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A B S T R A C T

Energy supply through integrated renewable energy sources (RESs) and battery systems will be of higher im-
portance for future residential sectors. Optimal energy management and sizing for the components of residential
systems can enhance efficiency, self-suffiency, and meanwhile can be cost-effective by reducing investment as
well as operating costs. Accordingly, this paper proposes an exhaustive optimization model for determining the
capacity of RESs, namely: wind turbines and photovoltaic (PV) systems. In this study, batteries and electric
vehicles (EVs) are utilized in line with other sources to capture fluctuations of RESs. To model the uncertainties
of RESs, energy prices, and load demands a linearized stochastic programming framework is applied. The
proposed framework involves long-term and efficient resource development alongside with short-term man-
agement and utilization of these resources for supplying the demand load. In our study, we utilize the roulette
wheel mechanism (RWM) method as well as proper probability distribution functions (PDFs) to generate sce-
narios for all sources of uncertainties, including wind turbines, PV systems, demand, and electricity market price.
The approach is verified in two different cases, including an individual home and a larger micro-grid (MG). The
results of multiple numerical simulations demonstrate the effectiveness of the proposed stochastic model.

1. Introduction

Nowadays, with the global industrial development, the need to
preserve the resources of fossil fuels for future generations, and to
prevent the environmental damages caused by their burning, the al-
ternative for providing the energy demand turn to renewable energy
sources (RESs) [1]. Renewable energy development policies, which are
mainly founded based on decreasing environmental concerns, expect
long-term goals for developing and increasing the penetration of these
resources into power systems [2]. In many parts of the world, these
policies are implemented in the planning and operating phase of power
systems and seem to cause a 5 to 25% increase in the share of renewable
energy from total electricity production over the next decade [3]. Al-
though RESs have numerous benefits, recent studies also have shown
that the high penetration of these resources can impose new challenges
both on the technical and the economic aspects, which in turn, in-
tensifies the need to accurately assess the consequences of the full

development of these resources. However, with a combination of grid
optimization techniques [4] and proper planning methods [5], it is
possible to have a reliable system.

Several solutions have been proposed to address these challenges,
among which micro-grids (MGs) at different levels are of particular
importance [6]. An MG consists of power sources and electrical loads,
which commonly is connected to the conventional grid; however, it can
also operate in island mode and function separately. The power sources
could be small generators located in a building to handle the load for a
specific time or can locally include distributed generations (DGs) to
supply a wide area of a city [7]. The application of battery energy
storage systems (BESSs) can support MGs during the peak demand
period by returning stored excess produced energy. DGs in these sys-
tems may include numbers of RESs i.e., wind turbines and photovoltaic
(PV) systems or conventional systems such as diesel generators.
Nevertheless, individual applications of RESs can introduce new issues
into the power system. For example, wind and solar energy resources
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Nomenclature

n Index for years.
m Index for months of a year.
j Index for days of a week; a workday: 1, a weekend: 2.
t Index for hours.
ω Index for scenarios.
Np Planning period (Year).
M Set for months of a year (12 months).
J Set for weekdays (including a workday and a weekend).
T Set for time intervals of one day (24 h).
Ω Set for examined scenarios.
d Interest rate.
Δ(t) Power exchange interval (hour).
Fix Share of fixed loads from the total predicted load.
Tran Share of transferable loads from the total predicted load.
Cur Share of curtailable loads from the total predicted load.
π(m, j, ω) Probability for occurrence of scenario ω in day j, month m.
λbuy(m, j, t, ω) Forecasted price for buying energy from the up-

stream network ($/kWh).
λsell(t) Forecasted price for selling energy to the upstream net-

work ($/kWh).
TNPV Net present value of total investment and project costs ($).
TPVout Net present value of total investment cost ($).
TPVinc Net present value of total development proceeds ($).
Ccap,tot Total investment costs ($).
Crep,tot Total replacement and placement costs ($).
Cmain,tot Total maintenance costs ($).
Ccap,pv Total investment costs of PV systems ($).
Ccap,ess Total investment costs of energy storage systems ($).
Ccap,wnd Total investment costs of wind units ($).
ηpv The optimum capacity for PV systems (kW).
ηess The optimum capacity for energy storage systems (kWh).
ηwnd The optimum capacity for wind units (kW).
Crep,pv Cost of replacing PV systems ($).
Crep,ess Cost of replacing energy storage systems ($).
Crep,wnd Cost of replacing wind units ($).
PVrep flag

n
, Indicator of the time of replacement of PV systems during

the planning period.
ESSrep flag

n
, Indicator of the time of replacement of storage systems

during the planning period.
Wndrep flag

n
, Indicator of the time of replacement of wind units during

the planning period.
Cmain,pv Maintenance cost of PV systems ($).
Cmain,ess Maintenance cost of energy storage systems ($).
Cmain,wnd Maintenance cost of wind units ($).
TCbase Total expected operating costs of the system ignoring the

possibility of resource development ($).
TCcom Total expected operating costs of the system considering

the possibility of resource development ($).
P m j t( , , , )grid

buy Purchased power from the upstream network (kW).
P m j t( , , , )grid

sell Sold power to the upstream network (kW).
Pgrid

buymax Maximum power available for buying from upstream
network (kW).

Pgrid
sellmax Maximum power available for selling to the upstream

network (kW).
U m j t( , , , )grid

buy Indicator of the purchase status from the upstream
network.

