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A B S T R A C T

Online portfolio selection is a practical problem in financial engineering and quantitative trading. Many
empirical studies show that stock performance in the market is likely to follow mean reversion, and strategies
based on mean reversion show better return performance than the market average. However, the existing
mean reversion strategies are not universal and short selling is not allowed, which is unsuitable for real-time
investment. In this paper, we propose a distributed mean reversion online portfolio strategy through a stock
correlation sub-network to solve these problems. Theoretical analysis shows that our strategy is universal and
the convergence rate is calculated. The empirical results show that our strategy is better than the existing
universal strategies in terms of return performance, nor is it sensitive to transaction cost.
1. Introduction

Portfolio selection is a practical engineering task in finance that
aims to minimize portfolio risk or maximize its return by allocat-
ing wealth in different assets. The research for portfolio strategy can
be divided into two major schools. The first being the traditional
portfolio strategy based on mean–variance (MV) theory (Markowitz,
1952). This static portfolio strategy mainly focuses on single-period
(batch) portfolio selection problems. It measures the expected return
and risk of a portfolio through the mean and variance or covariance
matrix of prices, respectively, and weights the expected return and risk
through utility functions to determine the best portfolio strategy in
the investment period. Recently, MV theory has also been applied in
the multi-period setting (e.g., Marc, 2001). The second is the online
portfolio strategy (OLPS) based on capital growth theory (CGT) (Kelly,
1956). This dynamic portfolio strategy focuses on multi-period or se-
quential portfolio selection problems. It continuously adjusts the wealth
proportion in different assets in each trading period to maximize the
final log-cumulative wealth or log-cumulative wealth growth rate.

Recently, the rise of fintech such as online investment and quantita-
tive trading has stimulated strong investment demand to buy, hold, and
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(W. Zhong).
1 According to the financial engineering team of CITIC Securities, as of Q4, 2021, in securities private placement, the scale of quantitative products is close

to 1,610 billion RMB yuan, accounting for 24.83% of the proportion of private securities products. The total size of the quantitative private equity managers
is estimated to be about 480 billion RMB yuan. Publicly offered quantitative funds reached 294.1 billion RMB yuan, and index funds reached 1.3 trillion RMB
yuan. At the same time, in 2021, the daily trading volume of A-shares frequently exceeded one trillion RMB yuan, and various market entities are estimated to
account for about 20%–30%.

dynamically manage financial products such as funds, stocks, and fu-
tures in online portfolio platforms. The features of dynamically adjusted
assets for OLPS make it a good fit for online investment and it has re-
ceived significant attention from academics and investors.1 Therefore,
how to analyze stock performance and design a more realistic OLPS is
the main purpose in this paper.

In a portfolio selection problem, investors and researchers are
mainly concerned with return and risk. High return is the ultimate
optimization goal of any OLPS, which is different from MV theory.
The creativity of MV theory is that the variance or covariance of
stock prices is first used to quantify the risk analysis, which opens
a new avenue for asset allocation and risk management. With the
development of complex network theory in recent years, traditional
portfolio selection strategies have been strengthened to analyze the
correlation of stock prices. Empirical studies show that a stock market
is a complex network. As such, it is natural to combine MV theory and
complex network theory in the portfolio selection problem. Existing
studies (e.g., Eduard and Jochen (2017), Peralta and Zareei (2016))
have shown that stocks can influence each other and spread risks
among them through a ‘‘correlation network’’. For example, nodes with
higher centrality in a stock correlation network correspond to riskier
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stocks (Peralta & Zareei, 2016). Using the network feature of stocks to
improve the risk measurement of a MV portfolio strategy can improve
the overall return performance of the strategy (Li et al., 2019; Vyrost
et al., 2019).

However, few studies regarding OLPS analyze the correlation of
stocks from the perspective of a stock network. This is because OLPS
based on CGT mainly focuses on maximizing the cumulative wealth
and does not specifically assume which distribution the assets follow.
This makes it difficult for OLPS to analyze the correlation network
between stocks. Moreover, OLPS generally assumes that short selling
is not allowed, which assumption does not consider more realistic
investment needs. Next, we briefly review two representative OLPSs to
further explain the problems discussed above: the ‘‘follow the winner’’
strategy (also known as the universal strategy) and the ‘‘follow the
loser’’ strategy (also known as the mean reversion strategy).

The follow the winner strategy mainly refers to the selection of
‘‘winner’’ assets in the past to determine the portfolio strategy in the
next trading period, and it aims to be a universal strategy (Cover,
1991). A universal strategy can provide investors with a return, and
is a best constant rebalanced portfolio (BCRP) strategy in theory. Thus,
a universal strategy is the first choice for investors in most situations.
However, a universal strategy usually requires that the relative prices of
stocks are independent and active (Cover, 1991) (meaning short selling
is not allowed). Notice that the universal strategy does not take stock
correlation into account and does not satisfy the short selling need of
investors.

Mean reversion strategies are designed based on the mean reversion
feature of stocks (Jegadeesh, 1990). This strategy focuses on predicting
stock returns based on the mean reversion feature of stock performance,
thus a strategy model is constructed. In recent years, researchers have
done a lot of work to improve the stock return prediction ability of
mean reversion strategies (Huang et al., 2016; Li et al., 2015). However,
these works do not deal with the prediction errors (Guo et al., 2021)
and fail to consider the correlations between stocks, which means that
the prediction errors among stocks are uncorrelated. As a result, the
overall prediction errors of stocks in a mean reversion strategy diverge
as the number of trading periods increases, thus the mean reversion
strategy is not universal. Moreover, short selling is also not allowed in
these strategies.

From the above analysis we find that OLPS faces several practical
problems: (1) short selling is not allowed; (2) the relation between
stocks is not considered—existing OLPS usually assume that the relative
prices among stocks are independent and identically distributed, and
they only consider the historical performance of each stock individu-
ally; and (3) the mean reversion strategy is not universal—it cannot
provide the theoretical return guarantee for investors.

In light of the above problems, this paper aims to design a mean
reversion online portfolio strategy that is universal from the perspective
of a stock correlation network. Short selling is allowed in our strategy,
making it more practical. To achieve this goal, we construct a dynamic
stock correlation network to analyze the correlation of stocks and
update our strategy in a distributed approach. In particular, (1) we
analyze the stock correlations and construct a dynamic stock sub-
network using stock centrality. In each trading period, we determine
the updated rules for the next portfolio strategy based on this stock
sub-network structure. (2) We propose a distributed mean reversion
(DMR) strategy and short selling is allowed. The DMR is weighted by
a series of portfolio strategies generated by distributed online trading
machines. Specifically, each trading machine communicates with the
others according to the dynamic stock sub-network structure and up-
dates its next strategy. (3) Theoretical analysis shows that the DMR
strategy is a universal strategy, and the convergence rate of the strategy
is analyzed.

Lastly, we analyze the performance of the DMR and other universal
strategies through empirical experiments. The results show that the
1144

DMR has a better return performance than other universal strategies, t
and that it is less sensitive to the transaction cost and the parameters
of the strategy.

The rest of this paper is organized as follows. Section 2 explains
the basic notations in this paper. Section 3 discusses the literature and
related works. Section 4 provides the strategy model and analyzes the
convergence of the DMR. Section 5 presents empirical results using real
data. Section 6 gives the usage recommendations of the DMR strategy,
as well as areas of future study.

2. Preliminaries

Before we present our work, we first introduce some mathematical
notations. For the following variables in the mathematical context,
lowercase letters denote constants such as 𝑎, and lowercase bold letters
denote vectors such as 𝒙. 𝟏 is an 𝑚-dimensional column vector whose
elements are all 1. Matrices and sets are denoted by capital letters such
s matrix 𝐴 and set 𝛥. 𝒙𝑇 is the transpose of 𝒙, 𝑅𝑚 is the 𝑚-dimensional
uclidean space, 𝑅𝑚

+ is the nonnegative subset of the Euclidean space,
nd 𝒙 ⪯ 𝑎 means each element of 𝒙 is less than 𝑎.

We consider a portfolio that contains 𝑚 stocks and trades for 𝑇 peri-
ds. 𝑉𝑠 = {𝑣1,… , 𝑣𝑚} is the index set of these stocks. In the 𝑘th period,

we denote the closing price vector of stocks as 𝒑(𝑘) = (𝑝1(𝑘),… , 𝑝𝑚(𝑘))𝑇 ,
where 𝑝𝑖(𝑘) is the closing price of stock 𝑣𝑖. The relative price vector
(also called the market vector) is 𝒙(𝑘) = (𝑥1(𝑘),… , 𝑥𝑚(𝑘))𝑇 , where
𝑥𝑖(𝑘) = 𝑝𝑖(𝑘)

𝑝𝑖(𝑘−1)
is the relative price of stock 𝑣𝑖, and 𝑥̄(𝑘) = 1

𝑚𝒙(𝑘)
𝑇 𝟏 is

the mean of 𝒙(𝑘). Denote the portfolio strategy in period 𝑘 as 𝒃(𝑘) =
(𝑏1(𝑘),… , 𝑏𝑚(𝑘))𝑇 . We call 𝒃 a portfolio strategy with short selling not
allowed if 𝒃 ∈ 𝛥1

𝑚 = {𝒃 ∈ 𝑅𝑚
|𝒃𝑇 𝒙1 = 1, 0 ⪯ 𝒃 ⪯ 1}, where 𝛥1

𝑚 is
the feasible set of the portfolio strategy with short selling not allowed.
If 𝒃 ∈ 𝛥2

𝑚 = {𝒃 ∈ 𝑅𝑚
|𝒃𝑇 𝟏 = 1}, then 𝒃 is a portfolio strategy with

short selling allowed. The cumulative wealth at the end of period 𝑘
is 𝑆(𝑘) = 𝑆(0)

∏𝑘
ℎ=1 𝒃(𝑘)

𝑇 𝒙(𝑘), the final cumulative wealth is 𝑆(𝑇 ) =
𝑆(0)

∏𝑇
𝑘=1 𝒃(𝑘)

𝑇 𝒙(𝑘), where 𝑆(0) is the initial capital, and we set 𝑆(0) =
1. 𝒙(𝑖, 𝑗) represents the relative price from period 𝑖 to period 𝑗, that is,
(𝑖, 𝑗) = {𝒙(𝑖),𝒙(𝑖 + 1),… ,𝒙(𝑗)}, and 𝒙ℎ(𝑖, 𝑗) = (𝑥ℎ(𝑖), 𝑥ℎ(𝑖 + 1),… , 𝑥ℎ(𝑗))
s the vector constructed by the ℎth element of all vectors in 𝒙(𝑖, 𝑗). We
enote the projection of a vector 𝒙 on the set 𝛺 as 𝑃𝛺[𝒙], i.e., 𝑃𝛺[𝒙] =
𝑟𝑔𝑚𝑖𝑛𝒚∈𝛺 ∥𝒚 − 𝒙∥2. We use 𝑑𝑖𝑠𝑡(𝒙;𝐵) for the Euclidean distance of
vector 𝒙 from a set 𝐵, i.e., 𝑑𝑖𝑠𝑡(𝒙;𝐵) = min𝒚∈𝐵 ∥𝒚 − 𝒙∥. Denote

𝜕𝑓 (𝒙) as the sub-differential set of function 𝑓 (𝒙) at point 𝒙, that is,
𝑓 (𝒙) = {𝒅 ∈ 𝑅𝑚

|𝒅𝑇 (𝒚−𝒙) ≤ 𝑓 (𝒚)−𝑓 (𝒙),∀𝒚 ∈ 𝑅𝑚}, where 𝑓 is a convex
map from 𝑅𝑚 → 𝑅. ∇𝑓 (𝒙) is the gradient of 𝑓 at point 𝒙. E[𝒛| ] is the
conditional expectation of random variable 𝒛 at 𝜎-algebra  .

In Section 4, we set up multiple trading machines to carry out
the updating rules of the DMR. The structure of the communication
network among the trading machines is determined by the structure of
the stock correlation sub-network. Before we introduce the construc-
tion of the stock correlation sub-network and its dynamic matching
rules with the trading machines, we first give the topological struc-
ture and symbols of the communication network between the trading
machines. Let 𝐺(𝑘) = (𝑉 ,𝐸(𝑘)) be the directed communication net-
work between the 𝑛 trading machines (𝑛 ≤ 𝑚) in the 𝑘th period,

here 𝑉 = {1, 2,… , 𝑛} is the node set of these machines. 𝐸(𝑘) =
(𝑖, 𝑗)|if 𝑗 will send a strategy message to 𝑖, ∀𝑖, 𝑗 ∈ 𝑉 } is the edge set

f 𝐺(𝑘). We set the matrix 𝐴(𝑘) =

{

𝑎𝑖𝑗 (𝑘) > 0, (𝑖, 𝑗) ∈ 𝐸(𝑘)
𝑎𝑖𝑗 (𝑘) = 0, (𝑖, 𝑗) ∉ 𝐸(𝑘)

to be

he weighted adjacency matrix of 𝐺(𝑘). From adjacency matrix 𝐴(𝑘),
e can infer whether communication between machines 𝑖 and 𝑗 exists
𝑎𝑖𝑗 (𝑘), 𝑎𝑗𝑖(𝑘) > 0) and the importance (𝑎𝑖𝑗 (𝑘)) of the strategy message
or each other. If communication between 𝑖 and 𝑗 is bidirectional,
eaning that (𝑖, 𝑗) ∈ 𝐸(𝑘) implies (𝑗, 𝑖) ∈ 𝐸(𝑘), then we call the edge

𝑖, 𝑗) undirected. If all edges in the network 𝐺(𝑘) are undirected, we call

he network 𝐺(𝑘) an undirected network.
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3. Literature review and related work

In this section, we introduce relevant research, including online
portfolio strategies and complex networks of stocks. In addition, the
DMR uses a distributed strategy update framework, therefore, the
distributed optimization algorithm is also briefly introduced.

