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Abstract

This paper offers a data-driven approach for designing adaptive suboptimal second-order sliding mode (ASSOSM) controllers
for single-input nonlinear systems, characterized by perturbed strict-feedback structures with unknown dynamics. The proposed
approach is recursive, in which the system dynamics are first decomposed into two parts, referred to as the upper and lower
dynamics. The control design task is then divided into two stages, that is, designing a virtual controller for the upper dynamics,
followed by synthesizing the actual controller for the full-order system. To this end, we start by collecting noisy data from the
system through a finite-time experiment, referred to as a single trajectory. We then formulate a data-dependent condition as a
semidefinite program, whose feasibility enables the design of a virtual controller that ensures global asymptotic stability of the
origin for the upper dynamics. Building upon this virtual controller, we subsequently propose a data-driven sliding variable
that facilitates the design of an ASSOSM controller for the unknown full-order system. This controller guarantees semi-global
asymptotic stability of the origin in the presence of disturbances. Specifically, for any prescribed bounded set—no matter how
large—the controller’s design parameters can be chosen to ensure asymptotic stability of the origin. The effectiveness of the
proposed method is demonstrated through three case studies, reflecting different aspects of the approach.
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1 Introduction

Controlling nonlinear systems in uncertain environ-
ments has long been a central challenge in the control
community, inspiring the development of diverse strate-
gies to manage uncertainties. Among these, sliding
mode (SM) control has gained significant attention for
its robustness against various uncertainties. Specifically,
SM controllers drive the system’s state trajectories to
a predefined surface, known as the sliding manifold, in
finite time while ensuring that they remain confined to
it thereafter. Notably, system behavior on the sliding
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manifold remains unaffected by matched uncertainties
(i.e., uncertainties that appear only in the control input
channel). Consequently, SM control design involves two
main steps: (i) constructing an appropriate sliding vari-
able (and the corresponding sliding manifold) to achieve
the desired dynamic performance, and (ii) designing a
control law, discontinuous on the sliding manifold, that
ensures the state trajectories reach the manifold in finite
time and remain on it thereafter (Ferrara et al., 2019).

Despite their advantages, SM controllers are prone
to chattering in practical implementations, i.e., high-
frequency oscillations in the controlled variable caused
by the finite switching rate of the control law, whereas
ideal implementations assume switching at infinite fre-
quency (Boiko et al., 2007; Levant, 2010; Utkin, 2015).
Hence, higher-order sliding mode (HOSM) controllers
have been introduced to mitigate chattering by shift-
ing the essential discontinuity, needed for finite-time
convergence to the sliding manifold, to a higher-order
derivative of the control variable, ensuring a contin-
uous control input to the system (Edwards and Sht-
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essel, 2016; Levant, 2003). Among HOSM controllers,
second-order sliding mode (SOSM) controllers are par-
ticularly preferred for their reduced complexity, mak-
ing them more practical for implementation (Bartolini
et al., 1998; Ding et al., 2018; Incremona et al., 2016).
However, all these studies assume the availability of
knowledge of the system model to facilitate the sliding
variable design—an assumption that is often unrealistic
in practical applications.

To overcome this critical challenge, two distinct yet
valuable approaches have emerged: indirect and direct
data-driven methods. The indirect approach employs
system identification to construct a model, which is
then used for design purposes in a model-based control
manner. Yet, accurately identifying complex nonlinear
systems can be computationally demanding or even in-
feasible (Hou and Wang, 2013; Kerschen et al., 2006).
Conversely, direct data-driven methods, including our
approach, bypass the identification phase by directly
using the data gathered for design objectives. This elim-
inates the two-step process inherent to indirect meth-
ods, offering a more streamlined solution (Dörfler et al.,
2022).

