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A B S T R A C T

Nowadays, the importance of the coordinated operation of power system assets has caused severe challenges that
can be addressed through some recently emerged concepts, such as microgrids (MGs) and virtual power plants
(VPPs). In this paper, a hierarchical model is proposed for simultaneous modeling of an MG scheduling and VPP
energy management problems. Given the stochastic nature of the scheduling inputs, power production and also,
load demand uncertainties are modeled using a scenario-based method. Therefore, the final model is presented
as a stochastic mixed-integer linear programming (MILP) model. It is possible to cover the fluctuations at the
minimum cost using demand response (DR) programs and electric vehicles (EVs). In addition, the possibility of
power transaction between the adjacent MGs is analyzed in scheduling model, preventing unreal power ex-
changes. The simulation results indicate that the coordinated operation of MGs can improve load restoration,
and reduce the load supply costs in each MG. It is also observed that the profit of the VPP would be higher in the
case with the time-of-use (TOU) tariff compared to the cases with the real-time pricing (RTP) and critical peak
pricing (CPP) mechanisms.

1. Introduction

1.1 Motivation

The microgrid (MG) concept reflects the integration of distributed
energy resources (DER), which can be operated in two modes, namely
grid-connected and islanded modes. In general, MGs play an important
role in the transformation of the existing power grids into smart grids.
MGs are often used in the grid-connected mode to minimize the costs.
They are also used in the islanded mode to increase reliability. The
connection of MGs results in the formation of a hybrid network, which
helps reduce the network operating costs in the grid-connected mode,
and mitigate load curtailments in the islanded mode compared to in-
dividual MGs. Furthermore, the virtual power plant (VPP) concept re-
fers to an integrated set of loads, DERs, and energy storage systems
(ESSs). A VPP is operated in two modes, either as a technical VPP
(TVPP) or commercial VPP (CVPP). The system owner should take into
consideration the constraints relating to the operation of DERs, VPPs’
loads, system voltage and frequency levels, and the system conditions
(in the context of TVPP). The system owner should try to improve
system reliability and reduce the system operating cost (in the context
of CVPP) based on the aforesaid constraints. The owner of a VPP
schedules its loads and DERs with respect to the market price. When the

market price is high, the VPP owner curtails a part of the load and
maximizes the generation by the DER. Consequently, the VPP supplies
its load locally, and purchases a small portion of its energy from the
market (systems other than the VPP). In addition, when the market
price decreases, the owner of the VPP reduces the generation of its
DERs, puts its entire load into the system, and purchases a large portion
of the energy from the market [1].

In this paper, a hierarchical method is proposed for the energy
management of MGs and VPPs. In this analysis, the optimal scheduling
and a feasibility analysis of the coordinated scheduling of MGs are
carried out based on the resilience index. The objective functions of the
proposed framework for the MG and VPP are respectively operating
cost minimization, and profit maximization due to the power exchange
with the upstream network.

1.2 Literature review

Today, the ever-increasing penetration of renewable energy sources
(RES) has led to new challenges to MG energy management. The
common methods used in the studies for uncertainty management in-
clude robust optimization [2], and stochastic optimization [3] techni-
ques. In [2], a robust optimization technique is utilized for the optimal
scheduling of MGs with electrical storage systems (ESSs) and direct load
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control (DLC). The results of this study reveal the effective role of DR
programs in determining the efficiency of renewable resources. The
authors of [3] proposed a multi-time model involving multiple energy
carriers for the optimal MG scheduling. In the day-ahead scheduling
model, the uncertainty of RES is modeled under different scenarios, and
the energy management system seeks to minimize the total operating
cost. However, in the scheduling model with a 5-min resolution, the
fluctuations of the RES are alleviated using controllable loads and en-
ergy transaction.