P m j t( , , , )pv
used Power of the PV system consumed by the MG (kW).

P m j t( , , , )pv
sold Power of the PV system sold to the upstream net-

work (kW).
P m j t( , , , )pv

prod Produced power of the PV system (kW).
P m j t( , , , )wnd

used Power of the wind unit consumed by the MG (kW)
P m j t( , , , )wnd

sold Power of the wind sold to the upstream network
(kW).

P m j t( , , , )wnd
prod Produced power of the wind unit (kW).

P m j t( , , , )ess
used Power of the energy storage system consumed by

the MG (kW).
P m j t( , , , )ess

sold Power of the energy storage system sold to the up-
stream network (kW).

P m j t( , , , )ev
used Power of the EV consumed by the MG (kW).

P m j t( , , , )ev
sold Power of the EV sold to the upstream network (kW).

P m j t( , , , )load
cons Power consumption (kW).

P m j t( , , , )load
prid Total forecasted power consumption (kW).

D m j t( , , , )load
F Uncontrollable power consumption (kW).

D m j t( , , , )load
T mod Power consumption after transfer to other per-

iods (kW).
D m j t( , , , )load

T Power consumption to be transferred (kW).
D m j t( , , , )load

C Residential power which can be reduced once more
(kW).

t t( , )load
T Transfer penalty ratio of 1 kW from hour t to hour t′

($/kWh).
Pen m j t( , , , )tran

T Penalty of load transfer to another period ($).
t( )load

C Curtailment penalty ratio of 1 kW form consumption at
hour t ($/kWh).

Pen m j t( , , , )cur
T Penalty of load curtailment ($).

U m j t t( , , , , )load
T Power transferred from hour t to hour t′ (kW).

IF t( )load
max Maximum power consumption transferable to hour t (kW).

OF t( )load
max Maximum power consumption transferable from hour t

(kW).
P m j t( , , , )ev

ch Planned power to charge an EV (kW).
P m j t( , , , )ev

dis Planned power to discharge an EV (kW).
P m j t( , , , )ess

ch Planned power to charge the energy storage system
(kW).

P m j t( , , , )ess
dis Planned power to discharge the energy storage

system (kW).
DEess Discharging efficiency of the energy storage system.
DEev Discharging efficiency of the EV.
CEess Charging efficiency of the energy storage system.
CEev Charging efficiency of the EV.

ess
max Maximum expandable capacity of energy storage systems

(kWh).
pv
max Maximum expandable capacity of PV systems (kW).

wnd
max Maximum expandable capacity of wind units (kW).
Uev(m, j, t, ω) Indicator for the status of charging or discharging of

the EV.
Ugrid(m, j, t, ω) Indicator for the status of power supply form the

grid.
Uess(m, j, t, ω) Indicator for the status of charging or discharging of

the energy storage system.
CRess

max Maximum charging rate of the energy storage system (kW/
h).

DRess
max Maximum discharging rate of the energy storage system

(kW/h).
CRev

max Maximum charging rate of the EV (kW/h).
DRev

max Maximum discharging rate of the EV (kW/h).
SOEess(m, j, t, ω) Remaining energy level of the energy storage

system (kWh).
SOEev(m, j, t, t′, ω) Remaining energy level of the EV (kWh).
SOEess

ini Initial energy level of the energy storage system (kWh).
SOEev

ini Initial energy level of the EV (kWh).
SOEess

max Maximum energy level of the energy storage system
(kWh).

SOEess
min Minimum energy level of the energy storage system

(kWh).
SOEev

max Maximum energy level of the EV (kWh).
SOEev

min Minimum energy level of the EV (kWh).
Ta Time of connecting the EV to the MG.
Td Time of disconnecting the EV from the MG.
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have an alternating nature and are highly dependent on environmental
conditions. Independent use of PV systems or wind turbines will in-
crease the size and cost of the system [8]. In the case of RESs, batteries
are the most common systems used as energy storage systems [9].
Therefore, an energy storage system such a battery should be operated
with RESs [10] to reduce power fluctuations. The optimal sizing of a
hybrid RES-based system could maximize the self-sufficiency of the MG
[11]. Besides, proper scheduling of these systems can greatly reduce the
operating costs, purchased energy from the upstream network [8], and
amount of energy loss [12].

Recently, electric vehicles (EVs) as potential elements of MGs are
increasingly welcomed by consumers. The main advantages of EVs
compared to conventional cars are less environmental pollution, higher
efficiency, less noise, and more comfortable charging facilities [13]. In
addition, the EVs are widely operated in the presence of RESs [14] and
can also inject power into the grid [15]. Due to the role of EVs in dis-
tribution networks, numerous research works have been done in the
area of these grids and MG design in the presence of EVs [16]. A two-
step linear programming approach was proposed in [17] to determine
the optimal location and operation of EV charging stations in dis-
tribution networks. Clairand et al. [18] investigated the generation
planning problem in diesel-based MGs with RESs, considering sup-
plying of EVs and cooking purposes and reducing environmental im-
pact. A comprehensive approach for planning, development, and op-
eration of MGs with BESSs as well as EVs was presented in [19]. The
authors in [15] applied a two-stage model to build parking lots in the
distribution network, which aims to minimize cost, reliability, and
voltage deviations. In the first stage of this model, the behavior of EVs is
optimized by considering their interactions with the market. In the
second stage, the problem of parking lot placement is solved by con-
sidering the network constraints. Moradijoz et al. [20] provided a
multi-objective dynamic bi-level model for distribution network plan-
ning. Besides, the authors considered grid-connected EV parking lots in
their model to improve the flexibility of the system.

