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a b s t r a c t

Both hydro-dynamically and thermally fully developed laminar heat transfer of non-Newtonian fluids
between fixed parallel plates has been analyzed taking into account the effect of viscous dissipation of the
flowing fluid. Thermal boundary condition considered is that both the plates kept at different constant
heat fluxes. The energy equation, and in turn the Nusselt number, were solved analytically in terms
eywords:
iscous dissipation
ower-law fluid flow

of Brinkman number and power-law index. The findings show that the heat transfer depends on the
power-law index of the flowing fluid. Pseudo-plastic and dilatant fluids manifest themselves differently
in the heat transfer characteristics under the influence of viscous dissipation. Under certain conditions,
the viscous dissipation effects on heat transfer between parallel plates are significant and should not be
usselt number
rinkman number
onstant heat flux

neglected.

. Introduction

Heat transfer with effect of viscous dissipation has been studied
ntensively [1–5], and this effect is frequently encountered in many
pplications such as in material processing and in high speed flows.
owever, the effect of viscous dissipation in non-Newtonian flow
f power-law fluids is comparatively less well-known.

Considering different thermal boundary conditions, simultane-
usly developing steady laminar flow of viscous non-Newtonian
uid flowing between parallel plates was investigated numerically
6]. When the fluid is having high viscosity, the flow is gener-
lly assumed to be dynamically fully developed. This happens in
olymer processing where the high elastic fluids flow under non-

sothermal conditions. The issue of thermal entry problem of pipe
nd channel flow was modeled and solved semi-analytically con-
idering either an imposed wall temperature or a specified wall
eat flux as thermal boundary conditions [7].

For the parallel plates, one plate kept at constant heat flux and
he other plate being insulated, but moving with constant veloc-
ty, the analytical solution was obtained for visco-elastic fluids [8].

iving importance to viscous dissipation, a numerical investigation

s done for the Poiseuille–Couette flow of non-Newtonian fluids
hen one wall is at constant heat flux and the other insulated

9]. Another study [10] was done on heat transfer with effect of
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viscous dissipation for the flow of non-Newtonian fluids through
parallel plates and circular tubes with thermal boundary conditions
of uniform wall temperature. From the point of view of the second
law of thermodynamics, the effect of viscous dissipation of single-
phase non-Newtonian fluids on entropy generation in a circular
microchannel was studied [11]. By considering non-Newtonian
fluid flowing through a channel of heated parallel plates, and tak-
ing into account the effect of viscous dissipation, the second law
was analysed and the temperature and entropy generation were
reported [12]. Effect of viscous dissipation and convective heat
transfer within a non-Newtonian thin liquid film on an unsteady
stretching sheet was discussed [13].

Although numerous studies have been carried out on flow
of power-law fluids with viscous dissipation in parallel plates,
the analytical results for the case of both plates kept at differ-
ent constant heat fluxes have not been reported in the literature.
Hence, the present analytical study is motivated for scrutinizing the
changes entailed in the convection heat transfer characteristics for
power-law fluids due to the incorporation of the effect of viscous
dissipation.

2. Statement of problem and mathematical formulation
Consider a steady laminar flow of a non-Newtonian fluid with
constant properties between fixed infinitely long parallel plates dis-
tanced W or 2w apart, to be fully developed both thermally and
hydro-dynamically. For the thermal boundary conditions, the case
where the upper plate at constant heat flux q1 while the lower plate

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:franciscasheela@hotmail.com
dx.doi.org/10.1016/j.jnnfm.2010.02.023
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Nomenclature

A1–A6 coefficients defined in Eqs. (18), (19), and (26)–(29)
Ac cross-sectional area of channel (m2)
Brq1 modified Brinkman number defined in Eq. (7)
C1–C4 coefficients defined in Eqs. (12)–(15)
cp specific heat at constant pressure (J/kg K)
h convective heat transfer coefficient (W/m2 K)
k thermal conductivity (W/m K)
L width of plate (m)
n power-law index
Nu Nusselt number, defined in Eq. (24)
P pressure (Pa)
q1 upper wall heat flux (W/m2)
q2 lower wall heat flux (W/m2)
T temperature (K)
T0 wall temperature when both walls are kept at the

same constant heat flux (K)
T1 upper wall temperature (K)
T2 lower wall temperature (K)
�T general temperature difference (K)
u velocity (m/s)
U dimensionless velocity
w half-channel height (m)
W channel height (= 2w) (m)
x coordinate in the axial direction (m)
y coordinate in the vertical direction (m)
Y dimensionless vertical coordinate

