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A B S T R A C T

The accuracy of the widely-used two-dimensional hydrodynamic numerical model depends on the quality of the
river terrain model, particularly in the main channel. However, in most cases, the bathymetry of the river channel
is difficult or expensive to obtain in the field, and there is a lack of available data to describe the geometry of the
river channel. We introduce a method that originates from the grid generation with the elliptic equation to
generate streamlines of the river channel. The streamlines are numerically solved with the Laplace equations. In
the process, streamlines in the physical domain are first computed in a computational domain, and then trans-
formed back to the physical domain. The interpolated streamlines are integrated with the surrounding topography
to reconstruct the entire river terrain model. The approach was applied to a meandering reach in the Qinhe River,
which is a tributary in the middle of the Yellow River, China. Cross-sectional validation and the two-dimensional
shallow-water equations are used to test the performance of the river terrain generated. The results show that the
approach can reconstruct the river terrain using the data from measured cross-sections. Furthermore, the created
river terrain can maintain a geometrical shape consistent with the measurements, while generating a smooth main
channel. Finally, several limitations and opportunities for future research are discussed.
1. Introduction

In numerical hydrodynamic models, which are major tools for flood
simulation and are widely applied in hydraulic engineering and flood risk
analysis, the bathymetry of the computational domain is obtained from
the river terrain model whose quality significantly affects the accuracy of
the simulated water level, velocity and bed deformation (Hardy et al.,
1999; Horritt et al., 2006; Raber et al., 2007; Podhornyi et al., 2013). The
river terrain model of a computational domain can be divided into two
parts. The first part is the floodplain area, where topographical data can
be acquired using conventional techniques, such as LiDAR (Light
Detection And Ranging) or photogrammetry (Li et al., 2005). Within the
floodplain, the elevation points or contour lines are the commonly-used
data type to represent topography. The second part of the river terrain is
the area covered by water, where the river bathymetry is difficult or
expensive to obtain using traditional remote sensing techniques.

There are three widely-used methods to acquire river bathymetry. A
direct method is to measure the water depth at a sufficient number of
points, and to generate the terrain of the entire domain using classical
spatial interpolation methods (Jansen, 1979), with commonly-used
methods including IDW (inverse distance weighting), NN (nearest
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neighbor), and OK (ordinary kriging) interpolation (Li and Heap, 2011).
The direct method has been very successful for large domains, such as in
a coastal terrain (Bailly du Bois, 2011; Vogel and Mrker, 2010). In these
cases, the historical dataset and the newly-acquired sample points are
used to rebuild the terrain of the study area. However, in most cases,
historical data concerning the geometry of the river is scarce, with
cross-sections often the only data source, making the interpolation of
high-quality data for the river bathymetry difficult to realize (Schppi
et al., 2010).

A second method is the use of advanced instruments, such as ship-
based multi-beam SoNARs (Sound Navigation and Ranging), which are
also known as multi-beam echo-sounders. These are widely applied for
bathymetry mapping of the seafloor and rivers (Intelmann, 2006; Nit-
trouer et al., 2008; Colbo et al., 2014). The multi-beam SoNAR is an
active remote sensing system that provides data of the topography of a
riverbed for generating spatially smooth and high-resolution topo-
graphical data. The limitation of the multi-beam SoNAR system occurs in
shallow-water environments, where seamless data between a water body
and dry land is difficult to realize (Costa et al., 2009). Moreover, it is an
expensive method for obtaining river bathymetry.

The third method interpolates data from measured cross-sections to
ber 2017
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Fig. 1. General idea of reconstructing the river topography.
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Fig. 2. Description of streamline generation.
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reconstruct the river channel terrain. While the practical application of a
hydrodynamical numerical model requires that some historical data be
used to validate the parameters in the model, in most cases, the cross-
section data are the only geometric data source of the river channel.
However, using cross-section data to rebuild the topography of the
riverbed has proved to be effective, and thus has received much attention
in recent years.