Uncertainties have become one of the indisputable concepts in re-
cent literature. Various uncertainty sources were investigated in [21]
through a probabilistic approach for BESSs sizing to support the in-
tegration of PV systems in distribution grids. The authors in [22] pro-
vided a method for planning and development of distribution networks
integrating RESs and demand response programs as planning options
for the transition to RES-based distribution networks. In this reference,
demand response is assumed to be activated by real-time price signals
and the problem is implemented in the form of a bi-level dynamic
model with the goal of minimizing the technical costs and costs asso-
ciated with the emission of greenhouse gases. Uncertainties in the
problem include the uncertainties of RESs and the uncertainties asso-
ciated with the sensitivities of costumers to the electricity prices. A
chance-constrained information gap decision model for MG expansion
planning was proposed in [23]. In this reference, two types of un-
certainties, as random and non-random uncertainties, were considered.
The main objective is determining the best type of renewables, optimal
sizing, and their installation time in the MG. The authors in [24] pro-
posed a probabilistic multi-objective model for planning active dis-
tribution networks in the presence of demand response programs. Un-
certainties about solar radiance, load levels, and load growth rates in
the future are modeled by probability density function (PDF). The
proposed model simultaneously minimizes operating costs and energy
losses on the lines from the perspective of the distribution network
operator, taking into account demand response programs and active
network management (i.e., such as voltage control patterns and power
factor). In fact, the proposed model determines the level of penetration
of solar panels in the network according to the stated objectives.

The problem of optimal utilization and control of MGs in various
studies has been extensively investigated, research on the development
and long-term planning of MGs is also of interest. A method for de-
veloping and determining the optimal capacity of solar and wind re-
sources in a hybrid MG was presented in [8]. In this reference, data on
solar irradiance, wind speed, and ambient temperature in the state of
Texas have been used to test the effectiveness of the proposed algo-
rithm. Also, the effect of demand response programs on increasing
productivity and optimal design has been studied. Nevertheless, the
authors did not consider vehicle-to-grid capabilities in their work. A
techno-economic optimization model using the particle swarm opti-
mization (PSO) algorithm was performed to determine the optimum
size of PV, battery, and other components of a residential MG in [25].
However, evolutionary methods like PSO do not guarantee to reach a
globally optimal solution. In [26], a method for the development and
planning of advanced MGs with the capability of managing energy
storage systems, EVs and responsive loads was proposed to improve the
security issues at the time of islanded operation. A framework for the
utilization of DGs in the distribution network for planning and de-
signing robust MGs was presented in [27]. The authors in this study
tried to optimally enhance the reliability and economic efficiency of the
MG. The proposed model was solved by multi-agent systems and the
PSO method. The authors in [28] proposed a multi-objective optimi-
zation method to evaluate the optimal operation and planning of DGs in
MG networks. Also, the authors introduced an index for evaluating the
security of the system based on the capability of the power system in
restoring to a new operating point after experiencing an unwanted
event. In [5], the problem of planning and designing hybrid MGs was
addressed, considering the emission limits and the costs associated with
the lifetime of RESs. In this study, it was shown that the combination of
diesel and renewable units, compared with the use of diesel units alone,
leads to lower levels of pollution and lower net costs. However, only
wind units were considered among RESs in this reference, and other
options for these sources were ignored. Optimal allocation of DGs for
optimal utilizing an MG was presented in [29]. In this study, sensitivity
analysis and the PSO algorithm were used to carry out cost-benefit
analysis and to ensure reliability criteria at different load points. The
authors in [30] evaluated the generation planning in an MG, taking into
account the emission constraints. In this reference, the genetic algo-
rithm was used to determine the optimal allocations of wind and solar
resources. In [31], a bi-level algorithm was proposed for the optimal
planning and design of an MG using the combined heat and power
(CHP) units, considering the issue of reducing carbon dioxide emis-
sions. In [32], the formation of multiple MGs system was studied with
the aim of improving the recovery operation in the distribution net-
work. In this reference, the problem was formulated as a linear opti-
mization model.

In this paper, the problem of determining the optimum capacity of
energy storage and RESs, including wind units and PV systems in a
residential MG, considering the possibility of utilizing demand response
programs and EVs, is investigated. To the best knowledge of the au-
thors, none of the reviewed literature has considered a comprehensive
study on the development of hybrid MGs. In order to overcome the
shortcomings of the previous works, we try to completely address the
planning problem of hybrid MGs. Short-term energy management in the
planning process is taken into account to have a better perspective of
the overall operating and planning costs to make better decisions. Due
to the rapid development of EV technologies, we consider the vehicle-
to-grid option in the planning horizon. Also, we model the main sources
of uncertainties in the planning problem. Besides, demand response
programs as one of the most important and efficient tools of smart grids
are contemplated in this work. A thorough numerical study is done to
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demonstrate the effectiveness of the proposed method. In conclusion,
the contributions of the paper are as follows.