The studies on the method of modeling MGs and their relation with
each other can be classified into two main categories: (a) individual
modeling of an MG, (b) modeling several interconnected MGs. In [4], a
centralized energy management system is introduced for MG energy
management in the islanded mode. This system uses the predictive
control technique to properly operate the ESSs. In [5], a decentralized
energy management system is developed for the coordinated operation
of MGs in a distribution system. The goal is to minimize the operating
costs in the grid-connected mode and ensure power stability in the is-
landed mode. In [6], a hybrid energy management system is proposed
as a hierarchical system for the optimization of the power transaction,
energy storage, and distribution of energy in smart grids comprised of
individual or interconnected MGs. The advantages and disadvantages of
three energy management systems are thoroughly explained and com-
pared in [7]. In [8], a new method has been suggested to coordinate the
installation of storage systems, mainly to prevent the cascaded and
consequent failure of generating units in MGs. In this method, if the
voltage in the DER terminals is not improved following an error within
the period specified in the network, scheduling is carried out to install a
storage system at the high-potential buses. In [9], a new energy man-
agement system is designed for an MG, consisting of an incentive-based
demand response program (DRP) and different market mechanisms. A
two-layer energy management system is developed in [10] to improve
the users’ condition at the end points of the feeder in MGs with ESSs due
to the high cost of storage systems. In [11], a two-layer hierarchical
control scheme is proposed for the compensation of voltage unbalance
so that the voltage variations of all buses will remain in the permitted
range after changing the operation mode. In [12], a robust energy
management system is introduced using the information-gap decision
theory (IGDT) for MGs, operating in the islanded mode. This system
takes into account the system frequency stability simultaneously. In
[13], a battery energy management system (BEMS) is proposed for MGs
with solar panels. This system reduces the generation cost and controls
the charging and discharging decisions to increase the battery lifetime
concurrently. A stochastic scheduling optimization model is presented
in [14] to minimize the MG operating cost under severe uncertainty
within a risk-constrained framework.

In [15], a new control method is proposed for the energy manage-
ment of multiple MGs in a distribution system where each MG and the
distribution network operator (DNO) are considered individual entities
with their own goals. Ref. [16] discussed the role of grid-connected
MGs as smart grids in increasing the power system flexibility against
extreme events. A new hybrid two-level energy management system is
introduced in [17] by considering the point of common coupling (PCC)
constraint. It is stated in [18] that coordinated and integrated MG
scheduling is useful and cost-effective for MG owners and consumers. In
this study, two pricing models based on the time-of-use (TOU) and real-
time pricing (RTP) are employed to model the DR program. In [19], a
two-stage energy management strategy is developed for grid-connected
MGs considering high renewable energy penetration.

In the case of VPPs, it is possible to carry out the scheduling for
different sectors and model various objective functions, including the
cost and benefit functions. Moreover, it is possible to combine the en-
ergy market and the deregulated power system concepts. As can be
observed in the literature, the concept of VPP in the energy market or
ancillary service market can be modeled, taking into consideration
different time resolutions. In [20], a model is proposed to find

equilibrium for a VPP. In the proposed model, the behavior of every
generator is modeled using a bi-level mathematical program with
equilibrium constraints (MPEC). In [21], a bi-level scheduling model is
developed for VPPs with considerable controllable load and numerous
RESs. In [22], a new binary backtracking search algorithm (BBSA) is
proposed to control DERs in MGs. In [23], a uniform market clearing
model is developed based on the centralized energy management
system of VPPs to improve the competition between the DERs. In the
proposed method, a scenario-based model is used to model the un-
predictable system behavior. In [24], a VPP with conventional and RESs
is modeled for participating in the wholesale market. The overarching
goal of this study was to introduce a framework for maximizing the VPP
profit through day-ahead and 5-min scheduling. To this end, the VPP
purchases energy from a wholesale market and then, locally sells it to
consumers in its territory. In [25], a decision-making tool is developed
to maximize the profit of VPPs in the energy and ancillary service
markets. In this research, a dynamic flexible formulation is proposed,
which is applicable to different market mechanisms. Besides, the
scheduling problem is solved over a mid-term horizon, e.g. from one
week to one year and a short-term horizon, i.e. one hour to 168 h. In
[26], a structure, including both heat and electricity is introduced in the
form of a multi-energy VPP (MVPP). The MVPP is allowed to participate
in the energy market and optimally support its heating system, con-
sidering the energy market price.