For example (Merwade et al., 2005, 2008), introduced a curvilinear
orthogonal coordinate to reference data along the river flow, and to
generate three-dimensional topographic data of river channels. This
interpolation method was used to create a three-dimensional mesh for
the main channel, and to integrate it with the surrounding topography
(Schppi et al., 2010). combined lateral river profiles with a digital terrain
model to produce a grid, and interpolated cross-section data to the grid
points to improve the terrain quality (Caviedes-Voullime et al., 2014).
used splines to interpolate cross-section data in the horizontal plane and
the vertical direction for which the elevation was obtained by interpo-
lating along the bank, thalweg and interior splines.

We introduce a new algorithm here to reconstruct the river terrain
model from the measured cross-sectional data and floodplain
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topography, and to build a two-dimensional hydrodynamic numerical
model. The streamlines of the river channel are created based on the idea
of structured grid generation. After the elevations of vertices along the
streamlines are interpolated using measured cross-sections, the stream-
lines are interpolated with the surrounding contour lines to obtain the
whole river terrain model. The advantages of this method are that the
generated streamlines, which are constrained by the Laplace equations
over the whole region, fit well with the curved boundary of the river bank
and do not intersect each other.

The next section reviews the river morphology, and introduces the
main idea for reconstructing the river terrain model. The method using
the Laplace equations to generate the streamlines in the river channel is
provided in Section 3. In Section 4, a reach in the Qinhe River is taken as
an example to demonstrate the proposed method. The application results
and validation are also presented in Section 4. Finally, the conclusions
and future lines of research are provided in Section 5.

2. General idea of reconstructing the river terrain

Understanding the general river morphology is the first step in
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reconstructing the river terrain. The morphology of a river focuses on the
structure and form of the river, which includes the river pattern, channel
geometry, profile and velocity distribution. The morphology of a river is
the result of several variables and their interactions, which can be cate-
gorized as the hydraulics of the flow (e.g., velocity, discharge, roughness
and bed shear), channel configurations (e.g., width, depth, shape, and
slope) and upstream load (e.g., sediment and discharge) (Marie Mor-
isawa and Clayton, 1985).

For natural rivers, the river pattern is used to describe the plan view of
a reach, and includes straight, meandering and braiding (Leopold and
Wolman, 1957). While straight and meandering rivers have similar river
morphologies, straight rivers have negligible sinuosity in the bankfull
stage, whereas meandering rivers have unstable channels with bends
(Petersen, 1986). A braiding river has numerous channels that divide and
rejoin in braided reaches.

Fig. 1(A) shows a hypothetical river with straight and meandering
reaches. On the surface of the flow, a streamline of maximum velocity
represents the maximum vertical average velocity along the river channel
and divides the streamlines into two parts. The streamline of maximum
velocity is nearer the concave bank of each bend and crosses over near
the point of inflection between the banks (Morisawa, 1968).

The flow at a river bend produces a super-elevation of the water
surface at the concave bank and a lower water surface at the convex bank.
At the bends, the vertical velocity and transverse velocity simultaneously
affect the riverbed. On the bed, the distribution of the vertical velocity is
similar but smaller than the surface velocity. The transverse velocity, or
helicoidal flow, can transfer the bed load from the concave bank toward
the convex bank, as shown in Fig. 1(B). Thus, the concave bank of the
bend is constantly eroding, whereas deposition occurs on the convex
bank. Moreover, the cross-section in the bend is triangular with the
highest water depth near the concave bank.

On the riverbed, the thalweg is a line representing the lowest eleva-
tion along the river channel. Similar to the streamline of maximum ve-
locity on the water surface, the path of the thalweg is closer to the
concave banks and crosses over from one bank to the other down-
stream (Fig. 1(C)).

One can imagine that other curved lines at both sides of the thalweg
on the riverbed can be applied to represent the bathymetry of the main
channel. These curved lines on the bed are identified by two planes. In
the horizontal plane, the curved lines are similar to the streamlines on the
surface, concentrate at the concave bank, and disperse at the convex
bank. In the vertical plane, these curved lines intersect with the measured
cross-sections and can interpolate their elevations at the vertices. The
elevations value of the other vertices between cross-sections able to be
linearly interpolated. Thus, the key to reconstructing the river topog-
raphy is the generation of the streamlines using the path of the thalweg
and measured cross-sections.