Owing to the advantages of direct data-driven ap-
proaches, a growing body of work has built upon the
seminal contribution of De Persis and Tesi (2019) on
stabilizing linear dynamical systems, extending the
methodology to nonlinear settings. These include, but
are not limited to, the stabilization of polynomial sys-
tems using noise-corrupted state-derivative data (Guo
et al., 2021) and (approximate) cancellation of nonlin-
earities (De Persis et al., 2023). Furthermore, Taylor
et al. (2021) introduce an approach for synthesizing ro-
bust controllers for nonlinear systems affected by model
uncertainties, while Kenanian et al. (2019) explore data-
driven stability analysis for switched systems. Moreover,
Zhou et al. (2022) present a framework that achieves
stabilization of unknown nonlinear systems through the
simultaneous learning of a neural Lyapunov function
and a nonlinear controller. Further efforts involve lever-
aging Petersen’s lemma to design stabilizing closed-loop
controllers under disturbance-corrupted input-state
data (Bisoffi et al., 2022). Direct data-driven approaches
have also been employed to enforce properties beyond
classical stability, such as enforcing contractivity, input-
to-state stability, stability of interconnected networks,
and safety (Hu et al., 2025; Lavaei and Angeli, 2023;
Samari and Lavaei, 2025; Samari et al., 2025b; Zaker
et al., 2025a,b); see the survey by Martin et al. (2023)
for recent results on direct data-driven methods. These
studies, however, either do not address robustness to
disturbances or assume the availability of a known
disturbance bound, which appears explicitly in the pro-
posed conditions—for instance, see Assumption 2 and
Theorem 2 in the work by Hu et al. (2025).

Recently, a few data-driven SM control frameworks

have been proposed to enhance robustness against dis-
turbances and uncertainties. In this regard, Lan et al.
(2024) offer an SM control design for partially unknown
nonlinear systems, while Riva et al. (2024) and Samari
et al. (2025a) present integral SM controllers for lin-
ear systems and interconnected networks consisting
of unknown nonlinear subsystems, respectively. While
promising, these approaches remain vulnerable to the
chattering phenomenon, which hinders their practical
deployment. In addition, Samari et al. (2025a) collect
samples under disturbance-free conditions and require
a predefined library of functions capable of capturing
the true system dynamics—neither of which is required
in our setting.

Central Contribution. Motivated by these critical
challenges, we propose a direct data-driven method
for designing adaptive suboptimal second-order sliding
mode (ASSOSM) controllers for fully unknown single-
input nonlinear systems within a subclass of perturbed
strict-feedback dynamics. By decomposing the system
into lower and upper dynamics and collecting noisy data
from a finite-time experiment, we formulate a data-
dependent condition as a semidefinite program (SDP),
whose feasibility yields a virtual controller that guaran-
tees global asymptotic stability (GAS) of the origin for
the upper dynamics. Leveraging this result, we construct
a data-driven sliding variable that enables the synthesis
of an ASSOSM controller for the full-order system, en-
suring semi-global asymptotic stability (S-GAS) of the
origin in the presence of disturbances; that is, for any
desired bounded set, the controller parameters can be
tuned to render the origin asymptotically stable.

Our data-driven framework offers several practical ad-
vantages over the existing state-of-the-art approaches:

(i) Unlike conventional SOSM approaches, e.g., the
work by Bartolini et al. (1998), that rely on system
knowledge to construct the sliding variable, the pro-
posed data-driven approach eliminates the need for
a model, thereby enhancing practical applicability.

(ii) By virtue of generating SOSMs, the proposed data-
driven ASSOSM controller enables the mitigation
of the chattering problem, which is again beneficial
for practical applications.

(iii) Unlike previous data-driven studies that require
persistently exciting input signals in the classical
sense during data collection (cf. (6)), our frame-
work removes this assumption and additionally op-
erates with less data (cf. Remark 2). In fact, our
framework can be employed when the input signal
for data collection is generated based on a feed-
back law (cf. Section 4.2) or even when it is con-
stantly zero, provided that condition (5) is satisfied.
This significantly enhances practicality, as gener-
ating persistently exciting inputs for nonlinear sys-
tems remains a largely unresolved challenge.

(iv) The proposed unified framework simultaneously
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accounts for three distinct sources of data noise: (a)
noisy state derivative measurements, (b) unknown
disturbance data, without requiring a known
bound—unlike previous studies where such bounds
are assumed and involved in the analysis, for in-
stance, see (Hu et al., 2025, Assumption 2)—and
(c) noisy input data, for which neither the noise
bound nor its distribution is required. This dif-
fers from previous studies where such information
explicitly appears in the analysis, e.g., see (Guo
et al., 2021, Remark 8).