• A Comprehensive framework for designing and developing RESs and
BESSs in a residential MG, considering various uncertainties.
• Performing day-ahead energy management in the planning process
for estimating the operating costs in different conditions of planning
and better decision-making.
• Scenario-based stochastic modeling of RESs including wind and PV
systems, demand levels, price signals, and EVs in the process of
planning the MG.
• Considering EVs, vehicle-to-grid capability, demand response pro-
grams, and BESSs capabilities in the planning process.

The remainder of this paper is organized as follows. In Section 2, the
proposed model is described to determine the optimal capacity of RESs
and energy storage. Also, demand response programs and EV utilization
are investigated in this section. In Section 3, by performing multiple
simulations, the proposed method is discussed in detail. Finally, in
Section 4, a general conclusion from the findings of research and sug-
gestions for future work is presented.

2. System modeling and problem formulation

As mentioned previously, the rapid development of smart grid
concepts and technologies such as RESs, EVs, and MGs, the power
consumption patterns as well as the structure of electrical distribution
networks have significantly changed. The design of a hybrid renewable
energy system (HRES) with the use of various types of wind, solar, and
storage technologies is more efficient than traditional methods of uti-
lizing these resources. In this section, modeling of the problem of de-
termining the optimum capacity of energy storage and RESs in a re-
sidential MG, considering the possibility of using demand response
programs, is investigated.

2.1. Proposed framework

The proposed framework for efficient resource development, cou-
pled with long-term planning of the components of the system, involves
the management and utilization of these resources for consumption in
the short-term operation. Using appropriate PDFs and scenario pro-
duction methods, consumption values in the MG, purchasing prices

from the upstream network, and the production of wind turbines and
PV systems are modeled. The roulette wheel mechanism (RWM) is also
used to derive scenarios.

The optimization process is done in two stages. In the first stage,
decisions will be made on uncertain variables, and in the second stage,
according to each of the scenarios, the remaining variables will be
determined. In other words, the first stage will be at the time of deci-
sion-making to determine the optimal resource capacity, and the second
stage will be based on the realization of each of the relevant scenarios at
the time of operation, including the constraints of the problem.

Also, to reduce the system operating costs and increase its flexibility
against the existing uncertainties, demand response programs will be
contemplated. The studied MG is able to exchange energy with the
upstream network.

Although the development of electric transportation systems and
EVs increase power consumption, they could create more flexibility on
the demand side by adding the ability of intended charging and dis-
charging. Hence, in the proposed model, the MG operator can use EVs
connected to the grid to manage uncertainties and more profitability.

The framework of the HRES is explained in Fig. 1. In this structure,
RESs produce energy along with traditional power sources; meanwhile,
BESSs and PVs are employed for energy exchange. It is worth men-
tioning that, residential sectors include two types of load namely con-
trollable and uncontrollable. For controllable loads, it is possible to
reduce consumption (with considering a penalty value for the reduction
in their welfare) or to change the consumption time from peak times
with higher prices to non-peak periods with lower prices or periods in
which RESs generate at their maximum value.

Also, the concept of net present value (NPV) is used to evaluate
plans and to economize the feasibility of long-term development plans.
Due to the high efficiency of linear models, modeling and formulation
of the proposed model are implemented in the form of a mixed-integer
linear programming (MILP) problem. The output of the optimization
problem determines the capacity of wind, solar, and BESSs. Besides, the
optimal operation of the MG, including scheduling of the controllable
loads, the amount of charge and discharge of BESSs, and the intelligent
management of EVs during the planning period will be determined for
different scenarios and for various working conditions. The flowchart of
the proposed algorithm is presented in Fig. 2. In order to model the
uncertainties related to the production of renewable wind and solar
energy resources, purchase prices from the upstream network and the
amount of consumption in the studied microgrid, a framework based on

Fig. 1. Framework of the hybrid renewable energy systems.
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random programming is presented. In this method, first, data for wind
generation, solar irradiance, load, and electricity price for a specific
area is collected. By using this data, PDFs are fitted for the variables
with uncertainty and employing an RWM, scenarios for the planning
purposes are generated. The optimization process is done in two stages.
In the first stage, decisions regarding uncertainty variables will be
made, and in the second stage, the remaining variables will be de-
termined according to the realization of each of the scenarios. In other
words, the first stage will be at the time of decision-making to de-
termine the optimal capacity of resources (here-and-now stage), and the
second stage will be done depending on the realization of each of the
relevant scenarios at the time of operation and will include constraints
and limitations (wait-and-see stage). The results indicate the optimum
planning values for PV, wind, and battery systems.

2.2. Scenario generation

For scenario generation, the information and historical data related
to the past few years of the system are considered. In the next step, the
probability distribution function (PDF) of prediction error for uncertain
parameters is extracted and discretized in different levels, as shown in
Fig. 3a. According to this figure, each probability level of the error is
demonstrated with α and each interval represents one standard devia-
tion error (β). Then, the RWM is used to generate the scenarios [33]. In
establishing the roulette wheel, the higher the probability of parameter,
the more space it. For the mentioned levels, the produced roulette
wheel is presented in Fig. 3b. In this mechanism, a random number is
generated in the range of zero and one. This number is in one of the
specified intervals on the roulette wheel, which is related to the level of
parameter prediction error. The aforementioned probability level is
selected for the desired scenario. It is obvious a scenario with a smaller
level of prediction error gets a higher selection chance in the RWM. By
combining all the errors related to each uncertainty source, the first
scenario is generated. Later, by multiplying the probabilities of un-
certainty parameters, the probability of the whole scenario is obtained.
Finally, different scenarios are generated utilizing the mentioned me-
chanism.