3. Description the river terrain model

3.1. Mathematical foundation for the generation of the streamlines

Based on the morphology of a river, we use the Laplace equations to
generate the streamlines in the river channel. The general idea for
generating the streamlines of the riverbed originates from the specifi-
cation of the numerical grid using the elliptic equations first introduced
by (Thompson et al., 1985). Grid generation based on the elliptic equa-
tions is an advanced algorithm for obtaining a structured mesh, and has
many applications in the field of computational fluid dynamics (Fletcher
and Srinivas, 1991; Anderson, 1995). For this type of algorithm, the form
of the Laplace or Poisson equation is applied to solve the coordinates of
the grid points in the physical domain, with the advantage that the
generated mesh performs a so-called body-fitted boundary. This pre-
serves the shape of the physical domain, and is useful to generate the
streamlines of the naturally curved boundary of rivers.

To apply the Laplace-equation-based grid-generation method to
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obtain the streamlines, some adjustments and simplifications have been
considered. The adjustment is that the water edge at both banks is
considered to be the outer boundary, while the thalweg line is taken as
the inner boundary. The simplification is that only the grid lines along
the channel direction are used to obtain the curved lines, whereas the
grid lines across the river are ignored.

Fig. 2 illustrates the generation of the riverbed streamlines. Supposing
that some general boundary lines of a river channel have been provided,
including the water edge and the thalweg, which are given in x and y
coordinates, the problem of generating the vertices of the streamlines can
be considered as a boundary-value problem in the physical domain. This
process may be solved using the Laplace equations to locate the co-
ordinates of the interior points (Fig. 2(A)).

The simplest elliptic partial differential equations are the Laplace
equations, which are described in two-dimensional space as

∂2ξ
∂x2

þ ∂2ξ
∂y2

¼ 0 (1)

∂2η
∂x2

þ ∂2η
∂y2

¼ 0 (2)

where x and y represent the coordinates in the physical domain, and ξ
and η refer to the points in the computational domain. Equations (1) and
(2) can be solved using iterative techniques such as Gauss-Seidel iteration
or successive over relaxation (Knabner and Angermann, 2003). When
using the finite-difference scheme to solve the equations, the process
must occur in a rectangular domain with uniform grid spacing. To
transform the boundaries from the physical domain to a rectangular
domain (which is called a computational domain), one can imagine that
the boundaries are twisted and stretched, as shown in Fig. 2(B). Mathe-
matical expressions to describe this transformation is by interchanging
the independent and dependent variables in Equations (1) and (2), whose
mathematical proof is given by (Thompson et al., 1977). With the
transformation, the Laplace Equations (1) and (2) become
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The system of Laplace Equations (3) and (4) is solved in the compu-
tational domain ðξ; ηÞ to provide the grid point locations in the physical
domain ðx; yÞ (Fig. 2(C)).

3.2. Numerical solution for the streamlines

The numerical solution of Equations (3) and (4) are discretized using
a finite-difference scheme following a second-order central-difference
approximation:



Fig. 3. Interpolation of the elevation of the river bed.
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In general, the methods to solve Equations (8) and (9) can be classi-
fied as either direct or iterative. The most common direct methods are
Cramer's rule and Gaussian elimination, which require an enormous
amount of arithmetic operations, and are limited by the size of the co-
efficient matrix, the storage requirements or programming difficulty.
Therefore, iterative methods are widely used because the iterative pro-
cedures used to solve a set of linear algebraic equations are easy to
program. These methods use initially guessed or previously computed
values to solve the dependent variables at each grid point, and then
repeated until a specified convergence criterion is reached.

The Gauss-Seidel iteration method is a commonly-used iterative al-
gorithm, whereby the newly computed values of the dependent variables
Fig. 4. Location of the
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are used to compute the neighboring points when available, with the
advantage of an increase in the convergence rate and much less
computational time. The Gauss-Seidel scheme of Equations (8) and (9) is
described as:
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To initiate the calculation, an initial distribution of x and y co-
ordinates of the grid points in the physical domain must first be obtained
from an algebraic model in the computational domain. For example, the
grid points can be uniformly packed along the boundaries in the
computational domain. The coefficients α, β and γ in Equations (10) and
(11) are determined from Equations (5)–(7) using finite-difference ap-
proximations. For the first iteration, the x and y values are given by the
initial guessed values. In the next iteration, the values of the variables are
replaced by the previous iteration, and repeated until a specified
Shuibeicun reach.