3.1. Online portfolio strategies

We first introduce a few common benchmark strategies, and then
introduce four main OLPSs: ‘‘follow the winner’’, ‘‘follow the loser’’,
‘‘pattern matching’’, and ‘‘meta learning’’. Li and Steven’s (2014) survey
is a good reference for more information about OLPS.

3.1.1. Benchmarks
Buy and hold (BAH): The BAH strategy is a common investment

strategy which allocates the initial capital 𝑆(0) to 𝑚 stocks in the initial
trading period, and it does not adjust in the subsequent trading periods,
i.e., 𝒃(0) = (𝑎1,… , 𝑎𝑚), where 𝑎𝑖 is the share of asset 𝑣𝑖 in initial capital
𝑆(0) and ∑𝑚

𝑖=1 𝑎𝑖 = 𝑆(0). A special BAH strategy is the uniform buy
and hold (UBAH) strategy, also known as the market strategy. The
UBAH strategy allocates the initial capital 𝑆(0) equally among all assets,
i.e., 𝒃(0) = ( 1𝑚𝑆(0),… , 1

𝑚𝑆(0)).
Best stock: This off-line strategy assumes that the market vector

{𝒙(𝑡)}𝑇𝑡=1 is known at the beginning. The strategy puts all initial capital
𝑆(0) into one stock that can achieve the maximum final cumulative
return, i.e., 𝒃(0) = 𝒆𝑖, where 𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,…,𝑚

∏𝑇
𝑡=1 𝑥𝑖(𝑡), and 𝒆𝑖 is a

ector whose 𝑖th element is 1 and the rest of the elements are 0s.
Constant rebalanced portfolio (CRP): The CRP strategy can be re-

arded as a dynamic BAH strategy and determines the initial shares of
ssets as (𝑎1,… , 𝑎𝑚), and adjusts the asset holding in subsequent trading
eriods according to the initial shares, that is, 𝒃(𝑡) = (𝑎1,… , 𝑎𝑚), 𝑡 =
, 2,… , 𝑇 , where 𝑎1,… , 𝑎𝑚 are constants satisfying 𝑎𝑖 ≥ 0,

∑𝑚
𝑖=1 𝑎𝑖 =

(0).
Best constant rebalanced portfolio (BCRP): The BCRP strategy is

posterior optimal CRP strategy often used for theoretical analy-
is. BCRP assumes that the market vector {𝒙(𝑡)}𝑇𝑡=1 is known in ad-
ance, and then it maximizes the final cumulative wealth, i.e., 𝒃(𝑡) =
𝑟𝑔𝑚𝑎𝑥𝒃∈𝛥1𝑚

∏𝑇
𝑘=1 𝒃

𝑇 𝒙(𝑘), 𝑡 = 1,… , 𝑇 . Denoting 𝐵∗ = {𝒃|𝒃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒃∈𝛥1𝑚
𝑇
𝑘=1 𝒃

𝑇 𝒙(𝑘)}, we know that ∀𝒃∗ ∈ 𝐵∗ is a feasible BCRP strategy. For
given relative price sequence {𝒙(1),… ,𝒙(𝑇 ),…}, if we assume that

he assets in the portfolio will not retreat and crash, then the set 𝐵∗ is
bviously non-empty. Cover (1991) proved that in an independent and
dentically distributed (i.i.d.) stock market (i.e., {𝒙(𝑡)}+∞𝑡=1 is i.i.d.), the
inal cumulative wealth 𝑆(𝑇 )∗ =

∏𝑇
𝑡=1 𝒃

∗𝑇 𝒙(𝑡) of BCRP is theoretically
no lower than that of any BAH, best stock, or CRP strategies.

Universal strategy: For an OLPS {𝒃(𝑡)}𝑇𝑡=1, if its log-cumulative
wealth growth rate 1

𝑇 ln𝑆(𝑇 ) can asymptotically converge to that of
a BCRP strategy with the increase of trading period 𝑇 , i.e.,
1
𝑇

[

ln𝑆(𝑇 )∗ − ln𝑆(𝑇 )
]

→ 0 (𝑇 → +∞),

hen the strategy is universal. A universal strategy can theoretically
rovide investors with a lower bound of cumulative returns, namely
(𝑇 )∗. Being universal is important to measure the performance of
LPS in theory.

.1.2. Follow the winner
The basic idea of the follow the winner strategy is to increase the

eights of good stocks (high returns). Cover (1991) proposed the rep-
esentative universal portfolio (UP) strategy, which laid the theoretical
oundation for the above property. The UP strategy traverses all the
easible strategies in 𝛥1

𝑚 and weights these strategies according to their
urrent cumulative wealth to obtain the next portfolio strategy. The
trategy update rules of UP are as follows:

(𝑡 + 1) =
∫𝛥1𝑚 𝒃𝑆(𝑡)𝑑𝒃

, 𝒃(0) = ( 1
𝑚
,… , 1

𝑚
)𝑇 .
1145

∫𝛥1𝑚 𝑆(𝑡)𝑑𝒃
Note that the UP strategy is defined without making any assumptions
about the distribution of the asset prices, see Cover (1991). Later, Cover
and Ordentlich (2006) introduced side information into the framework
of UP, Kalai and Vempala (2002) improved the computation method of
UP and reduced its computation time.

Helmbold et al. (1998) introduced the relative entropy measure
𝐷𝑅𝐸 (𝒃(𝑡 + 1)∥𝒃(𝑡)) as a penalty term for the maximum expected re-
urn and proposed the exponential gradient (EG) strategy, which is
niversal. The strategy of EG is:

(𝑡 + 1) = arg max
𝒃∈𝛥2𝑚

𝜂 ln 𝒃(𝑡 + 1)𝑇 𝒙(𝑡) −𝐷𝑅𝐸 (𝒃(𝑡 + 1)∥𝒃(𝑡)),

here 𝜂 > 0 is a learning rate, 𝐷𝑅𝐸 (𝒃(𝑡+1)∥𝒃(𝑡)) =
∑𝑚

𝑖=1 𝑏𝑖(𝑡+1) log
𝑏𝑖(𝑡+1)
𝑏𝑖(𝑡)

.
Solving this optimization problem, we can obtain the strategy update
rule of EG as follows:

𝑏𝑖(𝑡 + 1) =
𝑏𝑖(𝑡) exp

(

𝜂𝑥𝑖(𝑡)∕𝒃(𝑡)𝑇 𝒙(𝑡)
)

∑𝑚
𝑗=1 𝑏𝑗 (𝑡) exp

(

𝜂𝑥𝑗 (𝑡)∕𝒃𝑇 (𝑡)𝒙(𝑡)
)
.

Yang, He, et al. (2019) introduced side information into the frame-
ork of EG and proposed the EG with side-information (EGS) strategy,
hich has better performance than the EG strategy in terms of return.
he strategy is:

𝑖(𝑡 + 1)|𝑦𝑡+1 =
𝑏𝑖(𝑠𝑡+1) exp

(

𝜂|𝑦𝑡+1𝑥𝑖(𝑠𝑡+1)∕𝒃(𝑠𝑡+1)
𝑇 𝒙(𝑠𝑡+1)

)

∑𝑚
𝑗=1 𝑏𝑗 (𝑠𝑡+1) exp

(

𝜂|𝑦𝑡+1𝑥𝑗 (𝑠𝑡+1)∕𝒃
𝑇 (𝑠𝑡+1)𝒙(𝑠𝑡+1)

) ,

here 𝑦𝑡+1 is the side information in period 𝑡+1 and 𝜂|𝑦𝑡+1 is the learning
ate determined by 𝑦𝑡+1, 𝑠𝑡+1 = max{𝜏 ∶ 𝜏 ≤ 𝑡, 𝑡𝜏 = 𝑦𝑡+1}. If 𝑠𝑡+1 is empty,
hen 𝑏𝑖(𝑡 + 1)|𝑦𝑡+1 = 1

𝑚 .

3.1.3. Follow the loser
The follow the loser strategy, also known as the mean reversion

strategy, holds that the performance of a stock in the market follows
the mean reversion features (Jegadeesh, 1990; Poterba & Summers,
1988), that is, stocks which perform poorly/better in the current or past
period will perform better/worse in the next period. Investors can profit
by increasing capital to worse stocks and decreasing capital to better
stocks. From the existing research results on mean reversion, stock
‘‘performance’’ is mainly defined from the stock relative prices, and the
measure of stock ‘‘performance’’ can be divided into single-period stock
performance and multi-period stock performance.

Borodin et al. (2004) considered the multi-period mean reversion
features from the growth rate of stocks (measured by the product
of relative prices during a window) and proposed an anti-correlation
(Anticor) strategy. Anticor assumes that the growth rate of any two
stocks have a positive correlation in two consecutive time windows
and each stock follows the mean reversion at the same time, that is,
the inter-temporal growth rate of the two stocks rises or falls together
and the growth rate of each stock reverses. Li et al. (2012) assumed
that stock relative price follows single period mean reversion and
proposed a passive aggressive mean reversion (PAMR) strategy. The
PAMR strategy determines whether to buy or sell a stock in the next
period by observing whether the stock’s single-period return exceeds
a predetermined mean reversion threshold 𝜀. The PAMR strategy is as
follows:

𝒃(𝑡 + 1) = arg min
𝒃∈𝛥1𝑚

1
2
∥𝒃 − 𝒃(𝑡)∥2 𝑠.𝑡. 𝑙𝜀(𝒃;𝒙(𝑡)) = 0,

here 𝑙𝜀(𝒃;𝒙(𝑡)) = max{0, 𝒃(𝑡)𝑇 𝒙(𝑡) − 𝜀}. Solving this optimization
roblem, we can obtain the update rule of PAMR:

(𝑡 + 1) = 𝒃(𝑡) − 𝜆(𝑡) (𝒙(𝑡) − 𝒙̄(𝑡)𝟏) ,

here 𝜆(𝑡) = max{0, 𝒃𝑇 𝒙(𝑡)−𝜀
∥𝒙(𝑡)−𝑥̄(𝑡)𝟏∥2

}. Gao and Zhang (2013) improved
the threshold function 𝑙𝜀(𝒃;𝒙(𝑡)) of PAMR and proposed the weighted
moving average mean reversion (WMAMR) strategy.
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However, the single-period mean reversion strategy only uses the
stock information from a single trading period, which makes its final
cumulative wealth fluctuate greatly and be far lower than that of the
market strategy (Li et al., 2012) in some markets with insufficient mean
reversion features. Li et al. (2015) assumed that the stock relative prices
follow multi-period mean reversion and proposed the online moving
average reversion (OLMAR) strategy. OLMAR captures the mean rever-
sion feature from multiple historical trading periods and contains two
methods to predict the next relative price 𝒙̃(𝑡 + 1): the sample moving
average (SMA) method based on 𝑤 historical data and the exponential
moving average (EMA) method based on the entire historical trading
period.

The OLMAR strategy is:

𝒃(𝑡 + 1) = arg min
𝒃∈𝛥1𝑚

1
2
∥𝒃 − 𝒃(𝑡)∥2 𝑠.𝑡. 𝒃𝑇 𝒙̃(𝑡 + 1) ≥ 𝜀.

Huang et al. (2016) introduced the 𝐿1-median to improve the
robustness of the stock price prediction of OLMAR and proposed the
robust median reversion (RMR) strategy. Lai et al. (2020) adopted an
independent weight factor for each stock to improve the stock price
prediction ability of OLMAR and proposed the reweighted price relative
tracking (RPRT) strategy. Guo et al. (2021) proposed an adaptive
online moving average method (AOLMA) to improve the accuracy
of the return prediction of OLMAR. Li et al. (2018) optimized the
transaction cost constraints of PAMR and OLMAR (by using a more
realistic transaction cost calculation method) and proposed the trans-
action cost optimization (TCO) strategy. The empirical study shows
that the multi-period mean reversion strategies can better capture the
mean reversion feature of stocks, and its comprehensive performance in
different markets is better than that of the single-period mean reversion
strategy.

3.1.4. Pattern matching
The pattern matching strategy is different from the above two

strategies. It filters the historical data, similar to the recent stock perfor-
mance from the stock relative prices in the current trading period, and
maximizes the utility function on each filtered historical relative price
sequence of the stocks to generate the ‘‘experts’’ (the optimal strategies
for maximizing the utility function). According to the performance of
each expert, the strategy integrates them in a non-parametric form
to determine the next portfolio strategy. The execution process of the
pattern matching strategy can be divided into three parts: (1) compute
the historical similarity set 𝐶(𝜀), where 𝜀 is the threshold of similarity;
(2) maximize the utility function 𝑈 (𝒃, 𝐶(𝜀)) on the similarity set 𝐶(𝜀)
to obtain the corresponding experts 𝒃(𝜀); and (3) combine experts with
different parameter values non-parametrically. The pattern matching
strategy tries to maximize its expected log return in terms of 𝐶(𝜀),
which is consistent with CGT and results in an optimal fixed fraction
portfolio.2 Thus, this strategy is universal in theory.