2.3. Problem modeling, objective function and problem constraints

The problem is formulated in the form of a stochastic MILP model in
order to consider the uncertainties associated with the problem. The
objective function could be formulated as (1). In this regard, mini-
mizing the net present value of the total investment and operating costs
of the project is the goal of optimization.

=TNPV TPV TPVmin: out inc (1)

In (1), the minimization of the TNPV, is obtained by minimizing
investment costs TPVout and maximizing the revenue from resource
development TPVinc. The investment cost TPVout includes the total cost
of developing, replacing and maintaining new wind, solar, and energy
storage resources during the planning period, which is illustrated in (2).

= + +TPV C C Cout cap tot rep tot main tot, , , (2)

The total cost of development, replacement and maintenance of
resources are calculated by (3) to (5). In these equations, the NPV
concept is used to evaluate and economical feasibility during the
planning period.

= × + × + ×C C C Ccap tot cap pv pv cap wnd wnd cap ess ess, , , , (3)

Fig. 2. Proposed optimization scheme.

Fig. 3. Scenario generation process.
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=
× + × + ×

+=
C

C C C
d(1 )main tot

n

Np
main pv pv main ess ess main wnd wnd

n,
1

, , ,

(5)

To calculate the expected revenue from resource development
TPVinc, according to (6), the difference of NPV in operating of the
system costs during the planning period, considering and neglecting
development capability, will be calculated. In other words, TPVinc re-
presents a reduction in operating costs by resource development.

=
+=

TPV TC TC
d

( )
(1 )inc

n

Np
base com

n
1 (6)

Operating costs of the system are formulated in the planning period
using (7), which is the difference between the energy costs of the up-
stream network and the revenue generated by selling energy produced
by the MG resources to the upstream network. To calculate the base
state operating cost (TCbase), the initial installed capacity of the MG is
considered. If there is no initial installed capacity of these resources,
then the MG revenue from energy selling to the upstream grid equals
zero.

=

× ×
=

TC m j t P m j t

m j t P m j t t

( , , ) ( )( ( , , , )

( , , , ) ( , , , ) ( ))]

com
n

Np

m M j J t T
grid
buy

buy
grid
sell sell

1

(7)

The power balance constraint of the MG is shown in (8). This re-
lationship states that the sum of the power purchased from the up-
stream network (Pgrid

buy), solar power generation (Ppv
used), EV power (Pev

used),
wind turbine power (Pwnd

used) and energy storage power injected to the MG
(Pess

used) will be used for charging the energy storage (Pess
ch) and charging

the EV (Pev
ch) and power consumption of the loads (Pload).

+ +

+ + =
+ +

P m j t P m j t P m j t

P m j t P m j t P m j t
P m j t P m j t

m M j J t T

( , , , ) ( , , , ) ( , , , )

( , , , ) ( , , , ) ( , , , )
( , , , ) ( , , , )
, , ,

grid
buy

wnd
used

pv
used

ev
used

ess
used

load

ev
ch

ess
ch

(8)

The constraints and scheduling of the grid-connected BESS are
modeled by (9) to (18).

+ = ×P m j t P m j t P m j t DE
m M j J t T

( , , , ) ( , , , ) ( , , , )
, , ,

ess
used

ess
sold

ess
dis

ess

(9)

×P m j t U m j t
m M j J t T

( , , , ) ( , , , )
, , ,

ess
ch

ess ess
max

(10)

×P m j t U m j t
m M j J t T

( , , , ) (1 ) ( , , , )
, , ,

ess
dis

ess ess
max

(11)

×P m j t CR
m M j J t T

( , , , )
, , ,

ess
ch

ess ess
max

(12)

×P m j t DR
m M j J t T

( , , , )
, , ,

ess
dis

ess ess
max

(13)

=
+ ×

>

SOE m j t SOE m j t
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Eq. (9) states that the discharged power from the storage device
(Pess

dis) with respect to the discharge efficiency of this unit (DEess) is used
for internal use of the MG (Pess

used) and selling to the upstream network
(Pess

sold). Relations (10) and (11), show amounts of charging and dis-
charging of the storage device with respect to the maximum capacity
allowed for storage development ( ess

max ) and how to operate in the states
of charging or discharging of this unit (Uess). Eqs. (12) and (13) are also
related to the maximum charge (CRess

max ) and discharge (DRess
max ) rates.

Eq. (14) describes state of energy (SOE) of the energy storage over the
scheduling horizon with respect to the charge and discharge rates.
Eq. (15) also describes the initial SOE of the device and finally (16),
(17) and (18) demonstrate the maximum and minimum charging level
allowed for the storage device and the available capacity for develop-
ment, respectively.

Eqs. (19) to (27) are used to model constraints and scheduling of the
EVs at times of that they are connected to the MG (t ∈ [Ta Td]).
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Eq. (19) states that the discharged power of the EV (Pev
dis), will be

used for internal use of the MG (Pev
used) and selling to the upstream

network (Pev
sold). Relations (20) and (21) limit the amount of charge and

discharge of the EV according to the maximum charge (CRev
max ) and

discharge rates (DRev
max ) of the vehicle. Relation (22) models the energy

level of an EV (SOEev) during the scheduling period and Eq. (23) also
determines the initial energy level of the EV. Furthermore, relations
(24) and (25) also indicate limits of the maximum and minimum
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permitted energy levels for the EV. Eq. (26) also determines the final
energy level EV at the end of the last hour of connecting to the grid.
Finally, Eq. (27) also states that at times when the EV is not connected
to the grid, its participation in the network operation is zero.