Fig. 5. The river terrain inferred from measurements.

Table 1
Locations of the intersection points between the water surface profile and the cross-
sections.

No. of cross-
section

Water
surface

Elevation of the
lowest point

Left water
edge

Right water
edge

1 826.10 812.9 18 318
2 826.77 811.0 44 756
3 826.89 814.5 633 827
4 827.25 814.3 555 1109
5 827.45 816.3 540 1075
6 827.53 816.2 502 1247
7 828.11 817.6 217 742
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convergence criterion is satisfied.

3.3. Interpolating the elevation of the streamlines

The elevations of the vertices along the streamlines are interpolated
from the nearest cross-sections, as shown in Fig. 3 for cross-sections 1 and
2. Points D and F are the intersections between a streamline and two
cross-sections, and point E is a vertex along the streamline. The elevation
of points D, E and F are denoted by Zs1

i;j , Z
sð1;2Þ
i;jþ2 and Zs2

i;jþn, respectively,
where i refers to the ith streamline across the river, and j refers to the jth

vertices along the streamline. The superscripts s1 and s2 denote the
measured cross-sections 1 and 2, respectively. The curved distances from
point E to points D and F are denoted by Ljþ2;j and Ljþ2;jþn, respectively.
The elevations of points D and F can be simply interpolated using the
measured cross-sections, and the distance can be easily calculated. Thus,
the elevation of point E is determined by the distance from the vertices to
the two cross-sections, and can be written as

Zsð1;2Þ
i;jþ2 ¼ Zs1

i;j þ
Ljþ2;j

Ljþ2;j þ Ljþ2;jþn

�
Zs1
i;j � Zs2

i;jþn

	
(12)

The interpolated streamlines are then integratedwith the topographic
data in the floodplain, which can be derived from the elevation points
and contour lines. The entire river terrain model, including both the river
channel and floodplain, is represented by a triangular irregular network,
which is a commonly-used geographic information system (GIS) tech-
nique to set up a terrain model, and can use multiple data forms, such as
points, contour lines, or polygons (Zeiler, 2010).

4. Application

4.1. Study area

The proposed method to reconstruct the river terrain is applied and
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validated for the Shuibeicun reach in the Qinhe River, which is located in
the middle of the Yellow River Basin, China (Fig. 4). As a railway bridge
will be built in this reach, the lowest elevation of the bridge must be
evaluated to ensure that a one-hundred-year flood can pass under the
bridge. To calculate the elevation of the design flood, the two-
dimensional numerical model will be applied, so that the river terrain
must first be created.

Here we present a method that uses remote sensing images to identify
the boundaries of the thalweg and the water edge, which are then applied
to generate two types of streamlines. This paper generates two types of
streamlines by selecting the water edge or thalweg boundaries and in-
terpolates three river terrain models with different resolution. To analyze
the error of the three reconstructed river terrain models, measured cross-
sections are compared with the interpolated ones. The two-dimensional
shallow-water equations are then applied to calculate the flood extent
and depth.
4.2. Identification of the boundary of the water edge and the thalweg

Fig. 5 shows the available data, including the water edge, the thalweg
and seven measured cross-sections, which were obtained using different
methods. The elevations and locations of the cross-sections were
measured using a total station instrument in September 2015.

The thalweg was identified based on remote sensing images and the
measured cross-sections. Since the cross-sections were obtained in
September 2015, a Landsat 8 remote image of 30-m resolution with 12
bands (Loveland and Irons, 2016) was selected on September 26 to detect
the thalweg. To observe the body of water, the 5th, 6th and 4th bands are
composited into a single image, corresponding to the bands of near
infrared, red and short-wave infrared light, respectively. The combina-
tion of the three bands transfers the color of land and water bodies into
green and blue, respectively, and is an effective way to identify water
bodies on a riverine floodplain. The result of the multiband composite
image is shown in Fig. 5, where an obvious water body can be observed.
In September 2015, the discharge of the Shuibeicun reach was about 30
m3=s and the width of the river was less than 50 m. Furthermore, some of
the lowest points from the measured cross-sections (Table 1) represent
the location of the thalweg. Finally, the thalweg line can be fitted with a
spline function (e.g (De Boor, 2001).), which passes through the lowest
points and within the confines of the water body.