Greek symbols
˛ thermal diffusivity (m2/s)
ˇ parameter defined in Eq. (7)
� parameter defined in Eq. (9)
� dimensionless temperature
�m mean dimensionless temperature
� consistency factor (pa sn)
� density (kg/m3)
� shear-stress (Pa)

Subscripts
c center-line

a

l
p

�

w
t
t
p
d

a
b
v

u

�(Y) = C1Y + C2Y + C3Y + C4, (11)
e fluids entering
m mean

t different constant heat flux q2, as shown in Fig. 1, is considered.
For non-Newtonian fluids, the rheological behavior of a power-

aw fluid with constant fluid properties in between fixed parallel
lates is described by the shear–stress relationship

= −�
∣∣∣du

dy

∣∣∣n−1 du

dy
, (1)

here � is the shear–stress, � is the consistency factor and du/dy is
he velocity gradient perpendicular to the flow direction. The n is
he power-law index, where the fluid is shear thinning or pseudo-
lastic for 0 < n < 1, Newtonian for n = 1 and shear thickening or
ilatant for n > 1.

When the velocity boundary conditions are u = 0 when y = w
nd y = −w, the maximum velocity, uc, occurs midway (y = 0)
etween the two parallel plates. Following this, the well-known

elocity distribution is given by

= uc

[
1 −

(
y

w

)(n+1)/n
]

(2)
Fig. 1. Notation to the problem.

The energy equation, including the effect of viscous dissipation, is
given by

�cpu
∂T

∂x
= k

∂2T

∂y2
+ �

∣∣∣du

dy

∣∣∣n−1(du

dy

)2

, (3)

where the second term on the right-hand side is the viscous-
dissipative term. In accordance to the assumption of a thermally
fully developed flow with uniformly heated boundary walls, the
longitudinal conduction term is neglected in the energy equation
[14]. Following this, the temperature gradient along the axial direc-
tion is independent of the transverse direction and given as

∂T

∂x
= dT1

dx
= dT2

dx
, (4)

where T1 and T2 are the upper and lower wall temperatures, respec-
tively.

By taking ˛ = k/�cp and substituting Eqs. (2) and (4) into Eq. (3),
it becomes

∂2T

∂y2
= uc

˛

[
1 − y(n+1)/n

w(n+1)/n

]
dT1

dx
− �

˛�cp
un+1

c

(
n + 1

n

)n+1 y(n+1)/n

w(n+1)2/n

(5)

By introducing the non-dimensional quantities

Y = y

W
, and � = T − T1

q1W/k
, (6)

and by letting ˇ, which is simply a dimensionless constant, and
modified Brinkman number Brq1 , respectively, be

ˇ = uckW

˛q1

dT1

dx
and Brq1 = �un+1

c

q1Wn
, (7)

Eq. (5) can be written as

d2�

dY2
= ˇ − �Y (n+1)/n, (8)

where

� = 2(n+1)/n

{
ˇ +

[
2(n + 1)

n

]n+1

Brq1

}
. (9)

The thermal boundary conditions are

k
∂T

∂y
= q1 at y = w, or

∂�

∂Y
= 1 at Y = 1

2
, T = T1 at y = w,

or � = 0 at Y = 1
2

. (10)

The solution of Eq. (8) under the above thermal boundary condi-
tions can be obtained as

(3n+1)/n 2
where

C1 = − �n2

(2n + 1)(3n + 1)
, (12)
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2 = ˇ

2
, (13)

3 = �n(1/2)(n+1)/n + (2n + 1)(2 − ˇ)
2(2n + 1)

, (14)

4 = −�n(1/2)1/n + (3n + 1)(4 − ˇ)
8(3n + 1)

, (15)