Eqs. (28) to (29) and (30) to (31) are used to model the production
constraints of PV panels and wind turbines respectively. Relations (28)
and (30) show that the PV and wind power generation capacities in
each scenario are used for internal consumption of the MG (for charging
the storage device or EV) or for selling to the upstream grid. Eqs. (29)
and (31) also determine the respective limits for the development of PV
and wind units in the MG.
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Also, (32) to (34), model the limits of the power purchased and sold
to the network. The total power sold to the network by solar, wind,
energy storage, and EV sources is reported with (32). As well, in (33)
and (34), the maximum exchangeable power with the upstream net-
work is modeled.
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Eqs. (35) to (44) are also used to model the implementation of de-
mand response programs in the MG.
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It is assumed that loads of the MG are divided into three categories
of fixed, transferable, and curtailable loads. According to (35) to (37),
the share of each load type is defined as a percentage of the total pre-
dicted load. Eqs. (38) and (39), determine the limit for the maximum
input and output load power to each of the time intervals. Relation (40)
also states that the sum of all outgoing power from each programming
period equals to the sum of the inputs. The modified hourly transferable
power after the shifting of the load to another period is shown in (41)
and the power consumption at each hour after the shifting or reduction
of the load is modeled in terms of (42). Finally, (43) and (44) indicate
the penalty resulting from a decrease in the welfare in each hour as a
result of load transfer to another period and load curtailment. These
penalties should be added to (7).

3. Simulation and results

In this section, the presented formulations to determine the optimal
capacity of RESs and batteries are examined using numerical case stu-
dies. The performance of the proposed model is investigated in two
different cases. In the first case, the test system is an individual home
that has the capability to install RESs as well as the battery on its roof
and it has a small load and electricity consumption. Also, in the second

Fig. 4. Input data for one possible scenario.
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case, a residential MG that has a larger load would be tested. The input
parameters and data of the simulation are derived for wind system from
[34], for PV units from [35], for load from [36], and finally for energy
prices from [37]. For example, data for solar power and wind genera-
tions, as well as prices and loads, are shown in Fig. 4 and b, respec-
tively.

3.1. Determining the optimal capacity of the wind, solar, and battery
simultaneously for an individual household

An individual home is considered as a small-scale electricity load,
due to its low amount of energy consumption. The simulation data
required in each step is presented in Table 1. The arrival time of the EV
to the home is assumed to be at 19 o’clock and the time of departure
from home is also set at 8 o’clock in the morning. It is also assumed that
60% of the home consumption is fixed and 40% of the remaining load is
transferable from one period to another. Also, the maximum transfer-
able capacity from each period to another period is assumed to be 1 kW.
The price of electricity sales to the upstream network is also set at 0.50
$/kWh. On the other hand, to increase the efficiency of the proposed
model and to estimate the parameters with uncertainty, the effect of
seasons and warm months of the year, and the change in the pattern of
consumption in workdays and the weekends are considered. For this
purpose, each year from the study period is divided into 12 monthly
intervals, and then each month of the study is also modeled for four
weeks and each week with five workdays and two weekends. This
process enables the applicability of the proposed algorithm for use in
real systems.

3.1.1. Without development capability of HRES
In this section, the maximum allowable capacity for RESs and bat-

teries is considered to be zero and the only smart controlling ability for
the home is assumed. For each hour of the day, 10 different scenarios
are used for load consumptions, as well as for electricity purchasing
prices from the upstream network. The consumption scenarios and
electricity prices for 24-hour horizon are shown in Fig. 5.

System operating costs by taking into account the costs and penal-
ties associated with reducing household welfare (about 0.20 $/kWh for
shifting from one period to another) in case of using demand response
programs without using batteries and RESs becomes 31648.519$. Of
course, this high value is due to the cost of interrupting and shifting the
load, which is due to the reduction in welfare and is much higher than
the normal price of electricity. However, the actual cost of subscribing
is 1147.59$. This amount regardless of charging costs and only taking
into account the cost of purchasing and selling electricity, and charging
the EV seems reasonable. The charging and discharging of the EV for
different scenarios, in one random sample day are depicted in Fig. 6. In
these figures, first, the results of one scenario for both charging and
discharging of the EVs, are illustrated and then figure for ten different
scenarios are shown. The shape of the results and behavior of the
system are analogous. For instance, when the electricity price is low,
the EV is charged and the discharging process begins because of the
higher price of electricity.

It is noteworthy to mention that in the simulations, employing de-
mand response programs and energy storage capability of EVs is con-
sidered in the operation of a home. By neglecting these options, the
operating costs become 61533.007$, which is far higher than the cost of
the previous case.

3.1.2. Considering expansion of renewable energy sources
In this case study, it is possible to take advantage of the output

power of RESs, but at the moment, we assume that there is no battery.
Therefore, the operation of determining the optimal capacity for two
RESs of solar and wind will be done. In this regard, scenarios of wind
and solar production will also be included in the issue. It should be kept
in mind that the cost of investment and maintenance of RESs and the

useful lifetime for these resources will have a significant impact on the
optimization process, which will be considered and examined further.
Four different conditions are considered and the input parameters for
these conditions and optimization results are tabulated in Table 2. It is
noteworthy to mention that the obtained results might be mathematical
results and be far from commercial ratings; however, the nearest values
can be chosen for the size of the components. For instance, the obtained
result for the size of the wind unit is 19.2 kW where a 20 kW unit can be
installed.