The water edge was identified from the solution of the one-
dimensional open-channel equations (e.g (Chow, 2009).) and the
measured contour lines. An ideal water edge line is the boundary during
the time of bankfull discharge, which is the best condition for generating
the streamlines. In this situation, the channel is full of water without



Fig. 6. Results of the generated river terrain.
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overflowing the banks, and has a maximum area of wettable
cross-section. While the water edge should normally be obtained from
field measurements, in most cases, it is difficult to obtain this line in
conditions of bankfull discharge.

One solution is to solve the one-dimensional open-channel model to
calculate the water surface profile and identify its intersection points at
the geometric shape of the measured cross-sections. These intersection
points are then used as key points to control the shape of the water
edge lines.

The solution of the one-dimensional open-channel model requires
two boundary conditions. One condition is the bankfull discharge of this
reach, which is considered as the input discharge, and is estimated using
the rating curve of cross-section 1, which also corresponds to the outlet of
the domain. The rating curve is the relationship between the discharge
and the water level, and can be statically calculated using historical
observational data. According to the rating curve of cross-section 1, the
bankfull discharge is 6500 m3=s when the geometry of its cross-section is
32
considered. The second boundary condition is the roughness value.
Empirically, the roughness is 0.032 in the main channel and 0.035 in the
floodplain area for this reach.

Table 1 shows the derived water-surface profile and the locations of
the intersection points between the seven cross-sections and the water-
surface profile, which decreases from 828.11 m at cross-section
7–826.10 m at cross-section 1. The intersection between the profile
and the cross-sections is measured from the left bank.

The shape of the water edge lines can be fitted with a spline function,
which passes through these intersection locations and follows the foot of
the mountain observed from the measured contour lines.

4.3. Result of the created river channel

To assess the error of the recreated terrain, three river terrain models
with different boundary conditions were generated by the interpolation
described above. The streamlines of terrain 1 are generated from the



Fig. 7. Comparison of cross-sections derived from the generated channel with measured cross-sections.
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thalweg and interpolated using all seven measured cross-sections.
Terrain 2 uses the boundary of the thalweg and the water edge to
generate the streamlines, but interpolated using selected cross-sections 1,
3, 5 and 7. For terrain 3, the boundaries applied to generate the
streamlines are same as terrain 2, but all the seven measured cross-
sections are used for the interpolation. For the three types of river
terrain models, the contour lines of the floodplain area are the same. The
algorithm was performed using the GCC Fortran compiler installed on a
Linux Ubuntu 16.04 operating system. The computational time to
generate the streamlines takes several minutes.
33
The results of the generated streamlines are shown in Fig. 6. For
terrain 1 (Fig. 6(A)), the generated streamlines are spread uniformly
along the river channel because only the water edge lines were consid-
ered. For terrains 2 and 3 (Fig. 6(B) and (C)), the thalweg line divides the
streamlines into two, with 18 and 10 streamlines toward the left and
right banks, respectively, and the distance between adjacent streamlines
changes with the geometry of the river. In other words, a smaller distance
between the thalweg and the water edge lines corresponds to a smaller
distance between the two nearest streamlines, and vice versa. As the
separation of the thalweg from the water edge at the concave bank is



Fig. 8. The variation of the wettable cross-sectional area with the increase of water level.
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normally smaller than that for the convex bank in natural rivers, more
streamlines must be created at the concave bank to describe the gradient
of the terrain. Along each streamline, the average distance between the
nearest vertices is 10 m, and the vertices are sufficiently dense to
reconstruct the change in the river channel.

For terrain 1, the interpolated elevations along the thalweg are not
very smooth, especially at cross-sections 3 and 5, and even change
sharply. For terrains 2 and 3, however, the elevations along the thalweg
are smooth and change gradually.

Fig. 6(D), (E), (F) shows the interpolated results of the three terrain
34
models, respectively, where, except for terrain 1, a distinct river channel
along the thalweg is observed.
4.4. Validation using the measured cross-sections

The interpolated river terrain models are validated using the
measured cross-sections in terms of the geometrical shape and the
wettable area of the cross-section for a given water level.

Fig. 7 compares the interpolated geometry of the three terrain models
with the measurements. For terrain 1, where only the water edge lines



Table 2
Cases for the two-dimensional numerical models.