To evaluate ˇ in the above equation, a third boundary condition
s required:

k
∂T

∂y
= q2 at y = −w, or

∂�

∂Y
= −q2

q1
at Y = −1

2
. (16)

y substituting Eq. (16) into Eq. (11), ˇ can be expressed as

= A1

(
1 + q2

q1

)
+ A2Brq1 , (17)

ith the coefficients A1 and A2, in terms of n, defined as

1 = 2n + 1

(2n + 1) − 2(2n+1)/nn[(1/2)(3n+1)/n + (−1/2)(3n+1)/n]
, (18)

2 = 2(n2+3n+1)/nn[(n + 1)/n]n+1[(1/2)(3n+1)/n + (−1/2)(3n+1)/n]

(2n + 1) − 2(2n+1)/nn[(1/2)(3n+1)/n + (−1/2)(3n+1)/n]
(19)

In fully developed flow, it is usual to utilize the mean fluid-
emperature, Tm, rather than the center-line temperature, when
efining the Nusselt number. This mean or bulk temperature is
iven by

m =
∫

Ac
�uTdAc∫

Ac
�udAc

, (20)

ith Ac the cross-sectional area of the channel and the denominator
n the right-hand side of Eq. (20) can be written as∫ w

−w

uc

[
1 −

(
y

w

)(n+1)/n
]

dAc = �ucLW

(
3n + 2 + n(−1)1/n

4n + 2

)

(21)

sing Eqs. (2) and (11), the numerator of Eq. (20) can be found.
herefore the dimensionless mean temperature is given by

m = k

q1W
(Tm − T1) (22)

t this point, the convective heat transfer coefficient can be evalu-
ted by the equation

1 = h(T1 − Tm) (23)

efining Nusselt number to be

u = hW

k
= q1W

k(T1 − Tm)
= − 1

�m
, (24)
he Nusselt number can be evaluated and its explicit expression is
iven as

u = A3

A1A5(1 + q2/q1) + (A4 + A2A5)Brq1 + A6
, (25)

Nu = 126[−320(q

6025(q2/q1)2 − 36820(q2/q1) − 142560
id Mech. 165 (2010) 625–630 627

where

A3 = −12(5n + 2)(4n + 1)(3n + 1)[3n + 2 + (−1)1/n], (26)

A4 = 2n
(

n + 1
n

)n

6[n2(4n + 1)(n + 1)(−1)2/n

+n(35n3 + 59n2 + 28n + 4)(−1)(n+1)/n

−(81n4 + 174n3 + 127n2 + 38n + 4)] (27)

A5 = 6n(25n3 + 35n2 + 15n + 2)(−1)1/n + 3n3(4n + 1)(−1)2/n

+222n4 + 427n3 + 286n2 + 80n + 8, (28)

A6 = 6n(100n3 + 105n2 + 36n + 4)(−1)(n+1)/n

−6(220n4 + 343n3 + 192n2 + 46n + 4). (29)

3. Results and discussion

As the general result is too complex, various particular cases
will next be presented in order to reveal the heat transfer charac-
teristics. The values of n selected for discussion are 1/4, 1/2, 1, and
2.

3.1. Cases of unequal heat fluxes

3.1.1. Newtonian fluids
Nusselt number expressed in Eq. (24) characterizes the heat

transfer between the fluid and the upper wall, with the inclusion of
the effect of viscous dissipation. For a Newtonian fluid (n = 1), we
have the established result,

Nu = 70
26 − 9(q2/q1) + 24Brq1

, (30)

agreeing with Ref. [5].

3.1.2. Shear thinning fluids
For the pseudo-plastic fluids (n < 1), when n = 1/4,

Nu = 1
16/39 − 44(q2/q1)/273 + 24711Brq1 /33721

, (31)

and when n = 1/2,

Nu = 1
4/9 − 7(q2/q1)/45 + 56638Brq1 /63061

(32)

As expected, from Eq. (31), at a given ratio of (q2/q1), the graph
(Fig. 2) Nu at n = 1/4 versus Brq1 will form a rectangular hyperbola
on both sides of an asymptote of

Brq1 = −
(

539536
963729

)
+ 1483724(q2/q1)

6746103
(33)

Five sets of curves are shown in Fig. 2, for the heat flux ratios of 0,
1, 5, 10 and 28/11.

