary and Turkey, can be seen in Fig. 6. 
The evolution of adoption rate under the BAU scenario and scenarios 1, 
2 and 3 are shown as blue, grange, grey and yellow lines, respectively. 
According to Fig. 6a, in these countries with low charging point density, 
EVs never achieve a significant market share by 2030. However, when 
the high level of incentives is in place, the impact of the intervention 
from 2022 to 2030 can be observed. Under the BAU scenario, the 
average adoption rate, which is less than 2% in 2021, is expected to 
increase to 8.9% by 2030. Under the further government intervention 
scenarios, however, this increase will accelerate and can even be tripled 
under scenario 3 which provides a 30% increase in the number of 
charging points per year. An annual increase of only 10% in the number 
of charging points over ten years can increase the growth rate of the 
adoption rate to 1.63 times more than that under the BAU scenario. If 
the number of charging points increases by 20%, this growth rate in the 

adoption rate will be 2.29 times more of that in 2030 on average. 
In Sweden, France and Spain, which are included in group 2, the 

growth of the adoption rate under government intervention scenarios is 
lower than that of group 1 countries, but it is still noticeable. As can be 
seen in Fig. 6b, under scenarios BAU, 1, 2, and 3, the average adoption 
rate will reach 45.7%, 69.1%, 87.1%, and 95.9%, respectively. 

Norway is the only country in group 3. Norway is a country with a 
low population density and a high charging point density. As shown in 
Fig. 6c, under the BAU scenario, only EVs will be sold in the Norwegian 
market by the beginning of 2026. This can be also achieved by early 
2025 by implementing incentive policies to increase the number of 
charging points by 30% every year. Thus, the effect of policy interven-
tion on the relative changes in the adoption rate will be lower compared 
to those of groups 1 and 2. 

4.3.2. Policy intervention in high population density country groups 
The countries of groups 7 and 9 are the those that have relatively 

Fig. 4. The evolution of the EV adoption rate for group 7 under the BAU scenario.  

Fig. 5. The evolution of EV adoption rate for all country groups from 2022 to 2030 under the BAU scenario.  
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high population density (more than 376 people per square kilometer). 
Fig. 7a shows that in group 7 consisting of Belgium and Malta, which 
have a low density of number of charging points, the adoption rate is less 
than 2.3% in 2021. Under the BAU scenario, the adoption rate will in-
crease to 13.9% by 2030. However, under scenarios 1, 2, and 3, the 
average adoption rate would increase to 25.7%, 40.3% and 49.0% 
respectively. 

Under the BAU scenario, the adoption rate in the Netherlands, a 
group-9 country, will increase from 26.2% to 59.1% by the end of 2030 
(Fig. 7b). Under further government intervention, in Scenarios 1, 2 and 
3, the growth rate can be increased by 30%, by 70% or doubled 
compared to the BAU scenario. 

5. Discussion 

In this section, we discuss the policy implications of our results. 
Under our BAU scenario, the average adoption rate for European 
countries, which is 5.8% in 2022, will only reach 18% by 2030. This 
projection is consistent with the results of Gnann et al. (2018). 
Figure 18% is far below the European Commission’s goal of 55%, 
highlighting the need for European governments to increase their sup-
port for EV adoption. To this end, one effective policy is to bolster the 
incentives for increasing the number of charging points. Our results 
suggest that an annual increase of only 10% in the charging 

infrastructure incentives can increase the average European EV adoption 
rate to 46% by 2030, getting closer to the 55% target. 

The European Commission recommends having one public recharg-
ing point per ten EVs, that is, 10 EVs per public charging point. However, 
there is a wide variation among the countries about this measure (Col-
menar-Santos et al., 2019). Iceland and Norway have the highest ratio 
with 39 and 24 EVs per public recharging point. Ireland has 19 while the 
UK is closer to the recommended coverage with 13 EVs per charging 
point (McKibbin, 2021). Our findings may guide European countries in 
assessing the effect of their charging infrastructure incentives on EV 
adoption. In this regard, our results support the argument in literature 
(Gnann et al., 2018; Huang et al., 2021) that subsidizing charging fa-
cilities has a significantly positive effect on EV adoption. 

We observe that countries that have both the lowest level of charging 
point density and the highest population density would benefit the most 
from the charging infrastructure incentives. On the other hand, coun-
tries with high overall achieved EV shares and high charging point 
density are found to be relatively insensitive to charging infrastructure 
incentives. That is, increasing the incentives for charging infrastructure 
may not always be the most effective means of promoting EV adoption. 
This finding is in agreement with the results of Fang et al. (2020). The 
case of countries that have both low achieved EV sales and low popu-
lation density is also interesting. Due to their low starting values in the 
WOM effect, the EV adoption rates in these countries do not react 

Fig. 6a, b, and 6c. Groups 1, 2, and 3 under different scenarios (from top to bottom, respectively).  
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quickly to charging point provision. 