Ref. [27] proposed an energy management system for a VPP, which
includes solar PV panels, wind turbines, ESSs, combined heat and
power (CHP) units. The main objective beyond implementing the
mentioned day-ahead scheduling model is to maximize the profit and
minimize the emissions, while characterizing uncertainties of the pro-
blem using a scenario-based optimization technique. A multi-objective
optimization model has been developed in [28], taking into account the
operation cost, risk, and emission for scheduling DERs, consisting of
wind and solar energy systems, a biofuel generation unit, micro-
turbines, an ESS, besides flexible loads. Ref. [29] describes the demerits
associated with using individual uncertainty characterization methods
and proposes a combined interval and deterministic optimization fra-
mework to tackle the optimal operation of a VPP. Ref. [30] has carried
out a comprehensive review on the objective functions and constraints
of the VPP scheduling problem, emphasizing on the uncertainties
caused by load demand, renewable power generation, and market
price. Ref. [31] proposes an overarching review on the MG and VPP
scheduling problems by categorizing the objective functions, con-
straints, as well as uncertainty sources. Ref. [32] developed a model for
scheduling a VPP in the presence of uncertainties due to wind power
generation and price in a network with industrial assets. Moreover, a
risk management strategy has been utilized to study probabilistic fail-
ures.

Ref [1] proposed a model for VPP scheduling aimed at maximizing
the profit, i.e. minimizing the operating cost and maximizing the rev-
enue. In addition, the mentioned reference has used CPP, TOU, and RTP
mechanisms for the power transaction with the main grid. It is note-
worthy that the current manuscript proposed a three-stage stochastic
optimization framework for maximizing the VPP profit, taking into
consideration different pricing mechanisms, network configuration,
and power flow in the IEEE 118-bus distribution system. Furthermore,
the VPP scheduling is carried out with respect to the optimal scheduling
of each microgrid.

1.3 Contribution

The above-mentioned references studied MG energy management
and VPP scheduling problems individually. In this regard, this paper
presents a three-stage model to study the relationship between the MG
and VPP so that the VPP maximizes its profit with respect to the optimal
scheduling of the MG. Since the MG scheduling problem aims at
minimizing the total operating cost, the final solution must meet the
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total cost minimization and VPP profit maximization. Furthermore, the
network configuration and power flow equations have been applied to
the model to avoid any unreal power transaction, while considering the
uncertainties caused by load demand forecast error and intermittent
renewable power generation.

The main contributions of this paper are as follows:

(i) Proposing a three-stage stochastic mixed-integer linear program-
ming (MILP) framework for simultaneous energy management of
MGs and the VPP in the presence of electric vehicles (EVs) and
DRPs.

(ii) Determining the service area of each MG, taking into consideration
the network configuration.

(iii) Studying the coordinated and uncoordinated operation of MGs to
avoid any unreal power transaction.

(iv) Maximizing the VPP profit with respect to the optimal scheduling
of each MG.

(v) Investigating the impact of pricing mechanisms, i.e. time-of-use
(TOU), real-time pricing (RTP), and critical peak pricing (CPP) on
the VPP profit.

1.4 Paper organization

The rest of this paper is arranged as follows:
Section 2 includes the developed energy management model. The

mathematical formulation of the problem is proposed in Section 3. The
presented algorithm is detailed in Section 4. Section 5 represents the
simulation results, and lastly, some relevant conclusions are drawn in
Section 6.

2. Energy management model

The first stage of the proposed method includes the linear pro-
gramming model for the optimal formation of dynamic MGs, their
service areas, and the optimal management of different technologies,
such as ESSs, demand-side management programs and distributed
generation (DGs) units. The second stage is about solving the optimal
power flow problem in each service area for all dynamic MGs. Optimal
power flow is carried out in the connected mode for each dynamic MG
and the amount of power transaction is calculated. In the third stage,
the MG scheduling is carried out within the service area of the VPP
based on the energy price variations and the solution obtained from the
previous stages. The main goal of stage three is to reduce the unbalance
costs in real conditions using the DRPs and EVs, and to increase the
energy sale profit utilizing different market pricing models. The over-
view of different stages of the presented model is indicated in Fig. 1.

3. Problem formulation

3.1. Determining the MG service area

The objective function relating to determining the service area of
each MG is stated as maximization of the load restoration error in each
MG as (1).

∑ ∑ ∑= ×
∈ ∈ ∈

F Pmax: 1 (Pr )
t T i N

i t
L

k K
i k t
L s

, , ,
,

(1)

In the objective function above designed to determine the MG ser-
vice area in the network, Pri t

L
, denotes the load priority and Pi k t

L s
, ,

, re-
presents the load that can be supplied in every MG in the islanded
mode. In this stage, with respect to the generating units that are cate-
gorized into primary and secondary groups depending on their capa-
city, the maximum power of each unit is specified and assets of each
MG are determined. The above-mentioned objective function is sub-
jected to the following constraints:

• Connection constraint: Due to the technical limitations, each bus
can be allocated to one MG or even no MGs.