The ratio 0 corresponds to the case of insulated lower plate, and
the ratio of unity depicts the case of equal constant heat flux on
both plates. The ratio 28/11 is of interest because the asymptote
lies on the vertical axis.

3.1.3. Shear thickening fluids

For dilatant fluids (n > 1), when n = 2, the real part of Nu is

2/q1) + 3753Brq1 + 976]

Brq1 (q2/q1) + 463968Brq1 + 1102977Br2
q1

+ 57028
(34)
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Fig. 2. Graph of N

he Nu–Brq1 curves for dilatant fluids feature differently from those
or Newtonian and pseudo-plastic fluids. Instead of manifesting as
ectangular hyperbola with asymptotic values of Nu and Brq1 , the
u–Brq1 curves for dilatant fluids appear as non-asymptotic forms,

howing turning points in the variation of Brq1 against Nu.
Table 1 shows the values of the turning points in the varia-

ion of Brq1 against Nusselt number for n = 2 for the specified heat
ux ratios. Moreover, when q2/q1 increases from 0 to 2.45 the
usselt number decreases as Brq1 increases. When q2/q1 = 2.45,

he minimum occurs at (−0.0528, −266.55) and the maximum
ccurs at (−0.0495, 86.235). When q2/q1 increases from 2.451
o 10, there is an increase in Nusselt number as Brq1 increases.

hen q2/q1 = 2.451, the non-asymptotic curve has the minimum
t (−0.0528, −250.25) and the maximum at (−0.0494, 83.5). There-
ore when q2/q1increases from 2.45 to 2.451, the Nusselt number
hanges from decreasing to increasing. It is clear that the value
f the heat flux ratio and the Brinkman number play significant
oles in the heat transfer characteristics for a dilatant fluid with a

ower-law index.

Based on Eq. (34), four sets of curves are shown in Fig. 3, for
he heat flux ratios of 0, 1, 5, and 10, for n = 2. It is observed again
hat the curves are not asymptotic and they have the maximum
nd minimum values for Nu. When q2/q1 = 0, 1, 5, 10, the minimum

able 1
inimum and maximum points when Nu versus Brq1 for various ratios of (q2/q1) at
= 2.

q2/q1 Minimum points Maximum points

Brq1 Nu Brq1 Nu
0 −0.3598 −1.4346 −0.1604 4.2900
1 −0.2331 −2.4522 −0.1165 7.3339
2 −0.1065 −8.4395 −0.0726 25.240
2.25 −0.0748 −21.655 −0.0616 64.994
2.35 −0.0621 −57.933 −0.0572 172.72
2.45 −0.0528 −266.55 −0.0495 86.235
2.451 −0.0528 −250.25 −0.0494 83.500
2.455 −0.0526 −235.29 −0.0489 74.886
2.46 −0.0524 −215.12 −0.0482 67.759
2.48 −0.0515 −145.91 −0.0457 49.115
3 −0.0287 −17.500 0.0202 5.8529
4 0.0152 −6.4994 0.1468 2.1731
5 0.0591 −3.9904 0.2735 1.3344

10 0.2785 −1.3619 0.9067 0.4554
us Brq1 for n = 1/4.

value that Nu takes is −1.4346, −2.4522, −3.9904, −1.3619, respec-
tively, whereas the maximum value that Nu takes is 4.29, 7.3339,
1.3344, 0.2554 respectively.

It is noted that for pseudo-plastic fluids, when n = 1/4 and for
Newtonian fluids when n = 1 the Nusselt number profiles against
Brq1 are asymptotic, and for dilatant fluids, when n = 2 the Nus-
selt number profiles against Brq1 are not asymptotic, but they have
turning points as explained in Table 1.

3.2. Special case of lower plate insulated

For the case of lower plate insulated, q2 = 0, and for Newtonian
fluid, we obtain the established result

Nu = 35
13 + 12Brq1

, (35)

agreeing with Ref. [5].
For the pseudo-plastic fluids, from Fig. 4, for n = 1/4, it is

observed that when Brq1 = −3, −2, −1, the temperature distribu-
tion assumes positive values and it becomes 0 at Y = 0.5. When
Brq1 = 0, 1, 2 and 3, the temperature distribution assumes negative
values and it becomes 0 at Y = 0.5.