(v) Unlike prior data-driven approaches that rely on
a library of functions capable of representing the
true system dynamics (Bisoffi et al., 2022; De Persis
et al., 2023; Guo et al., 2021; Hu et al., 2025; Lan
et al., 2024; Samari et al., 2025a), our method, for
the considered class of systems, avoids this assump-
tion, thereby reducing the required system knowl-
edge. Furthermore, whereas Lan et al. (2024) as-
sume that the control matrix is known, our ap-
proach does not impose this requirement.

Organization. The rest of the paper is organized as
follows. In Section 2, we present the mathematical pre-
liminaries, notation, and formal definition of the system
of interest, along with an overview of the proposed ap-
proach. This is followed by a formal statement of the
main problem addressed in this work. In Section 3, we
first describe the data collection procedure, then present
our data-driven method for constructing the sliding vari-
able, followed by the design of the ASSOSM controller.
Section 4 presents simulation results across three dis-
tinct case studies, while Section 5 concludes the paper.

2 Problem Formulation

2.1 Notation

The set of real numbers is denoted by R, while the sets of
non-negative and positive real numbers are represented
by R≥0 and R>0, respectively. Likewise, the set of non-
negative integers is expressed as N, and the set of posi-
tive integers is denoted by N≥1. The identity matrix of
dimension n×n is denoted by In, while the zero vector of
dimension n and the zero matrix of dimension n×m are
denoted by 0n and 0n×m, respectively. The horizontal
concatenation of vectors xi ∈ Rn into an n×N matrix
is expressed as x = [x1 . . . xN ]. A symmetric matrix P
is denoted as positive definite by P ≻ 0, and as positive
semi-definite by P ⪰ 0. The transpose of a matrix P is
denoted by P⊤. The rank of a matrix A is denoted by
rank(A). The Euclidean norm of a vector x ∈ Rn is rep-
resented as ∥x∥, while |y| presents the absolute value of
y ∈ R. In a symmetric matrix, a star (⋆) represents the
transposed element in the symmetric position.

2.2 System Description

We start by introducing the dynamical system consid-
ered in this work, which represents a subclass of the sys-
tem studied by Zhang et al. (2000).

Definition 1 (ct-PNCS) A continuous-time per-
turbed nonlinear control system (ct-PNCS) evolves
according to

Σ:

{
ẋr = Axr + axn,

ẋn = f(x) + bu+ d(t),
(1)

where x = [x⊤r xn]
⊤ ∈ Rn, with xr = [x1 x2 . . . xn−1]

⊤ ∈
Rn−1, u ∈ R, and d : R≥0 → R denote, respectively,
the state vector, control input, and matched disturbance.
Additionally, the matrix A ∈ R(n−1)×(n−1), the vec-
tor a ∈ Rn−1 with a ̸= 0n−1, and the scalar b ∈ R>0

are unknown. The smooth, potentially highly nonlinear
mapping f : Rn → R, with f(0n) = 0, is also unknown
while satisfying the following classical conditions for the
existence and uniqueness of solutions:

|f(x)| ≤ β1 + β2∥x∥, (2a)∥∥∥∂f(x)
∂x

∥∥∥ ≤ β3 + β4∥x∥, (2b)

where β1, β2, β3, and β4 are unknown positive constants.
We use the tuple Σ = (A,a, f, b, d) to represent the ct-
PNCS in (1), whose components are all unknown. □

Remark 1 (On (2a) and (2b))Conditions (2a) and (2b)
essentially imply that: (i) the function f is globally
Lipschitz-like, ensuring the existence and uniqueness
of solutions for any initial condition and precluding fi-
nite escape time; and (ii) the magnitude of the unforced
dynamics grows at most linearly with ∥x∥, allowing a
controller with finite amplitude to effectively regulate the
system’s behavior. We also note that these conditions are
consistent with those commonly adopted in the model-
based literature (Bartolini et al., 1998). However, we
consider the positive constants β1, β2, β3, and β4 to be
unknown in our data-driven setting, which constitutes a
milder assumption. □

As stated in Definition 1, the function f is assumed to be
unknown, which is often the case in practical scenarios.
To address such situations, previous data-driven studies
assume that a library of functions is available for repre-
senting f (De Persis et al., 2023; Hu et al., 2025; Samari
and Lavaei, 2025; Samari et al., 2025a). However, such
an assumption can be restrictive in scenarios where such
a library is either unavailable or not rich enough (i.e.,
some nonlinearities are neglected) to accurately repre-
sent f . In contrast, our proposed approach in this work
does not rely on this assumption, thereby reducing the
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knowledge required from the system. For the sake of fair-
ness, however, it should be acknowledged that the previ-
ously cited studies are capable of handling more general
classes of nonlinear systems. Nevertheless, many classi-
cal dynamical systems, including inverted pendulums,
take the form of the ct-PNCS introduced in (1) (Khalil,
2002).