∑ ⩽
=

α 1
k

N

i k
1

,

MGs

(2)

• Slack bus condition: Bus i may belong to the kth MG if and only if
the slack bus belongs to the kth MG. The slack bus is the one with
the main generating unit.

⩽α αi k r k, , (3)

• The parent bus condition: To connect the ith bus to an MG, at least
one of its parent buses has to belong to that MG. The parent bus is
the first bus in the path between bus i and the slack bus corre-
sponding to the MG.

∑⩽
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α αi k
j ξ

j k, ,

i k, (4)

• The radial condition: In order to guarantee the radial structure of
the MGs, an active power transmission path should exist between
each bus and the slack bus corresponding to the MG. Therefore, in
order to operate one feeder, the buses at the two ends should belong
to the same MG; otherwise, that feeder cannot be operated.

⩽
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3.2. Energy management in MGs

The objective function of the second stage can be mathematically
stated as follows [33]:
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(6)

The objective function includes six parts as power supply cost, start-
up and shut-down costs of the local power plants, the cost of using the
storage equipment, the cost of using controllable loads, and the cost of
transacting energy with the upstream network. In the scheduling pro-
cess, the MGs with the same operation service areas are scheduled with
an integrated approach, whereas the MGs incapable of transacting
power with other MGs are scheduled individually. The minimization of
the objective function (6) is subjected to the following constraints:

• Thermal generating units: The operation of thermal generating
units that are within the service area of each MG involves operation
constraints, such as the minimum and maximum power generation,
the ramping rates, and decision variables relating to the status of
units. These constraints are expressed through equations (7–12).
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• Storage systems: To operate storage systems, the constraints
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associated with the amount of energy stored, the maximum charging
level, and the periodical discharging level have to be taken into
account based on the storage system efficiency. These constraints
are expressed using Eqs. (13)–(21).
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ES ES
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• Controllable load: DRPs are considered in MGs for adjusting the
peak load demand. The controllable load cost is assumed to be a
function of controllable load amount and it can be represented by a
linear model given in (22)–(24).
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• Power balance: Considering the equipment existing within the
service area of each MG, the power balance equation for the in-
dependent and coordinated MGs is stated as follows.
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CG
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• Energy exchange: Having taken into consideration the energy

Fig. 1. The proposed model overview.

F. Sheidaei and A. Ahmarinejad Electrical Power and Energy Systems 120 (2020) 106047

4



surplus or shortage at each hour in the service area of every MG,
Eqs. (26)–(31) indicate how the energy is transacted with the dis-
tribution network.

⩽ ⩽P P P̲ ¯
i
M
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3.3. VPP scheduling

In the third stage, the internal structure of other MGs is overlooked
and it is modeled as a PCC. Therefore, depending upon the amount of
power purchased or sold in each MG under different scenarios,

Start

Stop

Scenario generation for RES  and 
load 

Scenario reduction using ScenRed

Collecting network data

Determining MG operation scope

Solving scheduling problems for 
MGs

Is scheduling applicable
in different scenarios?

No

Change load 
control level

Determining energy shortage
or surplus in different scenarios 

Yes

Select one of the pricing methods:
Fixed pricing
Time-of-use pricing
Real-time pricing

Solving scheduling problems for 
VPP

Fig. 2. Flowchart of the proposed model.

Table 1
The case studies in the IEEE 118-bus network.

Case no. MG operation mode Scheduling method Scheduling step

Case 1 Uncoordinated Deterministic 1 h
Case 2 Coordinated Deterministic 1 h
Case 3 Uncoordinated Stochastic 1 h
Case 4 Coordinated Stochastic 1 h
Case 5 Coordinated Stochastic 5 min
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scheduling is carried out for other assets within the VPP service area.
Each MG’s goal to minimize its local costs is preserved and the VPP
performs scheduling individually to maximize its profit. The objective
function used in this stage is expressed via equation (32).

∑ ∑= ⎡

⎣
⎢ − ⎤

⎦
⎥( )F profit Max Income tmax: 3 ( Cos )

k
VPP

k
VPP VPPk k k

(32)

= +Income Income IncomeVPP VPP
DG

VPP
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k k k (33)
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VPP
buy

VPP
LC

k k k k (34)

The maximization of the objective function (32) is subjected to the
following limitations.