Case name Terrain Discharge ðm3=sÞ

Case100T1 Terrain 1 100

Case6500T1 Terrain 1 6500

Case100T2 Terrain 2 100

Case6500T2 Terrain 2 6500

Case100T3 Terrain 3 100

Case6500T3 Terrain 3 6500
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are used to generate the streamlines, the geometry of interpolated cross-
sections looks reasonable, except for cross-sections 2, 3 and 5. The ele-
vations of cross-section 3 and 5 change sharply, because the spread of the
streamlines is inconsistent with the path of the thalweg.

For terrain 2, except for cross-sections 1, 3, 5 and 7, the generated
cross-sections 2, 4 and 6 have different geometries from the measure-
ments. As the elevation of the interpolated streamlines can only be
Fig. 9. Flood extent and depth as calculated from
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controlled by the selected cross-sections, the channel morphology of
cross-sections 2, 4 and 6 is difficult to recreate. Taking cross-section 2 as
an example, Table 1 shows that the elevation of the lowest point drops
from 812.9 m at cross-section 1–811.0 m at cross-section 2, and then
increases to about 814 m at cross-sections 3 and 4. The capture of the
sharp change of the bed elevation at cross-section 2 is difficult because
only the selected cross-sections 1 and 3 are used for the interpolation.
Thus, the shapes of the cross-sections for terrain 2 are poorly generated.

As terrain 3 incorporates both the water edge and the thalweg lines in
the generation of the streamlines, and all the measured cross-sections are
used for the interpolation, the overall shape of the terrain looks reason-
able and significantly improved over the other terrain models.

Therefore, when more measurements are used, the shape of the cross-
section has a higher quality. Moreover, the generated cross-sections
perform better for gradual changes of the channel bed without any
abrupt decrease or increase.

The results of the wettable area of the cross-section at a given water
the two-dimensional shallow-water equations.



Fig. 10. Simulated flood outflow hydrographs.

R. Lai et al. Computers and Geosciences 111 (2018) 26–38
level are given in Fig. 8, with the errors between the measured and
interpolated data defined by the root-mean-square error (RMSE),
whereby the RMSE for terrain 1 is smaller than for terrain 2, and terrain 3
gives the lowest RMSE error.

For terrain 2, the cross-sections 2, 4, 6 have increasing RMSE with the
increase of water level. Specifically, for cross-section 4, the values of
wettable area under the water level of 819 m are smaller than the value
from the measured cross-section, implying that the wettable area for this
cross-section is underestimated, and, at that water level, a smaller value
of discharge is able to pass through the cross-section. If this cross-section
were to be used to build up the two-dimensional hydrodynamic model,
the calculated water level would be larger than the actual value. The
cross-section 7 generated by all three terrain models for the water level of
821 m would have similar effects.

4.5. Results of the two-dimensional simulations

The two-dimensional shallow-water equations (e.g. (Anastasiou and
Chan, 1997) (Begnudelli and Sanders, 2006);) are applied to evaluate the
performance of the three terrain models. The lack of observations of
historical floods means that two design cases of the steady discharge,
100m3=s and 6500m3=s, are used for the calculation of the flood extent
and depth. The low flow rate (100m3=s) is sufficiently small to test
whether the created channel is smooth, particularly in the area of the
main channel. The higher flow rate (6500m3=s) is considered to be the
bankfull discharge, and is identical to the value used to identify the
boundary of the water edge. The cases designed for testing are listed
in Table 2.

The finite-volume method is used to discretize the two-dimensional
shallow-water equations for a set of 33,000 triangular cells (e.g., (Lai
et al., 2013) (Lu and Xie, 2016);). The size of these cells in the main
channel is about 20 m, but 30 m in the floodplain area. The initial con-
ditions, such as the roughness, are identical to those defined in Sec-
tion 4.2.
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Fig. 9 shows the calculated flood extent and depth. For the low
discharge rate (100m3=s), the flood extent of Case100T1 is clearly larger than
Case100T2 and Case100T3 . As shown in Fig. 6, the terrain 1 is not smooth along
the main channel. For this reason, although there is a low discharge rate,
the flooding would occur over low terrain, resulting in a larger flood
extent. Compared with Case100T1 , Case100T2 and Case100T3 have a similar and
more realistic flood extent. It is clear that the position of the thalweg in
the latter two cases is always at the center of the river, although the flood
extent of Case100T3 from cross-sections 6 to 7 is slightly larger than the
results from Case100T2 . The difference can be explained from the geometry
of the interpolated cross-sections shown in Fig. 7. By comparing these
results with the measurements of cross-section 6, especially at the left
bank from 500 m to 750 m, terrain 3 obtains a more reasonable geo-
metric shape than that for terrain 2. As a result, the interpolated elevation
from cross-section 6 to 7 for terrain 3 should be lower than that for
terrain 2, so that the results of the flood extent for Case100T3 are more
reasonable than that for Case100T2 .