We now present the assumption on the matched dis-
turbance, as commonly adopted in sliding mode control
theory (Ferrara et al., 2019).

Assumption 1 (Bounds on d(t)) The matched dis-
turbance d(t) satisfies the bounds |d(t)| < d̄1 and
|ḋ(t)| < d̄2 for all t ∈ R≥0, where d̄1, d̄2 ∈ R>0 are
unknown constants. □

With the full description of ct-PNCS Σ and the as-
sociated assumptions in place, the following subsection
outlines our approach to the problem.

2.3 Design Approach

Since the ultimate objective is to design an ASSOSM
controller for the ct-PNCS (1) without model knowl-
edge, ensuring that the origin is S-GAS in the presence
of the disturbance d(t), we propose a two-step control
design methodology that is purely based on data. More
precisely, we first treat xn as a virtual control input for
the xr-dynamics 1 of (1) and design it as a feedback law
that stabilizes the upper dynamics via a Lyapunov-based
argument. Based on this virtual controller, we then con-
struct the sliding variable and design the ASSOSM con-
trol input u, which achieves semi-global stabilization in
the presence of the disturbance d(t).

Concretely, we define the smooth sliding variable σ :
Rn → R as

σ = xn − φ(xr), (3)

where φ : Rn−1 → R is a smooth function satisfying
φ(0n−1) = 0. We interpret φ(xr) as a virtual control
input for the xr-dynamics of (1). Since the model is un-
known, φ should be designed from data to render the
origin of the xr-dynamics GAS. At the same time, the
ASSOSM controller drives both σ and σ̇ to zero in fi-
nite time, and as per (3), this enforces xn = φ(xr). In
other words, for any initial condition within an arbitrar-
ily large prespecified bounded set, the control amplitude
of the ASSOSM controller can be selected to enforce (3)
to zero, i.e., σ = 0, (cf. Remark 8), and thereby render
the origin asymptotically stable. Specifically, since the
origin is a GAS equilibrium for the xr-dynamics under

1 Throughout the paper, we interchangeably use the terms
“xr-dynamics” and “upper dynamics” to indicate the first
dynamics given in (1).

φ(xr) (cf. Theorem 1), it follows that, given an arbitrar-
ily large yet bounded set, one has

xr → 0n−1
φ(0n−1)=0
=======⇒ φ(xr) → 0

σ=0
======⇒
xn=φ(xr)

xn → 0,

thereby ensuring robustness with respect to the distur-
bance d(t). As can be observed, this is a recursive de-
sign procedure, akin to the backstepping approach, whose
outcome is the designed control input u, which ulti-
mately attains semi-global stabilization for the full-order
system in the presence of the disturbance.

It is important to note that the reason our proposed
controller does not achieve global stabilization, despite
the origin of the upper dynamics being GAS, is that the
ASSOSM framework requires the existence of a bound
(specifically, the bounds in (22), which we treat as un-
known) that depends on the state variables. Clearly, if
the state variables are unbounded, such a bound does
not exist, and therefore the ASSOSM framework cannot
be applied.

It is worth highlighting that the key motivation for
employing ASSOSM control instead of its classical,
non-adaptive counterpart (Bartolini et al., 1998) is its
suitability for data-driven settings, where all required
bounds are assumed to be unknown (cf. Definition 1,
Assumption 1, and ultimately the bounds in (22)). More
precisely, since the system model is unknown and only
accessible through collected data, assuming the avail-
ability of these bounds would be unrealistic, rendering
the approach by Bartolini et al. (1998) inapplicable; see
Section 3.2 for further details. Moreover, in the unknown
setting considered here, φ(xr) and, consequently, the
sliding variable in (3) should be designed based on the
collected data. With these critical challenges in mind,
we now formally state the main problem addressed in
this work.