3.1.5. Meta learning
The meta learning strategy takes several basic OLPSs as the experts

and weights them to generate the next portfolio strategy. The experts
selected can be any one of the above three types of strategy. The ag-
gregation algorithm first proposed by Vovk and Watkins (1998) solved
the problem of integrating multiple experts and generalized the worst-
case bound of 𝑈𝑃 . Das and Banerjee (2011) and Agarwal et al. (2006)
proposed the online gradient update (OGU) strategy and online New-
ton update (ONU) strategy, respectively. Hazan and Seshadhri (2009)
proposed the follow the leader history (FLH) strategy, where a group of
foundation experts are constantly updated from a different start point
in history and make a forecast of future prices. He and Yang (2020)

2 It is worth noting that, the BCRP strategy is a special CGT optimal in an
i.i.d. market.
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Fig. 1. An illustration of a stock correlation network.

proved that the aggregation strategy of multiple universal strategies is
still universal if we use the weak aggregation algorithm to deal with
the weight problem between experts. Yang et al. (2022) considered
a number of EG strategies in different parameter 𝜂 as experts and
proposed the weak aggregating exponential gradient (WAEG) strategy,
which uses the weak aggregate algorithm to aggregate the experts’
advice in each period. The WAEG strategy is:

𝒃(𝑡 + 1) =
𝑘
∑

𝜂∈𝐻
𝒃𝜂(𝑡 + 1)𝑤𝜂(𝑡 + 1),

where 𝑏𝜂𝑖 (𝑡+1) =
𝑏𝜂𝑖 (𝑡) exp(𝜂⋅𝑥𝑖(𝑡)∕𝒃

𝜂 (𝑡)𝑇 𝒙(𝑡))
∑𝑚

𝑖=1 𝑏
𝜂
𝑖 (𝑡) exp(𝜂⋅𝑥𝑖(𝑡)∕𝒃

𝜂 (𝑡)𝑇 𝒙(𝑡))
is the 𝑖th element of 𝒃𝜂(𝑡+1),

𝑤𝜂(𝑡 + 1) is the aggregation weight generated by the weak aggregation
algorithm, and 𝐻 is the parameter set. They theoretically proved that
the WAEG strategy is universal. Zhang et al. (2022) proposed a moving-
window-based adaptive exponential gradient (MAEG) strategy which
is suitable for nonstationary financial data sets. They set a number of
strategies EG(𝜂) (EG with learning rate 𝜂) as experts and calculated the
cumulative return of all the experts during period [𝑡 − 𝑤 + 1, 𝑡] to find
the best expert. Then, they used the 𝜂∗ which corresponds to the best
expert to formulate the next portfolio. The strategy is:

𝑏𝑖(𝑡 + 1) =
𝑏𝑖(𝑡) exp

(

𝜂𝑡+1(𝑤)𝑥𝑖(𝑡)∕𝒃(𝑡)𝑇 𝒙(𝑡)
)

∑𝑚
𝑗=1 𝑏𝑗 (𝑡) exp

(

𝜂𝑡+1(𝑤)𝑥𝑗 (𝑡)∕𝒃𝑇 (𝑡)𝒙(𝑡)
)
,

where 𝜂𝑡+1(𝑤) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜂∈𝐻𝑆(𝑡, 𝐸𝐺(𝜂)) −𝑆(𝑡−𝑤+1, 𝐸𝐺(𝜂)), 𝑆(𝑡, 𝐸𝐺(𝜂))
means the cumulative wealth in period 𝑡 of the EG(𝜂) strategy, and 𝐻
is the parameter set. Additional meta learning strategies can be found
in Akcoglu et al. (2005, 2020).

3.2. Complex network of stocks

A complex network is a way to study the complex relationships of
a system based on nodes and edges. It is widely used in automatic con-
trol (Ram et al., 2010), financial analysis (Battiston et al., 2016), and so
on. Stock correlation network research is the most intuitive application
of complex networks in finance, where the relevant literature accounts
for a large proportion of financial network research and scholars use
complex network theory in the innovative interpretation of various
financial phenomena. In recent years, many scholars have applied
complex network theory in the field of portfolio selection. By analyzing
the characteristics of a stock correlation network, they have carried
out stock optimization and portfolio model improvement. Analysis of
the characteristics of a stock correlation network is mainly divided into
two steps: (1) construction of the stock correlation network, where the
correlations of stocks are described by the correlations between the
returns of stocks; and (2) analysis of the stock correlation network.
Therefore, we introduce some basic concepts and characteristics about
stock correlation networks.

(1) Construction of a stock correlation network
As shown in Fig. 1, the stock correlation network considers each

stock as a node, and uses the correlations between stock returns to mea-
sure the mutual influence between the nodes. The correlations between
stocks represent the degrees of mutual influence between the nodes.
Assume that the stock correlation network of 𝑚 stocks from 𝑉𝑠 in period
𝑘 is 𝐺 (𝑘) = (𝑉 ,𝐸 (𝑘)), where the edge set is 𝐸 (𝑘) = {(𝑣 , 𝑣 )|𝑣 , 𝑣 ∈
𝑠 𝑠 𝑠 𝑠 𝑖 𝑗 𝑖 𝑗
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𝑉𝑠}. Edge (𝑣𝑖, 𝑣𝑗 ) means that the performance of stock 𝑣𝑗 will influence
that of stock 𝑣𝑖. The weighted adjacency matrix of network 𝐺𝑠(𝑘) is

𝑆(𝑘) =
⎡

⎢

⎢

⎣

𝑠11(𝑘) ⋯ 𝑠1𝑚(𝑘)
⋮ ⋱ ⋮

𝑠𝑚1(𝑘) ⋯ 𝑠𝑚𝑚(𝑘)

⎤

⎥

⎥

⎦

, where 𝑠𝑖𝑗 (𝑘) is the weight of edge (𝑣𝑖, 𝑣𝑗 )

which equals the correlation between stocks 𝑣𝑖 and 𝑣𝑗 . Assume the
return series of stocks 𝑣𝑖 and 𝑣𝑗 are 𝒙 and 𝒚, respectively. Next, we
introduce several measurements of the correlation between vectors 𝒙
and 𝒚.

Pearson correlation: This correlation describes the linear correlation
between them, and the correlation is applicable to the case that 𝒙 and
𝒚 follow normal or unimodal distributions. The Pearson correlation is
calculated as 𝐶𝑜𝑣(𝒙,𝒚)

𝜎𝒙⋅𝜎𝒚
, where 𝜎𝒙 and 𝜎𝒚 are the standard derivations of

𝒙 and 𝒚.
Spearman correlation: This correlation also describes the linear

correlation between 𝒙 and 𝒚, but it does not require the overall distri-
bution and size of data samples. The Spearman correlation is calculated
as (𝒙−𝜇𝒙)𝑇 (𝒚−𝜇𝒚 )

∥𝒙−𝜇𝒙∥∥𝒚−𝜇𝒚∥
, where 𝑥ℎ and 𝑦ℎ are the ℎth elements of 𝒙 and

𝒚, respectively, and 𝜇𝒙 and 𝜇𝒚 are the mean vectors of 𝒙 and 𝒚,
respectively.

Partial correlation: This correlation measures the correlation be-
tween 𝒙 and 𝒚 when the influence of common factors is removed. As-
sume that vector 𝒐 is taken as the common factor, the partial correlation
is defined as 𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝒙𝒚−𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝒙𝒐⋅𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝒚𝒐

√

(1−𝑃𝑒𝑎𝑟𝑠𝑜𝑛2𝒙𝒐)(1−𝑃𝑒𝑎𝑟𝑠𝑜𝑛2𝒚𝒐)
, where the symbol 𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝒙𝒚

denotes the Pearson correlation of 𝒙 and 𝒚, and the other symbols have
similar meanings.

Mutual information: The mutual information is calculated as
∑

𝒙,𝒚 𝑝(𝒙, 𝒚) log
𝑝(𝒙,𝒚)

𝑝𝑿 (𝒙)𝑝𝒀 (𝒚)
, and it measures the amount of information

shared between returns and ranges in [0,+∞), where 𝑝𝑿 (𝒙) and 𝑝𝒀 (𝒚)
are the marginal probabilities of 𝒙 and 𝒚, respectively. 𝑝(𝒙, 𝒚) is the
joint probability of 𝒙 and 𝒚.

The correlation coefficients presented above can characterize the
correlations between nodes, but if the correlation coefficients are too
small, they will somehow degrade the correlation properties of the
network and are considered noise that needs to be eliminated. In
addition, the correlations are usually non-zero. If the correlations are
not filtered, the stock network is a fully connected network (any two
nodes are correlated), which also will increase the noise of the network
and reduce the effectiveness of the network structure. Therefore, after
determining the measurements of stock correlations, we usually need
to use certain noise filtering methods (e.g., a minimum spanning tree
(MST) (Mantegna, 1999), planar maximum filter graph (PMFG) (Tum-
minello et al., 2005), or threshold (Billo et al., 2012)) to filter the noise
in the correlations and thus determine the edge weights to construct the
stock network. We will not discuss these in detail here.

(2) Analysis of a stock correlation network
Analyzing the characteristics of a stock correlation network can help

us understand the relationship or influence between stocks. Based on
existing work, we introduce several common centrality characteristics
of a stock network: degree centrality, between centrality, closeness
centrality, and eigenvector centrality. However, clustering coefficient,
modularity, and other network characteristics (Nanda & Panda, 2014;
Pai & Michel, 2009; Tola et al., 2008) will not be discussed here.

Degree centrality 𝐷𝐶𝑣𝑖 : 𝐷𝐶𝑣𝑖 is the degree of stock 𝑣𝑖 in the
stock correlation network, i.e., 𝐷𝐶𝑣𝑖 =

∑

𝑣𝑗≠𝑣𝑖 𝐼𝑣𝑖𝑣𝑗 , where 𝐼𝑣𝑖𝑣𝑗 =
{

0, (𝑣𝑖, 𝑣𝑗 ) ∉ 𝐸𝑠(𝑘)
1, (𝑣𝑖, 𝑣𝑗 ) ∈ 𝐸𝑠(𝑘)

is the weighted adjacency matrix of the correla-

tion network. (This is the counterpart of the weighted adjacency matrix
𝑆(𝑘).) A high 𝐷𝐶𝑣𝑖 means a strong association between stock 𝑣𝑖 and
other stocks, which can reflect the influence of the stock in the whole
network.

Between centrality 𝐵𝐶𝑣𝑖 : 𝐵𝐶𝑣𝑖 =
∑

𝑣𝑘≠𝑣𝑖 ,𝑣𝑘≠𝑣𝑗

𝑙𝑣𝑘𝑣𝑗 (𝑣𝑖)

𝑙𝑣𝑘𝑣𝑗
, where 𝑙𝑣𝑘𝑣𝑗 is

the number of the shortest path from 𝑣𝑘 to 𝑣𝑗 , 𝑙𝑣𝑘𝑣𝑗 (𝑣𝑖) is the number
of the shortest path from 𝑣 to 𝑣 through 𝑣 .
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Fig. 2. Multi-agent system with its optimization objective and communication network.

Closeness centrality 𝐶𝐶𝑣𝑖 : 𝐶𝐶𝑣𝑖 counts the sum of the distances of
stock 𝑣𝑖 to other stocks in the network, i.e., 𝐶𝐶𝑣𝑖 = 1

∑

𝑣𝑗≠𝑣𝑖 𝑙𝑣𝑖𝑣𝑗
. A big

𝐶𝐶𝑣𝑖 means a small overall distance between stock 𝑣𝑖 and other stocks,
which can also reflect the centrality of stock 𝑣𝑖 in the network.

Eigenvector centrality 𝐸𝐶𝑣𝑖 : 𝐸𝐶𝑣𝑖 = 𝜆−1(𝑘)
∑

𝑗≠𝑖 𝑠𝑖𝑗 (𝑘)𝐸𝐶𝑣𝑗 , where
𝜆(𝑘) is the largest eigenvalue of 𝑆(𝑘) and (𝐸𝐶𝑣𝑖 ){𝑣1 ,…,𝑣𝑚} is the eigen-
vector corresponding to 𝜆(𝑘).

At present, numerous studies have discussed how to use the above
stock centralities to comprehensively analyze stock performance. Li
et al. (2019) used the above four network centralities to filter stocks
and found that the stock portfolio with high centrality is more likely
to diversify risk and improve yields. This means we can filter the
stocks through the network centralities. Heiberger (2014) found that
the network of the S&P500 index has a more centralized topology
during crisis periods. In addition, a number of studies have looked at
the topological characteristics of stock markets from the perspective of
network centrality theory. For example, Wang et al. (2020) found that
there is a weak momentum effect and a strong reversion effect in the
Chinese stock market.

3.3. Distributed optimization for a multi-agent system

Distributed optimization is important in multi-agent system opti-
mization. It is gradually replacing traditional centralized optimization
and is widely used in big data cloud computing, distributed collab-
orative control, and logistics deployment. A multi-agent system is
composed of intelligent agents with certain computing, communication,
and sensing capabilities connected through a communication network
(Fig. 2). Without a loss of generality, we can assume that the agent
and its communication network are the 𝑛 trading machines in 𝑉 and
the communication network 𝐺(𝑘) = (𝑉 ,𝐸(𝑘)) that we set up in the
preliminaries, respectively. Each machine in the system has a local
cost function 𝑓𝑖(𝒙) known only by itself and a set of local constraints
𝑋𝑖. The global objective function is 𝑓 (𝒙) =

∑𝑛
𝑖=1 𝑓𝑖(𝒙) and the overall

constraint set is 𝑋 = ∩𝑛
𝑖=1𝑋𝑖. Each machine 𝑖 can exchange information

(e.g., a locally computed state) with others through the communication
network 𝐺(𝑘) in time 𝑘.

In the research, optimization algorithms solving multi-agent systems
are mainly centralized. A central agent processes and distributes the
information of each component, guides other agents to update and iter-
ate the algorithm, and finally minimizes the overall objective function
together. For example, if the overall optimization goal of the multi-
agent system is to minimize a convex function 𝑓 (𝒙), then the common
gradient descent method 𝒙(𝑘 + 1) = 𝒙(𝑘) − 𝛼∇𝑓 (𝒙(𝑘)) is a special
centralized optimization algorithm with 𝑛 = 1 (Fig. 3(a)).

However, a centralized algorithm creates a series of practical prob-
lems, such as low utilization rates of agents’ computing power, a high
requirement of the central agent’s computing power, long running
times, and the failure of the central agent being equal to the failure of
the whole system. To solve these problems, the optimization algorithms
of multi-agent systems are gradually transitioning into distributed al-
gorithms. Distributed algorithms do not need a central agent that is
responsible for unified scheduling. Each agent updates its state only
according to its own objective function and minimizes the objective
function jointly and consistently (Fig. 3(b)). For more details on dis-
tributed optimization, please refer to the research review by Yang, Yi,
et al. (2019).
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Fig. 3. The centralized gradient descent approach versus the distributed gradient
descent approach.