• Load control: For the loads with a high consumption peak, control
options at five levels are considered. The modeling process is ex-
pressed through Eqs. (35)–(38).
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• Generation units: With regard to the generating units in each MG,
the operating limitations of units have to be taken into account. Eqs.
(39)–(41) express these limitations.
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• Storage systems: The storage system was modeled in stage three
based on the resources in every MG. Eqs. (42)–(44) show the general
limitations of the storage resources.

⩽
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(42)

Table 2
The required data of DGs, WTs and ESSs.

Distributed generation ESS Bus no. Wind

Unit Bus.no Cap. (kW) Qmax (kVAr) Qmin (kVAr) Turbine Bus no.

DG1 17 800 600 −600 ESS1 12 WT1 14
DG2 24 1000 800 −800 ESS2 26 WT2 27
DG3 51 900 800 −800 ESS3 40 WT3 42
DG4 59 1200 1000 −1000 ESS4 53 WT4 53
DG5 67 1000 800 −800 ESS5 72 WT5 74
DG6 76 1100 800 −800 ESS6 80 WT6 84
DG7 107 1500 1200 −1200 ESS7 90 WT7 88
DG8 7 200 150 −150 ESS8 110 WT8 96
DG9 33 300 200 −200 WT9 99
DG10 43 300 200 −200 WT10 112
DG11 88 200 100 −100
DG12 103 500 300 −300
DG13 113 300 150 −150
DG14 117 300 150 −150

Fig. 3. Day-ahead forecasted electricity prices.

Load (a), Wind (b),

Fig. 4. Generated scenarios using Monte-Carlo.
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• Power balance in each MG: Equation (45) is used to ensure the
power balance at all network nodes.
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• Network security constraints: Given the importance of taking into
account the security constraints on the distribution system, in-
cluding the limitation on the power transmitted through the lines
and the allowable variations of the voltage magnitude and angle,
Eqs. (46)–(49) indicate how these constraints are applied.
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, , , , , (49)

• Power flow: In this stage, an effective linear approximation is used
to calculate the voltage angle and magnitude at the network buses
[32]. The equations for calculating the active and reactive power
and the conditions for removing the power flow constraint when the

Load (a), Wind (b),

Fig. 5. Reduced scenarios using SCENRED.

Fig. 6. Service areas of the MGs under deterministic scheduling conditions.
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Case 2 (b), 
Fig. 6. (continued)

Table 3
Detailed service areas of the MGs_Case 1 and Case 2.

Number of MGs Number of points covered ESS (kW) Wind energy capacity (kW) Generation capacity (kW) Load supplied (kW) Resiliency

Case 1 6 7 500 500 800 454.51 30.29%
11 500 500 1300 1442.37
8 500 500 900 1017.79
12 0 0 1500 1615.94
5 0 0 1000 941.27
11 1000 1000 1100 1406.78

Case 2 2 46 1500 2500 4700 5372.44 33.98%
17 1000 1000 2100 2344.31

Case 1 (a), Case 2 (b),

Fig. 7. The load curve for the MGs.
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Transacted power (a), Summation of power scheduling (b),

Fig. 8. The energy transaction curve in each MG and the method of scheduling in Case 1.

Transacted power (a), Summation of power scheduling (b),

Fig. 9. The power transaction curve in each MG and the method of scheduling in Case 2.

Case 1 (a), Case 2 (b),

Fig. 10. The impact of the DRP on the consumption pattern.

Fig. 11. The total amounts of energy purchased and sold in Case 1 and Case 2.

Table 4
The operation results of MGs in Case 1 and Case 2.

Operation cost ($) Load supplied (MW) Thermal units operation cost ($) ESS ($) DRP ($) Power exchange ($) Profit ($)

Case1 40819.645 156.336 34656.520 140.147 2710.062 3310.916 19167.472
Case2 47282.025 181.467 35702.840 139.806 3139.749 8299.630 19554.161

Fig. 12. The logarithmic diagram of the hourly profit of the VPP in Case 1 and
Case 2.
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line is not operated are stated through Eqs. (50)–(54).