Problem 1 Consider the unknown ct-PNCS Σ =
(A,a, f, b, d), as in (1). By collecting a single set of
noisy data from the system during a finite-time ex-
periment, design a continuous control input that si-
multaneously enforces the sliding variable (3) to zero
and rejects the disturbance d(t), rendering the origin
an S-GAS equilibrium point for the ct-PNCS (1).

In the following section, we present our data-driven
framework in detail to address Problem 1.

3 Data-Driven Framework

In this section, we introduce our data-driven ASSOSM
control design. In particular, in Section 3.1, we begin
by collecting noisy data from the system and show how
it can be used to design φ(xr) such that the origin be-
comes a GAS equilibrium for the xr-dynamics of the
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ct-PNCS (1). Then, in Section 3.2, we present the AS-
SOSM approach for designing the controller u, which
drives both σ and σ̇ to zero in finite time, thereby en-
suring that the origin is an S-GAS equilibrium for the
full-order system.

3.1 Data-Driven Sliding Variable Design

To design φ(xr) in a data-driven manner, we collect T ∈
N≥1 samples over the time interval [t0, t0+(T −1)τ ] from
the system (1), where τ ∈ R>0 denotes the sampling
time, yielding the following data matrices:

I :=
[
u(t0) u(t0+τ) . . . u(t0+(T −1)τ)

]
, (4a)

O1 :=
[
xr(t0) xr(t0+τ) . . . xr(t0+(T −1)τ)

]
, (4b)

O2 :=
[
xn(t0) xn(t0+τ) . . . xn(t0+(T −1)τ)

]
, (4c)

Ô+
1 :=

[
ẋr(t0) ẋr(t0+τ) . . . ẋr(t0+(T −1)τ)

]
, (4d)

Ô+
2 :=

[
ẋn(t0) ẋn(t0+τ) . . . ẋn(t0+(T −1)τ)

]
, (4e)

D :=
[
d(t0) d(t0+τ) . . . d(t0+(T −1)τ)

]
, (4f)

where data D is completely unknown. In fact, compared
to the relevant literature, we make no assumptions on D
and do not incorporate it into our analysis—a key con-
tribution that enhances feasibility, especially when the
unknown d̄1 is large; see (De Persis et al., 2023, Exam-
ple 6). The reason for such a relaxation is that, instead
of designing u directly, we design φ(xr), treating xn as
a virtual control input for the xr-dynamics of the ct-
PNCS (1). While the data D affects the values of xn,
the full state x is measured during data collection, giv-
ing us access to the perturbed virtual input values xn
(cf. (4c)). This enables analysis of the input-state be-
havior of xr-dynamics without explicitly considering the
disturbance effect (cf. (12), where neither D nor I ap-
pears), making the approach inherently robust. Conse-
quently, for the same reason, our analysis does not di-
rectly require (4a), (4e), and (4f), as they do not appear
in the SDP (8) in Theorem 1, allowing us to accommo-
date noisy control input measurements without impos-
ing any additional assumptions on the noise, including
its distribution. Nevertheless, we assume that the col-
lected samples in (4b) and (4c) follow the subsequent
assumption.

Assumption 2 (Data Richness) Assume that the

matrix
[
O1

O2

]
has full row rank, i.e., the rank condition

rank

([
O1

O2

])
= n (5)

holds. □

Remark 2 (On Assumption 2) Most previous data-
driven studies are explicitly based on the so-called

Willems et al.’s fundamental lemma or its generaliza-
tions (Willems et al., 2005); see (Shakouri et al., 2025)
for recent insights into this lemma. For clarity of expo-
sition, we first consider the case where the function f
is linear. For the ct-PNCS (1), previous studies, e.g.,
(De Persis and Tesi, 2019), require

rank



O1

O2

I


 = n+ 1, (6)