6. Conclusion, limitations, and future works 

In this paper, we developed a conceptual model of the EV adoption 
process in a country. The central construct in the model is the rate of EV 
adoption, which depends on three factors: (1) The word-of-mouth effect 
that arises from social interaction with adopters, (2) The charging 
infrastructure incentive that the government provides, (3) The relative 
prices of energy sources. We developed a multi-agent-based simulation 
model of the relationship where the actions of the policy maker and the 
adopters affect each other’s choices. We used the simulation model to 
study the effect of charging point provision in different European 
country groups based on population density and existing charging point 
density. 

Our contribution to literature is three-fold. First, we present a novel 
EV adopter decision logic that considers the interacting effects of social 
networks, charging infrastructure availability and relative energy prices. 
Existing studies only show that the number of public charging points 
positively affect the willingness to adopt EVs in European countries; 
however, the role of charging point availability in adopters’ individual 
decision-making process and the underlying interactions have remained 
neglected. Second, by comparing four scenarios, we quantify the effect 
of the government’s charging infrastructure incentive. Third, we came 
up with a number of policy recommendations as presented in Section 5, 
by studying different European country groups based on their popula-
tion density and charging point density. According to the simulation and 
theoretical analysis results, some practical suggestions are drawn:  

(1) Governments of countries with both low level of charging point 
density and high level of population density such as Belgium and 
Malta would benefit the most from the infrastructure provision 
incentives. These governments are suggested to focus on invest-
ment in charging infrastructure in their intervention portfolio. As 
we can see for Norway and UK, it is not surprising that a higher 
level of charging point density and market share of EVs lead to 

the most rapid and earliest EV adoption even under the BAU 
scenario, however, these countries are found to be relatively 
insensitive to charging infrastructure incentives.  

(2) For group 1 countries, such as Hungary, Serbia and Turkey that 
have the lowest overall achieved EV shares and population den-
sity, we conclude that they are relatively less sensitive to charging 
point provision compared to Switzerland, Luxembourg and Italy 
that have medium EV shares and population density. This re-
sembles a “Chicken and Egg” type vicious cycle. The governments 
of these countries are recommended to focus on other incentive 
policies such as developing awareness programs about environ-
mental benefits of EVs, imposing high taxes on ICE vehicles as is 
the case in the Netherlands, Norway and Denmark, and providing 
attractive subsidies to bring the purchase cost of EVs in line with 
ICE alternatives as being done in France and Germany.  

(3) It should be noted that although some countries such as the UK 
have not low density, there is geographically an uneven distri-
bution of charging points within them. Given the importance of 
infrastructure provision, these governments not only need to 
provide charging point infrastructure but also are highly recom-
mended to notice charging point distribution. Our model is 
detailed but remains a simplified representation of the decision 
processes of potential adopters and policy makers in the real 
world. For example, we use the overall “charging point density” 
as a measure; however, the distribution of these charging points 
in a country, that is, whether the charging points are concen-
trated on where they are needed, would also be important. To 
make the model more realistic, one can consider including 
“charging companies” as active agents in the model. Charging 
companies’ price decisions would be an important determinant of 
the rate of EV adoption. In such a model, the government may 
need to decide how to allocate its budget between providing in-
centives to end consumers (adapters) and to charging companies. 
For example, Huang et al. (2021), find that a mix of policies 
including charging facility provision and government subsidies is 
the most effective strategy, where charging facility provision 

Fig. 7a and b. Groups 7 and 9 under different scenarios (upper and lower figures, respectively).  
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accelerates the electrification of vehicles in the market and sub-
sidies lead to consumption stabilization. Another extension is to 
consider a potential EV adopter population that is heterogeneous 
in its environmental sensitivity. In addition, our flexible simula-
tion framework can be employed to address further policy ques-
tions such as the effects of changes in relative energy prices, and 
one can conduct simulation studies with different models of un-
certainty (i.e., the input parameter distributions). 

Despite all developments in the EV front, most motorists still have a 
perceived bias against a non-fossil fuel-powered vehicle (Huang et al., 
2021). To overcome this, in addition to providing incentives, govern-
ments and enterprises may consider guiding consumers’ awareness of 
EVs and pay more attention to the word-of-mouth effect. As a future 
work, it is highly recommended to develop an integrated assessment 
model to link the proposed module to an emission module in order to 
assess different transition pathway and carbon capture policies. Studies 
such as ours can provide guidance for such endeavors. 
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