=
+

=
+

F r
r x

F x
r x

1 , 2l
l

l l
l

l

l l
2 2 2 2 (50)

∑ ∑= + − × + −

×
∀ ∈ ∀ ∈

flow

Zflow δ δ F V V

F

[ ] 2 [ ]

1

l t ω
P

l t ω
P

k K
i k t ω j k t ω l

k K
j k t ω i k t ω

l

, ,

, , , , , , , , , , , , , ,

(51)

∑ ∑= + − × + −

×
∀ ∈ ∀ ∈

flow

Zflow δ δ F V V

F

[ ] 1 [ ]

2

l t ω
Q

l t ω
Q

k K
i k t ω j k t ω l

k K
j k t ω i k t ω

l

, ,

, , , , , , , , , , , , , ,

(52)

− − × ⩽ ⩽ − ×β BigM Zflow β BigM(1 ) (1 )l l t ω
P

l, , (53)

− − × ⩽ ⩽ − ×β BigM Zflow β BigM(1 ) (1 )l l t ω
Q

l, , (54)

Transacted power (a), Summation of power scheduling (b),

Fig. 13. The energy transaction and optimal schedule of each MG in Case 3.

Exchanged power (a), Summation of power scheduling (b),

Fig. 14. The diagram of power transaction and scheduling in each MG in Case 4.

Table 5
The operation results of the MGs in Case 3 and Case 4.

Demand (MW) Cost ($)

Operation Thermal units ($) ESS ($) DRP ($) Power exchange ($) Profit ($)

Case3 156.336 41030.056 34658.520 140.147 2729.248 3502.141 18766.752
Case4 181.467 47528.760 35702.840 139.806 3162.019 8524.095 19188.114

Fig. 15. 5-minute energy purchase and sale in Case 5.

Table 6
The operation results of the MGs in Case 5.

Operation cost ($) Load demand (kW) Thermal units ($) EES ($) DRP ($) Power exchange ($) Profit ($)

47261.103 181.467 35702.840 139.806 3138.343 8280.114 19553.604

Fig. 16. Comparative illustration of power transactions in Case 4 and Case 5.
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• Constraints of EVs: When modeling EVs, it is assumed that their
trip, their arrival, and their departure times are determined. Hence,
considering the distance driven by each vehicle, and the hours of
their presence in the parking, the equations for the operation of the
EVs are represented in (55–60).
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4. Solution method

In this paper, a three-stage stochastic framework is proposed for the
energy management of a VPP and its MGs. In the first stage, MGs
scheduling is done to maximize the maximum possible load supply in
the network. MGs that can be controlled with a coordinated approach
are identified, considering the network configuration. The service area
of each MG is defined, considering the switches on the main feeders and
also the capacity of each feeder. The MG can partly restore controllable
loads once an error occurs. In the second stage, the energy management
is implemented for each MG and the uncertainty of RESs and loads is
taken into account. The third stage investigates the optimal scheduling
of the VPP with respect to the energy sale/purchase requirements of the
MGs and also, the assets out of MGs. A VPP can be comprised of one or
several MGs besides different types of loads and generation technolo-
gies. Scheduling is carried out with three pricing mechanisms, i.e. CPP,
TOU, and RTP, within hourly and 5-minute periods. Also, DRPs and
storage systems, known as EVs are used to control the unbalance costs
and increase the VPP profit. The concept of the presented model is
indicated in Fig. 2.

• Collecting detailed data of the studied distribution network, in-
cluding the load pattern characteristics, renewable power genera-
tion, generating units, storage systems, network configuration, and

protective switches.

• Determining the operation of the MGs both in uncoordinated and
coordinated modes in stage one with respect to the uncertainties of
load demand and RESs.

• Generating the data required for the second stage, including the
assets in each MG, load pattern, and the renewable power genera-
tion both in coordinated and uncoordinated modes.

• Coordinated and uncoordinated scheduling of MGs, considering the
uncertainties due to the load demand and RESs.

• Scheduling the VPP, taking into consideration different pricing
mechanisms and EVs.

5. Simulation results

In this section, the performance of the proposed model for de-
terministic and stochastic analysis in distribution networks is in-
vestigated. Simulation has been done using a PC with Intel Core i5 CPU
@3.2 GHz and 8 GB RAM. The proposed problem has been solved using
GUROBI Solver in GAMS software ver. 27.2.