Four different conditions are considered in this case study. In the
first case, it is assumed that the cost of investment and the cost of
maintenance for a solar source is high compared to the source of wind
and there is no limit for the capacity development of these resources.
Thus, as can be seen from this table for the first mode, only wind tur-
bines are used and it is not economically feasible to use PV units. In the
second case, the development of these resources is limited, which re-
sults in reducing the wind turbine’s optimal capacity. In the third case,
the cost of investing and constructing RESs is less than the previous
two. Again, given the wind capacity of the region, it is preferable to use
maximum wind energy. In the fourth case, it is assumed that the de-
velopment and construction of wind units are limited to 5 kW, but the
capacity of the solar source can be expanded to 15 kW. In this new
situation, which is evident in the fourth column, it can be seen that the
wind unit is developed first, then a PV source is added, with an optimal
capacity of 10 kW.

As discussed in the previous section, the cost of operating the
system, regardless of the development capabilities, is 31, 448.188$. The
operating cost of the system with capability developing RESs is reduced
to 17984.845$ by taking into account the values of Table 2 for the
development of the grid.

3.1.3. Effect of developing energy storage devices alongside renewable
energy sources

In this section, the effect of battery storage utilization alongside
determining its optimal capacity is considered in the presence of RESs
and demand response programs. In this case, all of the components are
connected to the grid and the goal is to determine their optimal capa-
city. In this case, likewise the previous subsection, different situations
may occur, and the results will be presented and examined. In the first
case, there is no limit to the development of the capacity of RESs and a
battery. The results of optimum planning of the system alongside with
system parameters can be derived from Table 3. The amounts of the
variables of the objective function can be seen in Fig. 7. The results in
this form show the cost reduction and the significant profit generated
by the optimal capacity determination.

As can be seen, in this case, costs have become negative, which is
due to relaxing the constraints of developing the HRES. In this case,
using large energy storage devices enables the owner to gain more

Table 1
Input parameters for solving the problem in an individual home.

Input Parameter Value

Planning period 5 Years
Real interest rate 5%
EV charging rate 3.3 kW
EV discharge rate 3.3 kW
EV capacity 16 kWh
EV efficiency in charging mode 90%
EV efficiency in discharging mode 90%
Maximum EV energy level 16 kWh
Minimum EV energy level 2 kWh
Maximum battery energy level 100%
Minimum battery energy level 20%
Battery charging efficiency 90%
Battery discharge efficiency 90%
Maximum load of the home 6 kWh
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profit by storing energy at times when the price of electricity is low and
selling it to the network at times when the price is high. The TC variable
is the difference between the cost of purchasing electricity and the
revenue generated by electricity sales, which is 50, 000$ annually,
which suggests that if there is no limit for the development of resource
capacities and the smart usage of the battery system and renewable
energy, it can benefit considerably. Battery charging and discharging
performance for various scenarios for a random day in a sample year
are shown in Fig. 8. In this case, due to freedom in the capacity of
renewable-based energy sources, the flexibility of charging and dis-
charging has risen in comparison with the system without expansion
capability. However, the behavior for the charging and discharging is
the same as charging in lower price hours and discharging in higher
price periods.

In the second, the capacity for developing different sources are
limited. Due to limitations on the maximum expandable capacity, the
calculated values for the variables of the objective function also change.
These variables are shown in Fig. 9. However, with limiting the capa-
city development, less profit than the ideal mode (first mode) is ob-
tained. Also, the profit is still high compared to the case without taking
advantage of the storage systems. As shown in Table 3 for the second
mode, the maximum capacity of the battery is used considering the
limitations and despite the high costs of investment and maintenance of
PV systems, there is still considerable potential for their development. It

seems to be feasible to allow the production of this resource throughout
the day, at peak times and high price levels.

In this condition, the profit from the purchasing and selling the
electricity is 26, 000$ a year, which is less than the amount of profit in
the unconstrained state. To better illustrate the performance of the
battery, similar to the previous subsection and the charging and dis-
charging are shown for a sample day and various scenarios in Fig. 10.
Although in comparison with the relaxed test system for expansion

Fig. 5. Different scenarios for electricity price and load consumption.

Fig. 6. Charging and discharging of the EV on January 1st for the home without developing capability.

Table 2
The optimal RESs development and data for the home with capability of only
renewable source development.

Case Source Investment Maintenance Maximum
development

Optimized

cost ($/kW) cost ($/kW) capacity (kW) capacity (kW)

1 Wind 190 30 Unlimited 19.2
Solar 1300 65 Unlimited 0

2 Wind 190 30 8 2.66
Solar 1300 65 8 0

3 Wind 40 15 Unlimited 19.2
Solar 60 10 Unlimited 0

4 Wind 40 15 5 5
Solar 60 10 15 10.02
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capacity, in this case, the amount of the charging and discharging va-
lues are decreased, it shows more flexibility for charging and dischar-
ging rates compared to the system without expansion capability.