For the higher discharge rate (6500m3=s), all the three terrain models
result in a similar flood extent. Especially for Case6500T3 , the flood extent
andwater edge line have almost identical shapes, where the water edge is
the boundary of the bankfull discharge. The calculated flood extent from
the two-dimensional hydrodynamic model fits well with the water edge
lines calculated using the one-dimensional open channel model. There-
fore, we conclude that the reconstructed river terrain has a reasonable
volume to accommodate the higher discharge.

Fig. 10 shows simulated dry-to-steady outflow hydrographs for the six
cases. For Case100T2 and Case100T3 , the arrival time of the flood to outlet
(cross-section 1) takes approximately 1.5 h. In contrast, the arrival time
for Case100T1 takes more than 5.5 h, which follows from the poorly
generated terrain for this case, resulting in the flood extent over a larger
area, and the delay of the arrival time at the outlet. For the higher
discharge rate (6500m3=s), the arrival time for the three cases is similar
(0.5 h), with the time to steady state of about 3 h.
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5. Conclusions

An accurate geometric description of the main channel bathymetry
and floodplain along a river is important for yielding reliable results from
hydrodynamic numerical models, the ability to understand the charac-
teristics of a river, such as the flow and bedform, and assessing their
interaction with engineering applications. However, in most cases, a
river terrain model, particularly for the area under the water body, is
difficult to acquire, and there are a lack of available data describing the
geometry of the river channel.

We present an algorithm to generate a continuous river channel by
interpolation of measured cross-sections. Our algorithm, which is based
on the idea of grid generation for computational fluid dynamics, solves a
simple elliptic partial differential equation to generate the streamlines of
the river channel. The elevations of the vertices on the streamlines are
calculated twice. The entire river terrain is integrated with the sur-
rounding topography, such as the elevation points or contour lines. The
proposed method has been applied and validated for the Qinhe River in
the middle of the Yellow River Basin, China. Three river terrain models
with different resolutions are interpolated using different types of
boundary lines and selected cross-sections. Cross-sectional validation
was used to test the error of the geometrical shape of the created river
channel. The two-dimensional shallow-water equations are also studied
for two discharge rates to calculate the flood extent and depth of the
three terrain models.

Our results show that the generated streamlines correspond well with
the boundaries of the water edge and the thalweg when constrained by
the elliptic partial differential equations, and are smooth when trans-
formed from a computational domain with regularly calculated grid
lines. The benefits of these created streamlines include their ability to
maintain a consistent shape of the interpolated cross-sections with the
measurements, and to enforce smoothness of the main channel.

Validation shows that if enough measurements of cross-sections are
used, the shapes of the interpolated cross-sections are consistent with the
measurements. The results indicate that both the water edge and the
thalweg are important boundary conditions for the generation of a
reasonable terrain model. The results from the two-dimensional shallow-
water equations indicate that, if the thalweg line is applied in the
interpolated river terrain model, a better flood extent and depth is ob-
tained. As evidenced by the results of the low discharge rate (100 m3=s)
for Case100T2 or Case100T3 , the interpolated river channel is very smooth. In
addition, the calculated flood extent for Case6500T3 corresponds well with
the water edge lines calculated using the one-dimensional open channel
model, which indicates that the reconstructed river terrain has a
reasonable volume for a higher discharge rate.

Although our algorithm performs well, it can only be used for a single
channel. In future work, more exhaustive measurements should be
applied to improve the accuracy of the method. Furthermore, compli-
cated geomorphologies, such as islands and confluences, must be
addressed to make the work more applicable.
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