5.1. Data

In this paper, an IEEE 118-Bus modified distribution network
comprised of 3 feeders, 118 buses, 3 breakers, 30 sectionalizers, and 9
tie lines is used as the test network to study the proposed framework
[32]. The total active and reactive power demands for this network are
22.71 MW and 17.04 MVAr, respectively. The required data for the
location and capacity of the distributed generation (DGs) units, WTs,
and ESSs are represented in Table 2. In this network, 7 units (DG1 to
DG7) of the 14 existing units can serve as master units. Therefore, the
maximum number of MGs that can be formed is 7. The capacity,
charging and discharging rates, output, and the state of charge (SoC) of
the storage units are set to 500 kW, 100kWh, 85%, and 60%, respec-
tively. The capacity of the WTs is also 500 kW. Fig. 3 depicts the day-
ahead forecasted electricity prices over 24 h on a typical day.

A set of 1000 scenarios is generated for scheduling purposes as
shown in Fig. 4. The scenarios have been generated using the Monte-
Carlo simulation with Weibull and normal probability distribution
functions for wind and load, respectively. With respect to the high
computational burden, the number of scenarios has been reduced to 10
using SCENRED. The reduced scenarios are shown in Fig. 5. To create
the required resilience, it is assumed that loads greater than 400 kW can
change their consumption by 50% in a stepwise manner. The following
five cases have been analyzed to verify the performance of the pre-
sented three-stage model. In all Cases, outage in two of the three main
feeders of the network, namely “feeders (1–63) and (1–2)”, is taken into
account to provide the faulty conditions in the studied network and
determine the service areas of the MGs. In addition, a VPP is defined in
the area of faulty feeders for energy management in the third stage.
Table 1 represents the detail of each case.

5.2. Case 1 and Case 2

After solving the first stage of the proposed method, the obtained
service areas of the MGs in Case 1 and Case 2 are shown in Fig. 6a and
b, respectively.

As can be observed in Fig. 6a and b, a higher load demand has been
supplied in the coordinated operation case and the MGs are managed to
cover more points in the main network by sharing power. In Case 1 and
Case 2, six and two MGs are formed, respectively. In Case 1, the number
of MGs is equal to the number of main generating units. The formation
of two MGs in the second case implies that some MGs could not follow
the coordinated operation and participate in the supply of each other’s
loads due to the locations of their main generating units. In other
words, the power transaction between all MGs is not possible in the
proposed method because the power transaction is impossible given the

Fig. 17. The energy purchase and sale prices in different pricing mechanisms.

Table 7
The profit made in the third stage using different pricing mechanisms in Case 5.

RTP TOU CPP

Deterministic scheduling ($) 19554.161 21509.758 18864.357
Stochastic scheduling ($) 19188.114 21009.506 18409.092
5-minute scheduling ($) 19533.604 21483.580 18839.892
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network configuration, the free capacity of the common feeders, and
the location of the MGs. The capacity of the equipment and the amount
of load supplied in each MG in Cases 1 and 2 are listed in Table 3 to
identify the quantity of the equipments within the optimal service areas
of the MGs.

As a result of different assets, the operation pattern of MGs, in-
cluding their load curve, the WTs’ power output, and the storage system
capacities, would be different. Besides, the operation conditions of each
MG are assessed, considering its specifications and location. Fig. 7a and
b illustrate the load curves of the MGs in Case 1 and Case 2, respec-
tively.

As seen in Fig. 7, only MGs 1 and 5 have followed the main load
curve in Case 1 due to the small amount of load in the areas covered by
these MGs and also, the impossibility of using load control in these
MGs. This is because loads more than 400 kW are allowed to use the
load control option. The sale of additional generation and compensa-
tion of the generation deficit in Case 1 is depicted in Fig. 8a. As seen in
Fig. 8a, all MGs sold their energy at peak-price hours. MG 1 was always
willing to sell its energy after the initial hours due to the shortage of the
covered load and the low cost of energy generation. The reason for the
purchase of energy in the beginning hours was the low energy prices
and the ramping limitations. The overall diagram of the total MGs
operation is illustrated in Fig. 8b to identify the frequency of using the
DRP and storage devices.

Based on Fig. 8b, MGs try to control the energy supply cost at peak
hours though purchasing and storing energy during the early hours. The
generation surplus and deficit in Case 2 are presented in Fig. 9. As seen
in Fig. 9a, the surplus power generated is sold only during peak hours,
which could be attributed to the coverage of more points in the co-
ordinated operation case and the use of additional energy for the supply
of load at these points. In other words, the adjacent MGs can com-
pensate for the deficit in the power generation of an MG.