4. Model setup

To solve the problems mentioned in the introduction, in this section,
we construct our DMR strategy model. We first present the construction
process of the dynamic stock correlation sub-network and combine it
with the distributed algorithm. Then, we propose our DMR strategy to
maximize the final cumulative wealth. Finally, we analyze the DMR
strategy in terms of the theoretical and empirical aspects. Specifically,
we discuss the following:

(1) In Section 4.1, we discuss how to measure and filter the corre-
lations between stocks and how to build the dynamic stock correlation
network in each trading period. Furthermore, the most influential
stocks are selected to construct a stock correlation sub-network to
represent the overall correlation of the stocks.

(2) In Section 4.2, under the assumption of short-term mean rever-
sion and with short selling allowed, we explain how to construct the
distributed optimal model of DMR by using a dynamic stock correlation
sub-network and how to maximize the final cumulative wealth of the
portfolio.

(3) In Section 4.3, we explain how to analyze the universal property
of DMR and its theoretical convergence rate. The empirical results are
presented in Section 5.

4.1. Dynamic stock correlation sub-network for trading machines

Existing studies show that the nodes with higher centralities cor-
respond to riskier stocks (Peralta & Zareei, 2016) and that high risk
may come with high expected returns. This means we can focus on the
stocks with high centralities and represent the entire correlation of the
portfolio by these stocks in each trading period. Here, we introduce the
construction process of our dynamic stock correlation sub-network.

(1) In the 𝑘th trading period, for any two stocks 𝑣𝑖 and 𝑣𝑗 , we use
the Pearson correlation of stock relative prices 𝒙𝑖(𝑘 − 𝑤 + 1, 𝑘) and
𝒙𝑗 (𝑘 −𝑤 + 1, 𝑘) to measure the correlation 𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝑣𝑖𝑣𝑗 of stocks 𝑣𝑖 and
𝑣𝑗 , i.e., 𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝑣𝑖𝑣𝑗 = 𝐶𝑜𝑣(𝒙𝑖(𝑘−𝑤+1,𝑘),𝒙𝑗 (𝑘−𝑤+1,𝑘))

𝜎𝒙𝑖 (𝑘−𝑤+1,𝑘)⋅𝜎𝒙𝑗 (𝑘−𝑤+1,𝑘)
, where 𝑤 is the preset

length of the historical window period.
(2) We use the threshold 𝜂𝑘 = 0 to filter the edge (𝑣𝑖, 𝑣𝑗 ) corre-

sponding to 𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝑣𝑖𝑣𝑗 ≤ 𝜂𝑘 and construct the initial stock correla-
tion network 𝐺𝑠(𝑘) = (𝑉𝑠, 𝐸𝑠(𝑘)), where the stock edge set 𝐸𝑠(𝑘) =
{(𝑣𝑖, 𝑣𝑗 )|if 𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝑣𝑖𝑣𝑗 > 𝜂𝑘, 𝑣𝑖, 𝑣𝑗 ∈ 𝑉𝑠}. Denoting the adjacency ma-

trix of 𝐺𝑠(𝑘) as 𝑆(𝑘) =
⎡

⎢

⎢

⎣

𝑠11(𝑘) ⋯ 𝑠1𝑚(𝑘)
⋮ ⋱ ⋮

𝑠𝑚1(𝑘) ⋯ 𝑠𝑚𝑚(𝑘)

⎤

⎥

⎥

⎦

, we know 𝑠𝑖𝑗 (𝑘) =

max{𝜂𝑘𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝑣𝑖𝑣𝑗 }.
(3) We calculate the 𝐷𝐶𝑣𝑖 (𝑘) of each stock 𝑣𝑖, sort the 𝑚 stock nodes

in descending order according to 𝐷𝐶𝑣𝑖 (𝑘), and filter the top 𝑛 stock
nodes. Without a loss of generality, we can arrange these 𝑛 points in
descending order according to their centralities and assume that they
form the top 𝑛 node set 𝑉 (𝑘) = {𝑣 (𝑘),… , 𝑣 (𝑘)}. Let the machines
1148

𝑡𝑜𝑝 1 𝑛
in 𝑉 inherit the stock network structure in 𝑉𝑡𝑜𝑝(𝑘) as their commu-
nication network structure 𝐸(𝑘), i.e., 𝐸(𝑘) = {(𝑖, 𝑗)|(𝑣𝑖(𝑘), 𝑣𝑗 (𝑘)) ∈
𝐸𝑠(𝑘), 𝑣𝑖(𝑘), 𝑣𝑗 (𝑘) ∈ 𝑉𝑡𝑜𝑝(𝑘)}.

(4) According to 𝑆(𝑘) and the definition of 𝐸(𝑘), we know that

the weighted adjacency matrix of 𝐸(𝑘) now is
⎡

⎢

⎢

⎣

𝑠11(𝑘) ⋯ 𝑠1𝑛(𝑘)
⋮ ⋱ ⋮

𝑠𝑛1(𝑘) ⋯ 𝑠𝑛𝑛(𝑘)

⎤

⎥

⎥

⎦

.

We scale it to be a doubly stochastic matrix3 and denote it as 𝐴(𝑘) =
⎡

⎢

⎢

⎣

𝑎11(𝑘) ⋯ 𝑎1𝑛(𝑘)
⋮ ⋱ ⋮

𝑎𝑛1(𝑘) ⋯ 𝑎𝑛𝑛(𝑘)

⎤

⎥

⎥

⎦

.4 Finally, we treat 𝐴(𝑘) as the weighted adjacency

matrix of 𝐸(𝑘) and obtain the final stock correlation sub-network
𝐺(𝑘) = (𝑉 ,𝐸(𝑘)), which is also the communication network of trading
machines.

4.2. Distributed mean reversion online portfolio strategy

To simplify the DMR strategy, we make the following assumptions.

Assumption 4.1. The first difference of closing price 𝒑(𝑡) in period 𝑡
follows the 𝑚-dimensional Brownian motion with zero drift, 𝑖.𝑒., 𝒑(𝑡) −
𝒑(𝑡 − 1) ∼ 𝑁𝑚(𝟎, 𝛬𝑡), where 𝟎 denotes a 0 vector, 𝛬𝑡 is the covariance
matrix of 𝒑(𝑡 − 𝑤 + 1, 𝑡). So, the relative price in period 𝑡 follows
𝒙(𝑡) ∼ 𝑁𝑚(𝟏, 𝐷−1

𝑡 𝛬𝑡𝐷−1
𝑡 ), where 𝐷𝑡 = 𝑑𝑖𝑎𝑔(𝒑(𝑡 − 1)).

In Assumption 4.1, we assume that the stock relative price fol-
lows the multi-period mean reversion feature. Existing mean reversion
strategies are based on the single-period or multiple-period inversion of
relative prices to capture the mean reversion of stocks. For example, the
PAMR strategy, representing the single-period mean reversion strategy,
assumes that the next period relative price 𝒙̃(𝑡 + 1) = 1∕𝒙(𝑡) (see the
analysis in the first paragraph of Section 4.1 on Li et al. (2015)). This
means that the next period relative price 𝒙(𝑡 + 1) will revert to the
previous historical relative price 1

𝒙(𝑡) . The OLMAR strategy, typical of
the multi-period mean reversion strategy, estimates the relative stock
price 𝒙̃(𝑡 + 1) = (1∕𝑤)(1 + 1∕𝒙(𝑡) +⋯ + 1∕⊗𝑤−2

𝑖=0 𝒙(𝑡 − 𝑖)). This indicates
that the stock relative price 𝒙(𝑡+1) in the next period will revert to the
average performance of the stock relative price over the past period.
However, the price fluctuations of the higher-value stocks may affect
the relative price forecast 𝒙̃(𝑡+1) more significantly. This is because the
change between the relative price deviation 𝛥𝒙(𝑡) and its inverse 1∕𝛥𝒙(𝑡)
is not linear, and the further the relative price 𝒙(𝑡) moves away from
1, the more dramatic the inverse 1∕𝒙(𝑡). For example, the stock prices
of Goldman Sachs Group Inc. and Amazon are USD276 and USD98,
respectively, which are very different. If stocks in a market fall together,
the relative price of a high-priced stock will move further away from
1 compared to a low-value stock, and its inverse will be smaller than
that of a low-priced stock. Since the mean reversion strategy treats this
inversion as the expected future return, the high-value stock will re-
ceive less investment than the low-value stock. We should not abandon
high-priced stocks like this, even though we are under the assumption
of mean reversion. Note that the prediction of both relative prices of
PAMR and OLMAR implies a special case, where the expected relative
price of a stock is equal to 1 (let 𝜇 be the expected return, we know that
𝜇 = 1∕𝜇 and 𝜇 = (1∕𝑤)[1 + 1∕𝜇 + 1∕𝜇2 + +1∕𝜇𝑤−1] have the common
solution 𝜇 = 1). Therefore, we present Assumption 4.1 and treat 1 as
a uniform benchmark to characterize the mean reversion of all stocks.
In addition, since the relative prices of stocks are maintained around

3 A nonnegative matrix is called doubly stochastic if and only if its entries
sum up to 1 in each of its rows and columns.

4 The transformation of the matrix 𝑆(𝑘) into a doubly stochastic matrix
𝐴(𝑘) is as follows: assume that 𝑆𝑖(𝑘) is the 𝑖th column vector of 𝑆(𝑘)
and 𝑆′

𝑖 (𝑘) is the 𝑖th row vector of 𝑆(𝑘), where 𝑖 = 1,… , 𝑚. Let 𝜚 =
max{max{𝟏𝑇𝑆𝑖(𝑘)}𝑛𝑖=1,max{𝑆′

𝑗 (𝑘)𝟏}
𝑛
𝑗=1}, 𝜄 = 𝜚𝑛 −

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑠𝑖𝑗 (𝑘), then the

element 𝑎 (𝑘) = 𝜚−1𝑠 (𝑘) + (𝜚𝜄)−1(𝜚 − 𝑆′(𝑘)𝟏)(𝜚 − 𝟏𝑇𝑆 (𝑘)).
𝑖𝑗 𝑖𝑗 𝑖 𝑗
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Algorithm 1: Online portfolio strategy DMR.
Input: window size: 𝑤 ≥ 1, market sequence: 𝒙1,… ,𝒙𝑛,

machine number 𝑛, step size {𝛼𝑘}.
Output: final cumulative wealth: 𝑆𝑛.

1 initialize: 𝒃(1) = 1
𝑚1, 𝑆(0) = 1;

2 randomly generate the initial strategy of trading machines:
𝒃̂𝑖(0) ∈ 𝛥2

𝑚, 𝑖 = 1,⋯ , 𝑛;
3 for 𝑘 = 1, 2,… do
4 calculate the weighted adjacency matrix 𝐴(𝑘);
5 calculate the daily returns and cumulative returns:

𝑆(𝑘) = 𝑆(𝑘 − 1) × 𝒃(𝑘)𝑇 𝒙(𝑘);
6 for 𝑖 = 1, 2,⋯ , 𝑛: do
7 the trading machine 𝑖 aggregates strategies from its

neighbors: 𝒗̂𝑖(𝑘) =
∑𝑛

𝑗=1 𝑎𝑖𝑗 (𝑘)𝒃̂𝑗 (𝑘);
8 the summed strategy 𝒗̂𝑖(𝑘) descends along the

subgradient direction: 𝒚̂𝑖(𝑘) = 𝒗̂𝑖(𝑘) − 𝛼𝑘𝒅̂
𝑘
𝑖 (𝒗̂𝑖(𝑘));

9 update the next strategy of machine 𝑖:
𝒃̂𝑖(𝑘 + 1) = 𝑃𝛥2𝑚

[𝒚̂𝑖(𝑘)];
10 end
11 update DMR strategy: 𝒃(𝑘 + 1) =

∑𝑛
𝑖=1

1
𝑛 𝒃̂𝑖(𝑘 + 1);

12 end

vector 1, it is also possible to use the relative price series of stocks
that satisfy this assumption to uniformly characterize the correlations
among stocks. This assumption is inspired by Ha and Zhang (2020) who
presented the same assumption to study the impact of liquidity risk on
OLPSs. Thus, they can restrict the stock relative price in the next period
to a random variable with mean 1 and add multiple intra-day trading.
The result shows that the impact of market liquidity risk and trading
costs on OLPSs has been reduced.

Assumption 4.2. The sequence {𝛼𝑘}+∞𝑘=1 is non-negative mean-square
convergent, i.e., ∑+∞

𝑘=1 𝛼𝑘 = +∞,
∑+∞

𝑘=1 𝛼
2
𝑘 < +∞.

Assumption 4.3. There exists an integer 𝐵 ≥ 1 such that the graph
(𝑉 ,

⋃𝐵−1
𝑙=0 𝐸(𝑘 + 𝑙)) is strongly connected for all 𝑘 ≥ 0.

Assumption 4.3 means that there must be at least one effective
connection (non-zero correlation) between any two trading machines
during the whole investment period, and this also suggests that one
stock will influence another stock at least once in the future.

Assumption 4.4. The stock relative price of the 𝑘th period is bounded,
𝑖.𝑒., ∃𝐶𝑘, 𝜀𝑘 > 0, 𝑠.𝑡. 𝜀𝑘 < ∥𝒙(𝑘)∥ ≤ 𝐶𝑘.

In Assumption 4.4, the upper bound could also be uniform 𝐶 =
sup{𝐶𝑘}+∞𝑘=1. It guarantees that the wealth will not be infinite, 𝑖.𝑒.,
∥E[ln 𝒃𝑇 𝒙(𝑡)]∥ ≤ +∞. This assumption implies the existence of an
𝐿𝑘 > 0, 𝑠.𝑡.∥𝒅𝑗 (𝑘)∥ ≤ 𝐿𝑘, where 𝒅𝑗 (𝑘) is the subgradient of ln 𝒃𝑇 𝒙(𝑘)
at point 𝒃. This upper bound also can be replaced by a uniform bound
𝐿 = sup{𝐿𝑘}+∞𝑘=1 for each period 𝑘.