For the dilatant fluids, from Fig. 5, for n = 2, the real part of theta
is plotted. It is observed that when Brq1 = −3, −2, −1, the tempera-
ture distribution assumes positive values and it becomes 0 at Y = 0.5.
When Brq1 = 0, 1, 2 and 3, the temperature distribution assumes
negative values and it becomes 0 at Y = 0.5. For n = 1/4,

Nu = 1
16/39 + (24711/33721)Brq1

(36)

From Fig. 2, it is observed that when q2 = 0 at n = 1/4, Nu versus
Brq1 is asymptotic and the asymptote appears at Brq1 = −0.55984.

For n = 1/2,

Nu = 1
4/9 + (56638/63061)Brq1

(37)

For dilatants, at n = 2, the real part of Nu is
Nu = 126(976 + 3753Brq1 )

1102977Br2
q1

+ 463968Brq1 + 57028
, (38)

verifying the findings in Table 1 and Fig. 3.
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Fig. 3. Graph of Nu versus Brq1 for n = 2.

.3. Case of equal heat fluxes

Of particular interest here is the case when both the upper
nd lower plates are of equal heat flux, i.e., q1 = q2. An implicit
xpression was given in [15], but our explicit form, in Eq. (25) with
2/q1 = 1 is ready to be used.

.3.1. Newtonian fluids
For the Newtonian fluid, the Nusselt number is reduced to

u = 70
17 + 24Brq1

= 70
17 + 27Br′

q1

, (39)

here
r′
q1 = �ūn+1

q1wn
, (40)

ith ū the mean velocity of the fluid. The expression of Nu
n Eq. (39) corresponds to the classical problem of Poiseuille

Fig. 4. Graph of �(Y) versus Y for the case of insulated lower plate at n = 1/4.
Fig. 5. Graph of �(Y) versus Y for the case of insulated lower plate at n = 2.

viscous-dissipative Newtonian flow in parallel plate channel. For
verification of the present model, we observe that the Nu − Brq1

correlations in Eq. (39) are identical to those in [4] and [1], respec-
tively, for fully developed flow of Newtonian fluid with isoflux
boundary condition. For the case of no viscous dissipation, Brq1 = 0,
the Nusselt number becomes Nu = 70/17.

3.3.2. Shear thinning fluids
For the pseudo-plastic fluids, when n = 1/4,

Nu = 1
68/273 + (24711/33721)Brq1

, (41)

and when Brq1 = 0, Nu = 273/68.When n = 1/2,

Nu = 1
13/45 + (56638/63061)Brq1

, (42)

and when Brq1 = 0, Nu = 45/13.

3.3.3. Shear thickening fluids
For dilatants, when n = 2, the real part of Nu is,

Nu = 126(656 + 3753Brq1 )

1102977Br2
q1

+ 321408Brq1 + 26233
, (43)

and when Brq1 = 0, Nu = 82656/26233.

4. Conclusions

An explicit expression for Nusselt number has been obtained
for fully developed power-law fluid flow between fixed parallel
plates. The effect of viscous dissipation is found to be of essential
importance in the heat transfer analysis. When both plates are kept
at different constant heat fluxes, the dimensionless temperature
distribution is given by Eq. (11), and the Nusselt number by Eq.
(25), for all n > 0 and they are in terms of Brq1 . When the upper plate
is at constant heat flux and the lower plate insulated, the Nusselt
number is obtained by substituting q2 = 0 in Eq. (25), and selected
results are Eqs. (35)–(38). For the case of equal constant heat fluxes
at both the plates, the Nusselt number is obtained by substituting

q1 = q2 in Eq. (25), and selected results are Eqs. (39), (41)–(43). For
n = 1/4, the Nusselt number distribution against Brq1 is asymptotic,
whereas, for n = 2, Nusselt number distribution against Brq1 is not
asymptotic and maximum and minimum values occur at various
points depending upon the ratio (q2/q1).
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