The optimal hourly scheduling of the assets has been depicted in
Fig. 9b. Similarly to Fig. 8b, the power generation shows a stepwise
trend until it reached the maximum capacity. The reason for the step-
wise generation curve is the ramping rate limitations of the generating
units. In addition, the ESS mitigates the operating cost during these
hours by shifting a fraction of the generation to the consumption peak.

The load consumption pattern in the absence or presence of the DRP
is presented in Fig. 10a and b in Case 1 and Case 2, respectively. As seen
in Fig. 10a, the use of the DRP capable of load shifting or curtailment,
reduces the load peak. As a result, the load peak decreases by 19.5%
and the number of peaks rises to three peaks. The reason for the
emergence of a peak at hours 6:00 and 11:00 is the low price of energy
during these hours. In the second case shown in Fig. 10b, the con-
sumption after using the DRP follows the same pattern.

In Fig. 11, the amount of energy purchased and sold at different
hours is indicated. As it is shown in Fig. 11, MGs in the coordinated
operation mode sell more and purchase less power from the network.
Table 4 represents the operation details of the second stage in Case 1
and Case 2.

The VPP performs scheduling for the total load within its service
area. The hourly profit values in Case 1 and Case 2 are shown in Fig. 12.
As seen in Fig. 12, the coordinated scheduling of the MGs increases the
VPP profit. The values of total profit in Case 1 and Case 2 are
$19167.472 and $19554.161, respectively. The increase in profit in the
second case is due to the better performance of the VPP in the energy
transaction over the beginning hours of the scheduling period.

5.3. Case 3 and Case 4

The energy transaction with the distribution network and the op-
timal schedule in Case 3 and Case 4 are depicted in Figs. 13 and 14. A
comparison of Figs. 13 and 14 with the purchase and sale values in the
deterministic cases, shown in Figs. 8 and 9, reveals that the amount of
power transacted has increased due to the fluctuations in the load

demand and wind power generation.
Table 5 represents the operating costs of Case 3 and Case 4, showing

an increase in the costs compared to the first two cases.

5.4. Case 5

In this case, the coordinated scheduling in real conditions is studied.
A 5-minute time resolution is considered and the feasibility of sche-
duling and the coverage of real-time fluctuations are analyzed. The
total hourly energy sale of the MGs in Case 5 is shown in Fig. 15.

Based on Fig. 15, the 5-minute scheduling follows the deterministic
scheduling pattern with the aid of EVs and DRPs, covering the existing
fluctuations. The operation results in this case are indicated in Table 6.

Table 6 shows that the operating cost of Case 5 has reduced com-
pared to that of Case 4, mainly due to the energy purchase from the
network. Fig. 16 depicts the comparative representation of power
transactions in Case 4 and Case 5. This figure indicates that Case 5 is
associated with a lower cost due to the energy purchase and a higher
profit due to energy sale over the majority of intervals in comparison
with Case 4.

The profit gained using the three mechanisms, i.e. RTP, TOU, and
CPP, is shown in Table 6 to study the impact of the method used for
calculating the VPP profit in different markets. In addition, the three
pricing mechanisms are depicted in Fig. 17.

According to Table 7, the profit made through TOU pricing in the
three simulation models is higher. As for the CPP, since the price is
lower during the off-peak hours, the VPP profit decreases. Besides, the
RTP profit is average and more realistic.

6. Conclusion

This paper proposed a three-stage stochastic model for the si-
multaneous scheduling of a virtual power plant (VPP) and microgrids
(MGs), taking into consideration the uncertainties due to renewable
power generation and load demand. The problem was presented aimed
at maximizing the VPP profit with respect to the optimal scheduling of
MGs, which was defined as total operating cost minimization, taking
into account different pricing mechanisms. The scenarios of wind power
generation and load demand were generated using the Monte-Carlo
simulation and SCENRED was used to reduce the number of scenarios to
balance the computational burden of the problem. The presented model
considered the network configuration and power flow equations to
avoid any unreal power transaction. Afterward, the model was simu-
lated for five different cases, addressing the coordinated and un-
coordinated operation modes. The results obtained showed that the
coordinated operation of MGs would lead to mitigating the load supply
cost, and considering the uncertainties resulted in increasing the op-
erating cost. It was also verified that the TOU mechanism would pro-
vide the VPP with a higher profit compared to other pricing mechan-
isms.
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