Next, we introduce our DMR strategy. The overall goal of DMR is
to maximize the final cumulative wealth, i.e.,

min
𝒃∈𝛥2𝑚

−
𝑇
∑

𝑡=1
ln 𝒃𝑇 𝒙(𝑡). (1)

For such an investment problem, Cover (1991) pointed out that if
the market vector {𝒙(1),… ,𝒙(𝑇 )} is known before trading and short
selling is not allowed (𝒃 ∈ 𝛥1

𝑚), then there theoretically exists a BCRP
strategy that can maximize the final cumulative wealth, that is, 𝒃∗ =
𝑎𝑟𝑔𝑚𝑖𝑛𝒃∈𝛥1𝑚 −

∑𝑇
𝑘=1 ln 𝒃

𝑇 𝒙(𝑘). Denote that 𝑓 (𝒃) = −
∑𝑇

𝑡=1 ln 𝒃
𝑇 𝒙(𝑡), we

know 𝑓 is a convex function and 𝒃∗ can be reached by the gradient
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Fig. 4. The objective function of each period split into 𝑛 parts.

descent projection method, namely 𝒃∗(𝑘+1) = 𝑃𝛥2𝑚
[𝒃(𝑘)∗−𝛼𝑘∇𝑓 (𝒃(𝑘)∗)],

where 𝒃(𝑘)∗ and 𝛼𝑘 are the strategy of the 𝑘th iteration and the iteration
step, respectively. The initial strategy 𝒃(0)∗ can be a random point in
𝛥2
𝑚.

However, we cannot know the complete market vector in advance,
so ∇𝑓 is unknown in practice. In addition, allowing for short selling is
a more realistic requirement for investors. To achieve the optimization
goal with short selling allowed, we adopt the idea of a distributed
optimization algorithm and divide problem (1) into several single
optimization problems. Then, we use our trading machines to calculate
the optimal strategy of each single problem in a distributed approach
and propose our DMR strategy (see Fig. 4). Specifically:

First, we allow the 𝑛 trading machines to simultaneously invest
in the current portfolio in the initial trading period, and denote the
strategy of each trading machine in period 𝑘 as 𝒃̂1(𝑘),… , 𝒃̂𝑛(𝑘). We split
min𝒃∈𝛥2𝑚 −

∑𝑇
𝑡=1 ln 𝒃

𝑇 𝒙(𝑡) into 𝑇 single problems 𝐷1,… , 𝐷𝑇 and treat
𝐷𝑘, 𝑘 = 1,… , 𝑇 as the objective in the 𝑘th trading period, where 𝐷𝑘
is as follows:
min − ln 𝒃𝑇 𝒙(𝑘)

𝑠.𝑡. 𝒃 ∈ 𝛥2
𝑚.

(2)

Denote 𝑓𝑘(𝒃) = − ln (𝒃𝑇 𝒙(𝑘)) as the objective function of 𝐷𝑘, where
𝑓𝑘
𝑖 (𝒃) = − 1

𝑛 ln (𝒃
𝑇 𝒙(𝑘)) is the objective function of machine 𝑖 in the 𝑘th

period, and 𝒅̂𝑘
𝑖 (𝒃) is the subgradient (or gradient) of 𝑓𝑘

𝑖 (𝒃) at point 𝒃.
For example, we can set 𝒅̂𝑘

𝑖 (𝒃) = ∇𝑓𝑘
𝑖 (𝒃) = − 1

𝑛
𝒙(𝑘)

𝒃𝑇 𝒙(𝑘)
.

Second, based on the communication network structure for the
trading machines in Section 4.1, the trading machines can jointly carry
out distributed strategy updates. The update rule for trading machine 𝑖
is as follows:

𝒗̂𝑖(𝑘) =
𝑛
∑

𝑗=1
𝑎𝑖𝑗 (𝑘)𝒃̂𝑗 (𝑘), (3)

𝒚̂𝑖(𝑘) =𝒗̂𝑖(𝑘) − 𝛼𝑘𝒅̂
𝑘
𝑖 (𝒗̂𝑖(𝑘)), (4)

𝒃̂𝑖(𝑘 + 1) =𝑃𝛥2𝑚
[𝒚̂𝑖(𝑘)], (5)

where 𝛼𝑘 > 0 is the descent step size, 𝑃𝛥2𝑚
[𝒚̂𝑖(𝑘)] is the projection of 𝒚̂𝑖(𝑘)

on 𝛥2
𝑚, 𝒗̂𝑖(𝑘) is the integration of the strategies of trading machine 𝑖’s

neighbors, and 𝒃̂𝑖(𝑘+ 1) is the strategy of machine 𝑖 in the next period.
In Eqs. (3)−(5), we update the portfolio strategies among the trading

machines. Each trading machine communicates its own strategy with
its neighbors and evaluates the mutual influence of its own strategy
with others through network 𝐺(𝑘). Specifically, machine 𝑖 measures
the influence of its neighbors’ portfolio strategies on its future returns
according to the weighted adjacency matrix 𝐴(𝑘), and then determines
the next portfolio strategy 𝒃̂𝑖(𝑘 + 1).

Finally, all the next portfolio strategies {𝒃𝑖(𝑘 + 1)}𝑛𝑖=1 of the trading
machines are weighted to obtain the DMR strategy 𝒃(𝑘 + 1), that is,
𝒃(𝑘 + 1) =

∑𝑛
𝑖=1

1
𝑛 𝒃̂𝑖(𝑘 + 1), where the initial strategy 𝒃(0) = 1

𝑚𝟏. The
detailed process is shown in Algorithm 1, and for the initial strategies
of 𝑛 trading machines, we make the following assumptions:
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Assumption 4.5. The initial strategies {𝒃̂1(0),… , 𝒃̂𝑛(0)} ⊂ 𝛥2
𝑚 of

rading machines are i.i.d.

Note that in the real world, we do not really need 𝑛 trading ma-
hines to run DMR because most investors do not really need to make
arge-scale trades, and the computing resources of individual investors
re usually limited. We can use virtual machines or parallel computing
o set up multiple trading machines. For example, our empirical tests in
his paper are built using virtual machine technology. The calculation
nd updating of all trading machines are completed by the simulation
f only one computer. In addition, a suitable application scenario for
he DMR strategy is a group investment scenario. The DMR strategy
ith 𝑛 trading machines can easily be adapted to the case where 𝑛

nvestors invest simultaneously in the same assets pool. Specifically,
ach investor 𝑖 independently executes the investment strategy 𝒃̂𝑖(𝑘) on
rading machine 𝑖 in period 𝑘. The convergence analysis of DMR in the

following shows that the 𝑛 investors can theoretically obtain the same
final cumulative wealth.

4.3. Convergence analysis

In this part, we analyze the theoretical properties of DMR. First,
we demonstrate that the strategies of all trading machines are feasible
in Theorem 4.1. Second, we prove that the strategy of each trading
machine will converge to a BCRP strategy in Theorem 4.2. Third, in
Theorem 4.3, we show that the DMR strategy and the strategy of each
trading machine are universal. Finally, we provide the convergence rate
from the DMR strategy to the BCRP strategy in Proposition 4.1.

Theorem 4.1. For any machine 𝑖, the sequence {𝒗̂𝑖(𝑘)} generated by
Eqs. (3)−(5) converges, and ∑+∞

𝑘=0 𝑑𝑖𝑠𝑡
2(𝒗̂𝑖(𝑘); 𝛥2

𝑚) < +∞ 𝑎.𝑠.

Proof. According to Lemma 7.1 in the Appendix, or similar to Lemma
3.1 in Ram et al. (2010), for ∀ 𝒃̄ ∈ 𝛥2

𝑚, 𝒛 ∈ 𝑅𝑚, in trading period 𝑘, we
have

∥𝒃̂𝑖(𝑘 + 1) − 𝒃̄∥2 = ∥𝑃𝛥2𝑚
[𝒚̂𝑖(𝑘)] − 𝒃̄∥2

≤ (1 + 2𝛼2𝑘𝐿
2)∥𝒗̂𝑖(𝑘) − 𝒃̄∥2 − 2𝛼𝑘(𝑓𝑘

𝑖 (𝒛) − 𝑓𝑘
𝑖 (𝒃̄))

+ 𝑟𝜂𝛼
2
𝑘𝐿

2 + ( 1
4𝜂

+ 2𝛼𝑘𝐿)∥𝒗̂𝑖(𝑘) − 𝒛∥2 − ∥𝒃̂𝑖(𝑘 + 1) − 𝒗̂𝑖(𝑘)∥2, (6)

where 𝛾𝜂 = 4 + 16𝜂, 𝜂 is a positive scalar.
Let 𝒛 = 𝒃̄ = 𝑃𝛥2𝑚

[𝒗̂𝑖(𝑘)], by the definition of the distance from point
to set, we get:

𝑑𝑖𝑠𝑡2(𝒃̂𝑖(𝑘 + 1);𝛥2
𝑚) ≤ ∥𝒃̂𝑖(𝑘 + 1) − 𝑃𝛥2𝑚

[𝒗̂𝑖(𝑘)]∥2

≤ (1 + 2𝛼2𝑘𝐿
2)𝑑𝑖𝑠𝑡2(𝒗̂𝑖(𝑘);𝛥2

𝑚) − ∥𝒃̂𝑖(𝑘 + 1) − 𝒗̂𝑖(𝑘)∥2

+ 𝑟𝜂𝛼
2
𝑘𝐿

2 + ( 1
4𝜂

+ 2𝛼𝑘𝐿)𝑑𝑖𝑠𝑡2(𝒗̂𝑖(𝑘);𝛥2
𝑚). (7)

Denote 𝑘 = {𝒃̂𝑖(𝑠); 𝑖 ∈ 𝑉 , 0 ≤ 𝑠 ≤ 𝑘 − 1} as the 𝜎-algebra induced
by the entire history of the algorithm up to period 𝑘 − 1. Therefore,
given 𝑘, the collection 𝒃̂𝑖(0),… , 𝒃̂𝑖(𝑘) and 𝒗̂𝑖(0),… , 𝒗̂𝑖(𝑘) generated by
Eqs. (3)−(5) are fully determined. Take the conditional expectation of
the above equation with respect to 𝑘, we obtain

E[𝑑𝑖𝑠𝑡2(𝒃̂𝑖(𝑘 + 1);𝛥2
𝑚)|𝑘]

≤ (1 + 2𝛼2𝑘𝐿
2)𝑑𝑖𝑠𝑡2(𝒗̂𝑖(𝑘);𝛥2

𝑚) − ∥𝒃̂𝑖(𝑘 + 1) − 𝒗̂𝑖(𝑘)∥2

+ 𝑟𝜂𝛼
2
𝑘𝐿

2 + ( 1
4𝜂

+ 2𝛼𝑘𝐿)𝑑𝑖𝑠𝑡2(𝒗̂𝑖(𝑘);𝛥2
𝑚)

≤ (1 + 2𝛼2𝑘𝐿
2)

𝑛
∑

𝑗=1
𝑎𝑖𝑗 (𝑘)𝑑𝑖𝑠𝑡2(𝒃̂𝑗 (𝑘);𝛥2

𝑚) + 𝑟𝜂𝛼
2
𝑘𝐿

2

+ ( 1
4𝜂

+ 2𝛼𝑘𝐿)𝑑𝑖𝑠𝑡2(𝒗̂𝑖(𝑘);𝛥2
𝑚)

− ∥𝒃̂𝑖(𝑘 + 1) − 𝒗̂𝑖(𝑘)∥2. (8)
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For 𝑑𝑖𝑠𝑡2(𝒗̂𝑖(𝑘);𝛥2
𝑚) = 𝑑𝑖𝑠𝑡2(

∑𝑛
𝑗=1 𝑎𝑖𝑗 (𝑘)𝒃̂𝑗 (𝑘);𝛥

2
𝑚)

≤
∑𝑛

𝑗=1 𝑎𝑖𝑗 (𝑘)𝑑𝑖𝑠𝑡
2(𝒃̂𝑗 (𝑘);𝛥2

𝑚), and ∥𝒃̂𝑖(𝑘 + 1) − 𝒗̂𝑖(𝑘)∥2 ≥ 𝑑𝑖𝑠𝑡2(𝒗̂𝑖(𝑘);𝛥2
𝑚),

we get

E[𝑑𝑖𝑠𝑡2(𝒃̂𝑖(𝑘 + 1);𝛥2
𝑚)|𝑘] ≤(1 + 2𝛼2𝑘𝐿

2)
𝑛
∑

𝑗=1
𝑎𝑖𝑗 (𝑘)𝑑𝑖𝑠𝑡2(𝒃̂𝑗 (𝑘);𝛥2

𝑚) + 𝑟𝜂𝛼
2
𝑘𝐿

2

− ( 3
4𝜂

− 2𝛼𝑘𝐿)𝑑𝑖𝑠𝑡2(𝒗̂𝑖(𝑘);𝛥2
𝑚). (9)

Sum the distance squares from 𝑖 = 1 to 𝑛, then we have

E[
𝑛
∑

𝑖=1
𝑑𝑖𝑠𝑡2(𝒃̂𝑖(𝑘 + 1);𝛥2

𝑚)|𝑘] ≤(1 + 2𝛼2𝑘𝐿
2)

𝑛
∑

𝑖=1
𝑑𝑖𝑠𝑡2(𝒃̂𝑖(𝑘);𝛥2

𝑚) + 𝑛𝑟𝜂𝛼
2
𝑘𝐿

2

− ( 3
4𝜂

− 2𝛼𝑘𝐿)
𝑛
∑

𝑖=1
𝑑𝑖𝑠𝑡2(𝒗̂𝑖(𝑘);𝛥2

𝑚). (10)

According to Assumption 4.2, we know 𝛼2𝑘 → 0, further 𝛼𝑘 → 0. This
means that, ∃𝑘0 > 0, 𝑠.𝑡. ∀𝑘 > 𝑘0,

3
4𝜂 − 2𝛼𝑘𝐿 > 0. Therefore, Eq. (10)

atisfies the Sup-Martingale convergence theorem (Ram et al., 2010).
e infer the following: (1) the sequence {𝒃̂𝑖(𝑘)} converges, and (2)
+∞
𝑘=0 𝑑𝑖𝑠𝑡

2(𝒗̂𝑖(𝑘);𝛥2
𝑚) < +∞ 𝑎.𝑠., which means that 𝒗𝑖(𝑘) converges to

2
𝑚.