Also, in Fig. 11, the smart changes in the load are shown in one of
the scenarios concerning electricity prices. Given the real-time price
(Fig. 5) and dummyTXdummy- the comparison of two subplots, the
smart performance of the proposed method is clearly evident in the
shifting of the load to periods at lower prices and at times that the price
increases, the load is transmitted smartly to other times with lower
price.

However, the calculated values for optimal resource development
will be heavily dependent on the investment and maintenance costs of
these resources. In order to confirm this hypothesis, in the third con-
dition, higher costs are considered these sources and the optimal de-
velopment of the HRES is made. Comparing the results of conditions 1
and 2, and the results of condition 3, it can be deduced that by reducing
the cost of developing RESs in future years, it will be possible to in-
crease the penetration of these resources and make MG development
more efficient.

3.2. Determining the optimal capacity of the wind, solar, and battery
simultaneously for larger MG

This section is dedicated to determining the optimum energy sto-
rage and RESs as PV systems and wind turbines capacity along with the
use of demand response programs for a larger residential MG, which is
composed of several residential partnerships. Considering the perfor-
mance of the model entirely and with various details in the previous
section, this stage only explores how to determine the optimal capacity
of these resources for a large residential MG, and the appropriate
amount for battery capacity, wind and PV resources is obtained.

The values assumed in this case for the load set are presented in
Table 4. In this new situation, due to the constraints, the optimal ca-
pacity determination is obtained from the optimization process and the
results are presented in Table 5. It is seen that in this case, with regard
to the prices and constraints, it is preferable to use wind turbines and
batteries. Also, the calculated values for the variables of the objective
function are shown in Fig. 12. It should be noted that in this case, the
network is under a heavy load, so the cost is high due to the sales and
purchasing limit of the network (which is assumed to be 300 kW). Thus,

Table 3
The optimal RESs and battery development and data for the home.

Case Source Investment Maintenance Maximum
development

Optimized

cost ($/kW) cost ($/kW) capacity capacity

1 Wind 190 45 Unlimited 24.4 kW
Solar 400 50 Unlimited 3.4 kW
Battery 250 40 Unlimited 50 kWh

2 Wind 190 45 8 kW 7 kW
Solar 400 50 10 kW 9.25 kW
Battery 250 40 10 kWh 10 kWh

3 Wind 1200 90 10 kW 2 kW
Solar 2000 130 10 kW 0 kW
Battery 600 50 10 kWh 5 kWh

Fig. 7. Variables of the objective function for the home with development
capability in the first condition.

Fig. 8. Charging and discharging of the EV on January 1st for the home with development capability in the first condition.
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it is not allowed to sell more power to the upstream network to gain
more profit, but with relaxing the limits of the transaction, more rev-
enue will be available.

3.2.1. Deterministic MILP for determining the optimal capacity of the wind,
solar, and battery simultaneously for larger MG

In this part, in order to have an overview of the comparison between
the proposed stochastic MILP method and the deterministic MILP
model, the deterministic approach has been applied to the planning
problem. The results of the optimization are presented in Table 6. It can
be seen in the deterministic model, unreal results are achieved and for
instance, solar and wind units, the maximum available value has been
selected, which may increase the investment costs. The costs are shown
in Fig. 13. The operational costs have been increased in comparison

with the proposed model. Furthermore, TNPV is higher than the sto-
chastic approach. Accordingly, in the proposed stochastic model, the
results are more realistic.

3.3. Utilized software information

All tests were run utilizing General Algebraic Modeling System

Fig. 9. Variables of the objective function for the home with development
capability in the second condition.

Fig. 10. Charging and discharging of the EV on January 1st for the home with development capability in the second condition.

Fig. 11. Load curve with/without demand response programs.

Table 4
Input parameters for solving the problem in a larger MG.

Input Parameter Value

Planning period 5 Years
Real interest rate 5%
Integrated EV charging rate 21 kW
Integrated EV discharge rate 21 kW
Integrated EV capacity 120 kWh
EV efficiency in charging mode 90%
EV efficiency in discharging mode 90%
Maximum EV energy level 16 kWh
Minimum EV energy level 2 kWh
Maximum battery energy level 100%
Minimum battery energy level 20%
Battery charging efficiency 90%
Battery discharge efficiency 90%
Integrated maximum load of the HRES 300 kWh
Maximum power transactions with the upstteam network 300 kW
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(GAMS) and Matlab software on a Corei5 CPU 1.07 GHz computer with
4 GB of RAM. The maximum run time was 16 min. For the micro-grid
case, which is the biggest model, the number of single variables is
274,664 along with 14,800 discrete ones. Also, there are 51 blocks of
equation, including 154,187 single equations. Stopping criteria was set
to 10 5 for all cases.

4. Conclusion

In this paper, a useful tool was proposed for residential MG de-
signers to determine the optimal capacity of RESs and BESSs.
Additionally, a grid operator can use this tool for optimal energy
management in the system. The proposed resource development leads
to a significant impact on reducing the cost of electricity supply needed
by consumers. From the operator viewpoint, uncertainties shall be
managed by using EVs connected to the MG, and meantime, con-
sidering different patterns of charging and discharging of EVs provides
higher profitability. Also, employing demand response programs could
increase the overall benefits gained by the owner of the system.

The proposed method showed its efficiency in dealing with a large-
scale problem by applying the MILP approach and employing precise

stochastic modeling for uncertainties. In future work, other methods for
uncertainties modeling and robust optimization framework will be
implemented.
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