Theorem 4.1 means that the portfolio strategies {𝒃̂𝑖(𝑘)}𝑛𝑖=1 of all
rading machines will eventually gather inside the feasible set 𝛥2

𝑚,
ut it is not enough to explain the relationship between {𝒃̂𝑖(𝑘)}𝑛𝑖=1
nd the universal property of the DMR strategy. Next, we first prove
hat 𝒃̂𝑖(𝑘) converges to the BCRP strategy 𝒃∗ in Theorem 4.2. Then,
he return growth rate of strategy 𝒃̂𝑖(𝑘) will naturally converge to the
eturn growth rate of this BCRP strategy 𝒃∗, which will be addressed in
heorem 4.3.

heorem 4.2. If the optimal set 𝐵∗ is nonempty, then ∀𝑖 ∈ 𝑉 , ∃𝒃∗ ∈
∗, 𝑠.𝑡. lim𝑘→∞ 𝒃̂𝑖(𝑘) = 𝒃∗.

roof. See the detailed proof in Appendix A.

This theorem means that the portfolio strategy of each trading
achine will converge to the BCRP strategy 𝒃∗. It is natural that the
MR strategy 𝒃(𝑘) will also converge to 𝒃∗. However, this does not

mean that they are universal strategies. Consider that 𝒃(𝑘) is obtained
by integrating the strategy 𝒃̂𝑖(𝑘) from 𝑛 trading machines, therefore, we
nly need to prove that the strategy 𝒃̂𝑖(𝑘) is universal. We address this
roblem using the following theorem.

heorem 4.3. For any trading machine 𝑖 ∈ 𝑉 , its strategy {𝒃̂𝑖(𝑘)}𝑇𝑘=1
s universal, i.e., 1

𝑇

[

ln(𝑆∗
𝑇 ) − ln(𝑆𝑖

𝑇 )
]

→ 0 (𝑇 → +∞), where 𝑆∗
𝑇 =

𝑇
𝑡=1 𝒃

∗𝑇 𝒙(𝑡) is the final cumulative wealth of a BCRP strategy 𝒃∗, 𝑆𝑖
𝑇 =

𝑇
𝑡=1 𝒃̂𝑖(𝑡)

𝑇 𝒙(𝑡) is the final cumulative wealth of trading machine 𝑖.

roof. We have

n(𝑆∗
𝑇 ) − ln(𝑆 𝑖

𝑇 ) =
𝑇
∑

𝑡=1

[

ln(𝒃∗𝑇 𝒙(𝑡)) − ln(𝒃̂𝑖(𝑡)𝑇 𝒙(𝑡))
]

.

Take the Taylor expansion of ln(𝒃̂𝑖(𝑡)𝑇 𝒙(𝑡)) at 𝒃∗, we get ln(𝒃̂𝑖(𝑡)𝑇 𝒙(𝑡))
ln(𝒃∗𝑇 𝒙(𝑡)) + (𝒃̂𝑖(𝑡)−𝒃∗)𝑇 𝒙(𝑡)

𝒃∗𝑇 𝒙(𝑡)
. Substitute it into the above equation, then

ln(𝑆∗
𝑇 ) − ln(𝑆 𝑖

𝑇 ) ≤
𝑇
∑

𝑡=1

[

(𝒃∗ − 𝒃̂𝑖(𝑡))𝑇 𝒙(𝑡)
𝒃∗𝑇 𝒙(𝑡)

]

.

According to Assumption 4.4, 𝒙(𝑡), 𝒃∗, and 𝒃̂𝑖(𝑡) are bounded, then
inf{𝒃∗𝑇 𝒙(𝑡)}+∞𝑡=1 and max{𝒃∗𝑇 𝒙(𝑡)}+∞𝑡=1 are bounded too. By Theorem 4.2,
lim𝑘→+∞ 𝒃̂𝑖(𝑘) = 𝒃∗ 𝑎.𝑠., since 𝐶 = sup{𝐶𝑘}+∞𝑘=1 and lim𝑇→+∞

1
𝑇 = 0, then

or ∀𝜀 > 0, ∃ 𝑁1, 𝑁2 > 0, let 𝑁 = max{𝑁1, 𝑁2}, when 𝑡 > 𝑁 , we have
𝒃̂𝑖(𝑡) − 𝒃∗(𝑡)∥ ≤ 𝜀 ⋅

inf{𝒃∗𝑇 𝒙(𝑡)}+∞𝑡=1
𝐶 , 1

𝑇 ≤ 𝜀 ⋅
inf{𝒃∗𝑇 𝒙(𝑡)}+∞𝑡=1

max{∥𝒃∗−𝒃̂𝑖(𝑡)∥}𝑁𝑡=1⋅𝐶
, respectively.

hen, we obtain
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𝜌

𝑞

F
g
e
c
a

t

s

1
𝑇

[

ln(𝑆∗
𝑇 ) − ln(𝑆 𝑖

𝑇 )
]

≤ 1
𝑇

𝑁
∑

𝑡=1

[

(𝒃∗ − 𝒃̂𝑖(𝑡))𝑇 𝒙(𝑡)
𝒃∗𝑇 𝒙(𝑡)

]

+ 1
𝑇

𝑇
∑

𝑡=𝑁+1

[

(𝒃∗ − 𝒃̂𝑖(𝑡))𝑇 𝒙(𝑡)
𝒃∗𝑇 𝒙(𝑡)

]

≤ 1
𝑇

𝑁
∑

𝑡=1

∥𝒃∗ − 𝒃̂𝑖(𝑡)∥ ⋅ ∥𝒙(𝑡)∥
𝒃∗𝑇 𝒙(𝑡)

+ 1
𝑇

𝑇
∑

𝑡=𝑁+1

∥𝒃∗ − 𝒃̂𝑖(𝑡)∥ ⋅ ∥𝒙(𝑡)∥
𝒃∗𝑇 𝒙(𝑡)

≤ 1
𝑇

𝑁
∑

𝑡=1

∥𝒃∗ − 𝒃̂𝑖(𝑡)∥ ⋅ 𝐶
inf{𝒃∗𝑇 𝒙(𝑡)}𝑁𝑡=1

+ 1
𝑇

𝑇
∑

𝑡=𝑁+1

∥𝒃∗ − 𝒃̂𝑖(𝑡)∥ ⋅ 𝐶
inf{𝒃∗𝑇 𝒙(𝑡)}+∞𝑡=1

≤𝑁
𝑇

⋅
max{∥𝒃∗ − 𝒃̂𝑖(𝑡)∥}𝑁𝑡=1 ⋅ 𝐶

inf{𝒃∗𝑇 𝒙(𝑡)}+∞𝑡=1
+ 𝑇 −𝑁

𝑇
⋅ 𝜀

≤𝑁
𝑇

⋅ 𝜀 + 𝜀 − 𝑁
𝑇

⋅ 𝜀 = 𝜀.

This means 1
𝑇

[

ln(𝑆∗
𝑇 ) − ln(𝑆 𝑖

𝑇 )
]

→ 0 (𝑇 → +∞), so the strategy of
any trading machine 𝑖 is universal.

By the convexity of the norm and the theorem above, it is self-
evident that the DMR strategy is universal. Before we set up the
experiments using real market data, we first analyze the theoretical
convergence rate of the DMR strategy in Proposition 4.1.

Proposition 4.1. Assume 𝛼𝑘 = 1
(𝑘+𝑎)𝑞 , where 𝑎 ≥ 0, 𝑞 ∈ (0, 1]. When

𝑞 = 1, the convergence rate of 𝑓 (𝒃̃(𝑘)) to 𝑓 ∗ is 𝑂( 1
ln 𝑘 ); when 𝑞 ∈ (0, 1), the

convergence rate of that is 𝑂( 1
𝑘1−𝑞

).

roof. By Theorem 4.2,
𝑛
∑

𝑖=1
∥𝒃̂𝑖(𝑘 + 1) − 𝒃∗∥2 ≤(1 + 2𝛼2𝑘𝐿

2)
𝑛
∑

𝑖=1
∥𝒃̂𝑖(𝑘) − 𝒃∗∥2 − 2𝛼𝑘(𝑓 (𝒛̄(𝑘)) − 𝑓 ∗)

+ 4𝛼𝑘𝐿
𝑛
∑

𝑖=1
max
𝑖∈𝑉

{∥𝒗𝑖(𝑘) − 𝒗̄(𝑘)∥}

+ 𝑛𝑟𝜂𝛼
2
𝑘𝐿

2 + (2𝛼𝑘𝐿 − 3
4𝜂

)
𝑛
∑

𝑖=1
𝑑𝑖𝑠𝑡2(𝒗𝑖(𝑘);𝛥2

𝑚).

(11)

Iterating it back to the initial time, we get
𝑛
∑

𝑖=1
∥𝒃̂𝑖(𝑘 + 1) − 𝒃∗∥2 ≤(1 + 2𝛼2𝑘𝐿

2)
𝑛
∑

𝑖=1
∥𝒃̂𝑖(𝑘) − 𝒃∗∥2 − 2𝛼𝑘(𝑓 (𝒛̄(𝑘)) − 𝑓 ∗)

+ 4𝛼𝑘𝐿
𝑛
∑

𝑖=1
max
𝑖∈𝑉

{∥𝒗𝑖(𝑘) − 𝒗̄(𝑘)∥}

+ 𝑛𝑟𝜂𝛼
2
𝑘𝐿

2 + (2𝛼𝑘𝐿 − 3
4𝜂

)
𝑛
∑

𝑖=1
𝑑𝑖𝑠𝑡2(𝒗𝑖(𝑘);𝛥2

𝑚)

≤
𝑘
∑

𝜏=0
(1 + 2𝛼2𝜏𝐿

2)
𝑛
∑

𝑖=1
∥𝒃̂𝑖(𝜏) − 𝒃∗∥2 +

𝑘
∑

𝜏=0
𝑛𝑟𝜂𝛼

2
𝜏𝐿

2

+
𝑘
∑

𝜏=0
4𝛼𝜏𝐿2

𝑛
∑

𝑖=1
max
𝑖∈𝑉

{∥𝒗𝑖(𝜏) − 𝒗̄(𝜏)∥}

−
𝑘
∑

𝜏=0
2𝛼𝜏 (𝑓 (𝒛̄(𝜏)) − 𝑓 ∗)

+
𝑘
∑

𝜏=0
(2𝛼𝜏𝐿 − 3

4𝜂
)

𝑛
∑

𝑖=1
𝑑𝑖𝑠𝑡2(𝒗𝑖(𝜏);𝛥2

𝑚). (12)

By the convex property of 𝑓 , we know
∑𝑘

𝜏=0 𝛼𝜏𝑓 (𝒛̄(𝜏))
∑𝑘

𝜏=0 𝛼𝜏
− 𝑓 ∗ ≤

𝜌1(𝑘)+𝜌2(𝑘)+𝜌3(𝑘)
2
∑𝑘

𝜏=0 𝛼𝜏
, where

1(𝑘) =
𝑘
∑

𝜏=0
(1 + 2𝛼2𝜏𝐿

2)
𝑛
∑

𝑖=1
∥𝒃̂𝑖(𝜏) − 𝒃∗∥2 +

𝑘
∑

𝜏=0
𝑛𝑟𝜂𝛼

2
𝜏𝐿

2,

𝜌2(𝑘) =
𝑘
∑

𝜏=0
4𝛼𝜏𝐿2

𝑛
∑

𝑖=1
max
𝑖∈𝑉

{∥𝒗𝑖(𝜏) − 𝒗̄(𝜏)∥},

𝜌3(𝑘) =
𝑘
∑

(2𝛼𝜏𝐿 − 3 )
𝑛
∑

𝑑𝑖𝑠𝑡2(𝒗𝑖(𝜏);𝛥2
𝑚).
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𝜏=0 4𝜂 𝑖=1
Let 𝒃̃𝑖(𝑘) =
∑𝑘

𝜏=0 𝛼𝜏 𝒛̄(𝜏)
∑𝑘

𝜏=0 𝛼𝜏
, then 𝑓 (𝒃̃(𝑘)) − 𝑓 ∗ ≤ 𝜌1(𝑘)+𝜌2(𝑘)+𝜌3(𝑘)

2
∑𝑘

𝜏=0 𝛼𝜏
. We set

𝛼𝑘 = 1
(𝑘+𝑎)𝑞 , 𝑎 ≥ 0, 𝑞 ∈ (0, 1]. Then

𝑘
∑

𝜏=0

1
(𝜏 + 𝑎)𝑞

≤ ∫

𝑘+1

0

𝑑𝑠
(𝑠 + 𝑎)𝑞

=

⎧

⎪

⎨

⎪

⎩

1
1−𝑞 [(𝑘 + 1 + 𝑎)1−𝑞 − 𝑎1−𝑞], 0 < 𝑞 < 1

ln 𝑘+𝑎+1
𝑎 , 𝑞 = 1.

According to the boundedness of a convergent sequence, ∀𝑘 >
0, ∃𝑀 > 0, 𝑠.𝑡. 𝑀 ≥ 𝜌1(𝑘)+𝜌2(𝑘)+𝜌3(𝑘)

2 and we obtain

𝑓 (𝒃̃(𝑘)) − 𝑓 ∗ ≤
⎧

⎪

⎨

⎪

⎩

(1 − 𝑞)𝑀∕[(𝑘 + 1 + 𝑎)1−𝑞 − 𝑎1−𝑞], 0 < 𝑞 < 1

𝑀∕ ln 𝑘+𝑎+1
𝑎 , 𝑞 = 1.

So, if 𝑞 = 1, the convergence rate of 𝑓 (𝒃̃(𝑘)) to 𝑓 ∗ is 𝑂( 1
ln 𝑘 ); if

∈ (0, 1), the convergence rate of that is 𝑂( 1
𝑘1−𝑞

).

5. Algorithmic trading empirical analysis using real datasets

In this section, we report the empirical studies for DMR and other
OLPSs, including the experimental platform and equipment, dataset
descriptions, experimental design, and detailed experimental results
and analyses. The codes and data can be found in our repository,5 and
more basic codes and descriptions can be found in Li et al. (2015).

5.1. Dataset descriptions

All the datasets are constructed of daily stock closing prices from
indexes such as MSCI, NYSE, and FS100. All price data come from
Choice (the financial terminal of the Oriental Fortune website). De-
tailed information on the datasets are shown in Table 1, where ‘‘Dataset

Volatility’’ is defined as 1
𝑚
∑𝑚

𝑖=1

√

∑𝑇
𝑡=1(𝑝𝑖(𝑡)−𝜇𝑖)

2

𝑇 , and 𝜇𝑖 is the mean of
stock 𝑖. Table 2 presents a more detailed data structure of the datasets.

We build four new datasets for empirical study: FS100, DJIA01,
NYSE_Onew, and NYSE_Nnew. For the six classic online portfolio
datasets (MSCI, SP500, TSE, DJIA, NYSE_O, and NYSE_N), we do
not present their empirical results in the main text because the time
horizons of these datasets are very long and the contents have changed
to some extent (e.g., some stocks have been delisted or renamed and
re-listed). The first dataset FS100 is composed of stocks from the FTSE
100 index in the UK. The second dataset DJIA01 is updated from the
original DJIA dataset, which now contains 29 stocks instead of 30
due to the delisting of one stock in the DJIA index. For the last two
datasets, NYSE_Nnew and NYSE_Onew, we construct them with 37 and
36 randomly selected stocks from the top 200 well-known stocks of
the NYSE NASDAQ Market and the OTC system, respectively, and treat
them as extensions of the classical datasets NYSE_N and NYSE_O.

5.2. Algorithm setup and equipment for empirical testing

We set the number of trading machines 𝑛 = 10 for the DMR strategy.
or any trading machine 𝑖, its initial portfolio strategy 𝒃̂𝑖(0) is randomly
enerated from 𝛥1

𝑚, and the historical window size 𝑤 = 4. The computer
quipment we used has an AMD Ryzen 5 3500X 3.6ghz CPU and the
ode is built using Python 3.8. In addition, the default parameters of
ll comparison strategies are used as follows:

- DMR (𝑤 = 4, 𝑛 = 10, 𝛼𝑘 = 1
𝑘+1000 ): DMR strategy.

- DMR (UBAH) (𝑤 = 4, 𝑛 = 10, 𝛼𝑘 = 1
𝑘+1000 ): DMR strategy, where

he initial strategy of each trading machine is the UBAH strategy.
- UP (Cover, 1991): Universal portfolio strategy.
- EG (𝜂 = 0.05) (Helmbold et al., 1998): Exponential gradient

trategy.

5 https://github.com/jasminesor/DMR

https://github.com/jasminesor/DMR
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Table 1
Dataset descriptions.

Dataset Time Stocks Description Days Dataset
Volatility

FS100 20191023–20211015 101 Britain’s FTSE 100 index 502 51.50
DJIA01 20150102–20171229 29 Dow Jones Composite Stocks 755 3.42
NYSE_Nnew 20061002–20211015 37 NYSE NASDAQ Stock Market Top 200 3787 37.23
NYSE_Onew 20061002–20211015 36 NYSE OTC Counter System Top 200 3787 10.92
Table 2
The data structure of datasets.
Dataset Min mean Max mean Dataset mean Min volatility Max volatility Dataset

volatility

FS100 41.1953 11 993.1952 2017.5375 117.4135 6841111.139 51.50
DJIA01 27.7086 198.5133 91.7978 2.8590 2264.2091 3.42
NYSE_Nnew 9.69507 557.4604 64.2579 13.1422 145 542.3366 37.23
NYSE_Onew 4.41144 1 031.8696 141.2763 26.9534 938 429.3044 10.92
𝑡
p
a
d
𝑆

S
O
r
n
r
a
r
p
o
p

5

5

t
o
t
c
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b
t
𝑤

Table 3
Selection of evaluation index.

Criteria Performance metrics

Absolute return Cumulative wealth (CW) Annualized return (AR)
Risk Maximum drawdown (MDD)
Risk-adjusted return Sharpe ratio (Sharpe) Calmar ratio (CR)

Table 4
Runtime (in seconds) comparison in average investment period.

Runtime FS100 DJIA01 NYSE_Nnew NYSE_Onew

UP 0.0011 0.0004 0.0004 0.0004
EG 0.0004 0.0004 0.0004 0.0004
EGS 0.0007 0.0006 0.0006 0.0006
WAEG 0.0040 0.0039 0.0041 0.0041
MAEG 0.0027 0.0028 0.0031 0.0030
DMR (UBAH) 0.0091 0.0047 0.0053 0.0051
DMR 0.0091 0.0048 0.0053 0.0051

- EGS (𝜂 = 0.05) (Yang, He, et al., 2019): Exponential gradient
trategy with side-information.

- WAEG (𝜂 = 0.05, 𝜂𝑘 = {0.01, 0.02,… , 0.2}) (Yang et al., 2022):
Weakly aggregating exponential gradient strategy.

- MAEG (𝑤 = 30, 𝜂𝑘 = {0.01, 0.02,… , 0.2}) (Zhang et al., 2022):
Moving-window-based adaptive exponential gradient strategy.

Next, we evaluate the performance of DMR and other universal
strategies from the perspective of return ability, risk tolerance, and risk-
adjusted return ability. The specific evaluation indicators are shown
in Table 3. In addition, Table 4 lists the average runtime of all tested
strategies in a single trading period on each dataset. The runtime of
DMR on all datasets is within 1 second,6 meaning that DMR ensures
that investors can complete their online trading tasks almost instantly.

There are some practical problems that investors need to face in
the real world. Therefore, before conducting our empirical study, we
need to consider these practical problems to facilitate the subsequent
empirical tests.

The first problem is transaction costs, which are commissions and
taxes that investors pay to exchanges and governments when they buy
or sell certain shares of an asset. The trading markets in different coun-
tries and regions may have different specific regulations on transaction
costs, but for investors, such fees are always unavoidable. Therefore,
in the study of OLPS, it is usually assumed that there is no transaction
cost in order to conduct a ‘‘fair’’ analysis of the strategy. As such, if

6 We used virtual technology in the experiment. Although we assume that
he number of trading machines is 10, the computation tasks of these 10 trading
achines are actually completed by the same computer. Therefore, the runtime

f DMR or DMR(UBAH) in Table 4 is the average runtime of a single trading
eriod of all machines divided by 10.
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n

Table 5
Cumulative wealth comparison across different datasets.

CW FS100 DJIA01 NYSE_Nnew NYSE_Onew

UP 1.21974 1.28464 4.210701 14.38129
EG 1.21741 1.28586 1.529821 2.483124
EGS 1.22527 1.28840 4.152956 13.72941
WAEG 1.21405 1.28533 1.510368 2.461698
MAEG 1.21955 1.27910 1.546756 2.511206
DMR (UBAH) 1.21961 1.28613 4.280618 14.60321
DMR 1.22559 1.30600 4.305088 15.09632

it is not explicitly stated, the transaction cost charged by the market
will be assumed to be 0 in the subsequent empirical analyses. We
discuss the impact of transaction cost on strategy returns separately (see
Fig. 7). We consider the proportional transaction cost model (Blum &
Kalai, 1999), that is, it is assumed that investors need to use a fixed
proportion of the trading amount to pay for the transaction cost in
every trading period. Specifically, the holding shares of asset 𝑖 in period

is 𝑏̃𝑖(𝑡) = 𝑏𝑖(𝑡)⋅𝑥𝑖(𝑡)
𝒃(𝑡)𝑇 𝒙(𝑡) . Assume that the portfolio strategy in the next

eriod is 𝒃(𝑡 + 1) and the fixed transaction cost ratio is 𝛾, the adjusted
mount of asset 𝑖 in the next period is 𝑏𝑖(𝑡 + 1) − 𝑏̃𝑖(𝑡). Then, after
educting the transaction cost, the cumulative wealth in period 𝑛 is
𝛾
𝑛 = 𝑆0

∏𝑛
𝑡=1

[

𝒃(𝑡)𝑇 𝒙(𝑡) × (1 − 𝛾
2 ×

∑𝑚
𝑖=1 |𝑏𝑖(𝑡 + 1) − 𝑏̃𝑖(𝑡)|)

]

.
Another problem is the restrictions on the short selling of assets.

hort selling is allowed in DMR, but it is not allowed in the existing
LPSs. Therefore, in the subsequent empirical studies, the comparison

esults of strategies are obtained on the premise that short selling is
ot allowed, except in DMR and DMR(UBAH). We also compare the
eturn and risk result of the DMR(UBAH) strategy when short selling is
llowed (SSA) and when short selling is not allowed (SSNA). Detailed
esults can be found in Table 7. In addition, there are other practical
roblems, such as margin trading (Edirisinghe et al., 2021) and limit
rder book (LOB) (Matthias, 2022), which are not considered in this
aper.

.3. Experimental results

.3.1. Cumulative wealth
Table 5 shows the results of final cumulative wealth (CW) for all

he strategies on each dataset. The results show that DMR outperforms
ther universal strategies and shows a higher return advantage. When
he initial strategy of each trading machine is UBAH, although the final
umulative wealth of DMR(UBAH) decreases to a certain extent, its
umerical performance is not different from that of DMR. The reason
eing that the UBAH strategy usually needs to hold assets in a longer
erm and cannot differentiate itself in the short term (window size
= 4) from DMR. This result also shows that the return of DMR is

ot sensitive to the initial strategy.
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Fig. 5. Convergence process of each trading machine’s portfolio strategy.
5.3.2. Convergence process of the machine strategy
We randomly select one stock from each dataset as the observation

object and plot the holding process of 𝑛 trading machines on it in
Fig. 5. The results show that the strategies of all trading machines
gradually converge to a consistent strategy with the increase of the
trading period. Theorem 4.3 tells us that this consistent strategy is, in
fact, a universal strategy.

5.3.3. Risk-adjusted return
The results in Fig. 6 illustrate the ability of risk tolerance and the

risk-adjusted return of each strategy. The results in Fig. 6(a) show
that the annualized return of DMR is higher than those of the other
strategies, except the EGS strategy on dataset FS100. If the initial
strategy of the trading machine is UBAH, its annual return changes
slightly but is not significant. This preliminarily finding indicates that
DMR is not sensitive to the initial value of trading machines and the
return is relatively stable. On one hand, in Fig. 6(b), the maximum
drawdown (MDD) of DMR is lower than those of the others and has
a further reduction than that of DMR(UBAH) on four datasets. This
means that DMR has a higher risk tolerance and the selection of the
initial strategy can affect the MDD of it to a certain extent. On the
other hand, the results in Fig. 6(c) and Fig. 6(d) show that the return
of DMR under unit risk (Sharpe ratio) and unit retreat risk (Calmar
ratio) are both higher than those of the others on dataset NYSE_Onew,
NYSE_Nnew, and FS100. For dataset DJIA01, the DMR has a similar
𝑆ℎ𝑎𝑟𝑝𝑒 performance to other strategies. Considering the performance
in the above MDD comparison, it shows that the ability of DMR to
generate unit return for investors is more stable than the others. In
addition, the MDD result also indicates that if a group of investors
needs to use the DMR strategy to achieve the same expected return,
they should try to use different initial portfolio strategies, which would
expose them to less drawdown risk.

To further support the above findings, we refer to the method in Li
et al. (2015) to verify the robustness of our strategy’s performance and
test the 𝛼 factor of DMR. For the 𝛼 factor, we regress the daily returns
𝑆𝑠,𝑡 of DMR on the daily returns 𝑆𝑚,𝑡 of the market (CRP strategy with
𝒃(𝑡) = ( 1𝑚 ,… , 1

𝑚 )) by the regression equation 𝑆𝑠,𝑡−𝑟𝑓 = 𝛼+𝛽(𝑆𝑚,𝑡−𝑟𝑓 )+𝜀𝑡,
where 𝑟𝑓 is the daily returns of risk-free assets (here, we simply set it
to 0). Assuming that 𝛼 is 0, the strategy does not get excess return.
1153
The 𝑡-test is used to observe the significance of 𝛼 different from 0 in
each dataset. The results in Table 6 show that the DMR strategy has
similar 𝛼 significance results as the existing universal strategies. They
are insignificant on FS100 and DJIA01 and significant on NYSE_Onew.
On the other hand, the 𝛼 factor of the DMR strategy using the randomly
generated initial feasible strategy is significant on NYSE_Nnew, and the
𝛼 factor of the DMR(UBAH) strategy using the UBAH strategy as the
initial strategy is insignificant except on NYSE_Onew. Note that the
initial strategies of both the DMR(UBAH) strategy and the market strat-
egy are the UBAH strategies. This indicates that UBAH, as the initial
strategy, reduces the significance of the 𝛼 factor of the DMR strategy,
or we can say that the DMR(UBAH) follows the market strategy on these
datasets. We believe that DMR has a higher probability for achieving
excess returns and, in practice, the performance of the DMR strategy
can be improved by selecting an appropriate initial strategy.

5.4. Parameter sensitivity

In this part, we analyze the sensitivity of DMR to realistic factors
and strategy parameters. The section contains the transaction cost,
short selling restriction, number of trading machines, and step size of
a strategy.

5.4.1. Transaction cost
Fig. 7 shows that the cumulative wealth of all universal strategies

does not decrease much as the transaction costs increase, and the rate of
decline is relatively flat. This means that the universal strategies are not
sensitive to transaction costs. Considering that short selling is allowed
for DMR, it means that DMR has a better practical application than the
existing universal strategies.

5.4.2. Short selling allowed or not allowed
Now, we discuss the influence of short selling allowed (SSA) or

short selling not allowed (SSNA) for DMR. The results in Table 7
show that removing the restriction on short selling can improve the
cumulative wealth of DMR, but this improvement is not too much
in terms of numerical value. This means that if we let all trading
machines start trading from the UBAH strategy, SSA or SSNA does not
shift the DMR strategy much in the feasible set. DMR can maintain a
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Fig. 6. Risk and risk-adjusted return performance of all strategies.
Table 6
Statistical 𝑡-test of the performance of DMR on the stock datasets.

FS100 DJIA01

𝛼 𝛽 𝑡-statistic 𝑝-value 𝛼 𝛽 𝑡-statistic 𝑝-value

UP 0.0055 0.9995 1.0096 0.3132 −0.0172 0.9995 −1.0788 0.2810
EG −0.0829 0.9960 0.8194 0.4130 −0.0060 0.9997 −1.0467 0.2956
EGS 0.2233 0.9984 1.8169 0.0698 0.0610 0.9996 −0.8919 0.3727
WAEG −0.1913 0.9918 0.5449 0.5860 −0.0179 0.9995 −1.1083 0.2681
MAEG −0.0175 0.9992 0.9615 0.3368 −0.1763 0.9990 −1.2377 0.2162
DMR (UBAH) −0.0156 0.9993 0.9623 0.3364 −0.0008 1.0000 −1.0025 0.3164
DMR 0.5409 0.9916 2.0914 0.0370 0.0475 1.0025 −1.1983 0.2312

NYSE_Nnew NYSE_Onew

𝛼 𝛽 𝑡-statistic 𝑝-value 𝛼 𝛽 𝑡-statistic 𝑝-value

UP −0.0568 0.9979 −16.3380 0.0000 −0.0723 0.9987 −22.7284 0.0000
EG −3.2132 0.6249 −69.9039 0.0000 −4.6954 0.6006 −73.7063 0.0000
EGS −0.1563 0.9975 −37.2205 0.0000 −0.4088 0.9991 −95.3162 0.0000
WAEG −3.2865 0.6232 −77.8829 0.0000 −4.6977 0.5971 −76.6110 0.0000
MAEG −3.1504 0.6265 −62.6113 0.0000 −4.6676 0.6036 −69.2592 0.0000
DMR (UBAH) 0.0292 0.9997 0.2825 0.7776 −0.0050 0.9998 −2.7861 0.0054
DMR 0.4063 0.9880 28.3610 0.0000 0.1366 1.0118 18.1043 0.0000
Table 7
Performance comparison of DMA (UBAH) in SSA and SSNA.
Criteria FS100 DJIA01 NYSE_Nnew NYSE_Onew

SSA SSNA SSA SSNA SSA SSNA SSA SSNA

CW 1.22 1.22 1.286 1.286 4.44 4.28 14.6 14.6
Annualized volatility 24.2 24.0 11.99 11.99 25.00 25.02 24.2 24.2
Annualized turnover 3.29 3.29 1.644 1.644 3.16 3.21 3.67 3.67
similar cumulative wealth under both SSA and SSNA. Thus, we turn our
analysis to the risk indicators, namely the annualized turnover rate and
annualized volatility. The results in Table 7 illustrate that the turnover
rate and volatility of DMR in SSA are higher than those in SSNA, which
means that the DMR strategy adjusts assets more frequently in SSA and
generates more risk.

5.4.3. Machine number 𝑛 and step size 𝑎𝑘
Now, we analyze the impact of machine number 𝑛 and step size 𝛼𝑘

on the cumulative wealth of DMR. We set 𝛼 ∈ { 1 , 1 , 1 , 1 ,
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𝑘 𝑘+1 𝑘+10 𝑘+100 𝑘+500
1
𝑘+1000 ,

1
𝑘+10000 ,

1
𝑘+20000 }, 𝑛 ∈ {1, 5, 7, 10, 15, 20, 23}, and obtain the cumu-

lative wealth of DMR under various possible combinations of (𝛼𝑘, 𝑛).
In Section 4, we set the stock correlation sub-network as the com-

munication network structure of trading machines. This is because we
believe that stocks with high centrality generate higher returns, and
we hope that the structure of the sub-network filtered with centrality
can help the trading machines calculate the strategies that can gain
higher returns. The greater the centrality of a stock, the more stocks are
associated with it. We can consider the sub-network as a condensation
of the correlations in the complete stock network. It is natural to
wonder whether the larger the sub-network size, the better the DMR
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Fig. 7. Comparison of cumulative wealth under different transaction costs 𝛾.
Fig. 8. Heat maps of the cumulative wealth of DMR (UBAH) in different step size 𝛼𝑘 and machine number 𝑛.
strategy. Moreover, since different combinations of assets may yield dif-
ferent results, what is the impact of the size of the sub-network on the
DMR strategy when faced with different asset portfolios? In the DMR
strategy, the sub-network size and the number of trading machines are
equal. Therefore, by varying the number of trading machines, we can
analyze our above question under different sizes of stock sub-networks.
The results in Fig. 8 show that:

(1) The effect of 𝛼𝑘 is relatively intuitive. When 𝑛 = 1, different
values of 𝛼𝑘 produce almost equal returns for DMR. This result is
expected because 𝛼𝑘 most directly affects the convergence rate of DMR
and the optimal strategy for each trading machine. When 𝑛 = 1, the
DMR strategy is a centralized strategy that does not distinguish between
1155
trading machines and does not utilize any stock network information.
At this point, 𝛼𝑘 is the only factor to affect the speed of convergence
of DMR to the BCRP. However, the trading periods in our datasets
are generally more than two years or even more than 10 years, which
could be a long-term investment period. Therefore, when the step size
𝛼𝑘 changes, the convergence rate of DMR barely changes and the final
cumulative wealth is the same.

When 𝑛 > 1, the returns of DMR gradually increase as 𝛼𝑘 decreases.
Note that the DMR strategy has been transformed into a distributed
strategy at this point. Under the influence of the stock sub-network
structure, a distinction gradually arises between the optimal strategies
of trading machines. The increase of step size 𝛼 further enhances the
𝑘
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Table 8
Performance of DMR (UBAH) in different machine number 𝑛 with fixed 𝛼𝑘 = 1

𝑘+1000
.

Machine number 𝑛 5 7 10 15 17 20 23

FS100
CW 1.219098369 1.219388283 1.2196057 1.2197749 1.2198147 1.219859 1.219893
Annualized volatility 24.16578744 24.17590732 24.183507 24.189423 24.190816 24.19238 24.19354
MDD 36.72741052 36.72925353 36.730636 36.731711 36.731964 36.73225 36.73246

DJIA01
CW 1.286096455 1.286115916 1.2861305 1.2861419 1.2861445 1.286148 1.28615
Annualized volatility 11.98601542 11.98605457 11.986084 11.986107 11.986112 11.98612 11.98612
MDD 15.20181093 15.20153952 15.201336 15.201178 15.20114 15.2011 15.20107
sparsity between these strategies of the trading machines. However,
Theorem 4.2 shows that the strategies of each trading machine will
eventually converge to the same BCRP strategy. Therefore, the smaller
the 𝛼𝑘, the faster the optimal strategies of all trading machines con-
verge, and the larger the cumulative return of DMR. It is important
to state that we do not recommend setting 𝛼𝑘 too small because the
optimization theory suggests that if the step size 𝛼𝑘 is too small, the
optimal strategies of some trading machines may still be ‘‘stuck’’ in the
neighborhood of the previous strategy after a certain trading period. If
a trading machine’s strategy is ‘‘not good enough’’ for a given trading
period, this may have a negative impact on the DMR strategy.

(2) The effect of the number of trading machines 𝑛 on the DMR
strategy is more complex. The cumulative return of DMR is minimized
when 𝑛 = 1. The stock sub-network corresponding to each trading
period contains only one asset with the highest centrality, and the DMR
strategy has actually become a centralized algorithm (𝑛 = 1) without
using any information from the stock sub-network. Once the DMR
strategy transforms into the distributed algorithm (𝑛 > 1), the returns
of DMR increase significantly. When 𝑛 > 1, the return of DMR increases
as the number of trading machines (stock sub-network size) increases.
This indicates that the DMR strategy exploits the information in the
sub-network of stocks and obtains higher returns than the centralized
algorithm. It is feasible to use centrality to filter stock sub-networks.
When 𝑛 > 1, the results in Fig. 8 reveal two points worth discussing:

(1) For the most part, the results in Fig. 8 seem to suggest that the
bigger the 𝑛, the larger the returns. This is counter intuitive as different
datasets contain different assets and have different effects on the DMR
strategy. Also, 𝑛 obviously cannot exceed the number of assets 𝑚 con-
tained in the dataset; for example, FS100, DJIA01, NYSE_Nnew, and
NYSE_Onew contain 101, 29, 37, and 36 assets, respectively. Therefore,
we set 𝛼𝑘 = 1

𝑘+1000 and conduct another experiment to further examine
the effect of 𝑛. First, we set 𝑛 = {101, 29, 37, 36} for the above four
datasets. We find that the strategy returns are 1.22, 1.286154, 4.259,
and 14.6198, respectively. Compared to the results in Fig. 8, the return
of DMR increases on FS100 and DJIA01 and decreases on NYSE_Nnew
and NYSE_Onew. This suggests that more trading machines (stock sub-
network size) is not necessarily better. For different asset portfolios, we
should not simply set 𝑛 equal to the number of assets 𝑚. If 𝑛 increases,
the sub-network will ‘‘absorb’’ more low-centrality stocks, which may
lead to lower returns. Second, we observe the relationship between
other performance indicators of the DMR strategy and the variation
of 𝑛 in dataset DJIA01 and FS100. The results in Table 8 show that
the annualized volatility, 𝑀𝐷𝐷, and cumulative wealth of the DMR
strategy gradually increase as 𝑛 increases. This indicates that increasing
the number of trading machines 𝑛 also makes the stock sub-network
absorb more low-centrality stocks, which exposes the strategy to more
market volatility risk.

(2) In the NYSE_Nnew dataset, when 𝛼𝑘 ≤ 1
𝑘+500 , the return of

DMR decreases slowly as 𝑛 increases, and the standard deviation of the
change in returns does not exceed 0.01. In the NYSE_Onew dataset,
when 𝛼𝑘 ≤ 1

𝑘+5000 , the return of DMR increases first, then decreases
and increases again, but the standard deviation of the change in returns
does not exceed 0.025. This means that DMR in these two datasets is
more sensitive to the decrease in step size 𝛼𝑘. The smaller step size 𝛼𝑘
makes the trading machine iterate the investment strategy very slowly
in each period, ‘‘hindering’’ the convergence of the DMR strategy. We
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Fig. 9. Histograms of the cumulative wealth of the strategy under different 𝛼𝑘, where
total trading periods is 100.

consider this effect to be acceptable because the fluctuations of the
returns are small (in Fig. 8 the change is not obvious). In practice, if we
expect to set a small 𝛼𝑘, we can provide a small 𝑛 to obtain a ‘‘relatively
good’’ return performance.

To further verify the effect of 𝛼𝑘 in a short-term trading period, we
limit the trading periods in each dataset to 100 days, and again obtain
the change of the cumulative wealth of DMR for different values of 𝛼𝑘.
We set 𝑛 = 10 and 𝛼𝑘 ∈ { 1

𝑘+1 ,
1

𝑘+10 ,
1

𝑘+100 ,
1

𝑘+500 ,
1

𝑘+1000 ,
1

𝑘+10000 ,
1

𝑘+20000 }.
The results are summarized in 9.

The results in 9 show that when 𝛼𝑘 < 1
𝑘+100 , the change in returns

is monotonic across the datasets as 𝛼𝑘 decreases. When 𝛼𝑘 ≥ 1
𝑘+100 ,

the returns appear to rise and then fall on the FS100 dataset, and
fall and then rise on the DJIA01 dataset. This indicates that a large
step size 𝛼𝑘 tends to affect the strategy adjustment of the trading
machine in the pre-trading period which, in turn, affects the returns
of DMR in the pre-trading period. However, as trading progresses, the
portfolio strategies of the trading machines gradually converge so that
the change of returns of the DMR strategy becomes stable. Therefore,
setting 𝛼𝑘 in a small range can avoid unexpected fluctuations of the
DMR strategy in the early trading periods, e.g., a large 𝛼𝑘 results in
trading machines being more likely to leapover the best strategy in the
feasible set when updating its own strategy, making the DMR strategy
take a longer trading period to eliminate this effect, thereby affecting
the strategy return.

6. Conclusions

In this paper, we proposed a DMR strategy based on a stock cor-
relation sub-network and a distributed algorithm. DMR is weighted
by a group of portfolio strategies generated by a series of online
trading machines connected by the stock correlation sub-network. Each
trading machine communicates with the other machines according to
the dynamic stock correlation sub-network structure to realize the
exchange of strategies and update its own strategies for the next trading
period. This strategy is suitable for intelligent investment situations
such as large-scale investment and automated trading. Furthermore,
short selling is allowed in our strategy, thereby satisfying more realistic
investment needs.

The theoretical analysis shows that DMR and the strategies of all
online trading machines are universal, which can provide a theoretical
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income guarantee for investors. The empirical test results show that,
on one hand, the performance of DMR is better than those of existing
universal strategies. DMR is also less sensitive to transaction cost. On
the other hand, DMR is less sensitive to the number of trading machines
and the step size numerically; however, determining an appropriate
number of trading machines and step size at the beginning of invest-
ment can improve the performance of DMR. From the experimental
results of this paper, ‘‘avoiding setting the number of trading machines
and step size to extremely large or small’’ is a reasonable investment
recommendation. In addition, ‘‘how to analyze the optimal size of the
stock correlation sub-network’’ and ‘‘how to find the optimal step size’’
will be the focus of our future research.
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