which is evidently stronger than (5). Specifically, most
previous works require the input signal to be persistently
exciting in order for (6) to hold. 2 In contrast, our
framework does not necessarily impose this requirement,
as it is only implicitly based on the fundamental lemma.
In particular, we interpret O2 as the input signal and re-
quire only the satisfaction of (5). This distinction is sig-
nificantly advantageous, as it allows us to use a feedback
controller during data collection—a feature that is par-
ticularly helpful for preventing unstable behavior during
experimentation (cf. Section 4.2). In contrast, previous
methods cannot employ such feedback controllers during
data collection, as doing so would violate (6) due to the
dependency that arises between the samples O1,O2, and
I.
Another advantage of our condition (5) is that it re-
quires less amount of data. Concretely, for the ct-
PNCS (1), satisfying (6) requires at least T = 2n + 1
samples (De Persis and Tesi, 2019, Sec. III), whereas
our condition (5) requires T = 2n − 1. Extending this
reasoning to the case where f(x) is nonlinear, we note
that most prior studies assume the availability of a
function library capable of representing f(x). In such
cases, condition (6) becomes remarkably stronger, and
the minimum number of required samples increases sig-
nificantly, depending on the size of the available library
of functions (De Persis et al., 2023). In contrast, in our
framework, both the required rank condition (5) and the
minimum sample size T = 2n − 1 remain unchanged,
even in the nonlinear case with an arbitrary function
f(x). We dedicate our second case study, in Section 4.2,
to substantiating these arguments. □

Given that derivatives of the state at sampling times
in (4d) are not directly available as measurements, we
approximate them as

ẋi (t0+kτ)=
xi (t0+(k+1)τ)−xi (t0+kτ)

τ
+ψi (t0+kτ),

with i ∈ {1, . . . , n − 1}, and k ∈ {0, 1, . . . , T − 1},

2 Note that the problem of designing a persistently exciting
input I is largely open for nonlinear systems—with a few
exceptions, e.g., the work by Alsalti et al. (2023) for some
specific classes of nonlinear systems.
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where the approximation error ψi (t0 + kτ) is propor-
tional to τ and can be considered as noise. Thus, we as-
sume that (4d) is corrupted by noise

Ψ :=
[
ψ(t0) ψ(t0+τ) . . . ψ(t0+(T −1)τ)

]
∈ R(n−1)×T,

meaning that the measured data is O+
1 := Ô+

1 + Ψ.
While the noise Ψ is entirely unknown, we impose the
following assumption on it.

Assumption 3 (Bound on Ψ) The unknown data
matrix Ψ satisfies

ΨΨ⊤ ⪯ γγ⊤,

for some known γ ∈ R(n−1)×T , meaning that over the
finite data collection interval, the energy of the noise
remains bounded (Van Waarde et al., 2020). □

Remark 3 (On Assumption 3) In practice, a con-
crete scenario where Assumption 3 holds is when a con-
stant ψ̄ is known such that ∥ψ(t)∥2 ≤ ψ̄ for all t ∈ R≥0,
where ψ(·) denotes a column of Ψ. In such a case, by tak-
ing an arbitrary y ∈ Rn−1, and by recalling the Cauchy–
Schwarz inequality (Bhatia and Davis, 1995), we have

y⊤ΨΨ⊤y =

T∑
k=1

(
ψ⊤
k y
)2≤ T∑

k=1

∥ψk∥2 ∥y∥2

≤
T∑

k=1

ψ̄ ∥y∥2 = ψ̄ T ∥y∥2 = y⊤
[
ψ̄ T In−1

]
y.

Since the inequality holds for every vector y, one has

ΨΨ⊤ ⪯ ψ̄T In−1,

which implies that Assumption 3 is satisfied with γ :=√
ψ̄T In−1, resulting in γγ⊤ = ψ̄T In−1. □

We now propose the following lemma, under which a
closed-loop representation for the xr-dynamics of the
ct-PNCS (1) is obtained.

Lemma 1 (Closed-Loop Representation) Consider
the xr-dynamics of the ct-PNCS (1). By defining
S := [a A] and designing the virtual control in-
put as φ(xr) = KPxr, where K ∈ R1×(n−1) and
P ∈ R(n−1)×(n−1), with P ≻ 0, one has

ẋr = S
[
KP
In−1

]
xr (7)

as the closed-loop representation. □

Proof: Considering S = [a A], and under the virtual
control input φ(xr) = KPxr, one has

ẋr = Axr + axn = Axr + aφ(xr)

= (A+ aKP)xr = S
[
KP
In−1

]
xr,

concluding the proof. ■

We now offer the following theorem, as one of the main
results of the work, which enables the design of a virtual
control input φ(xr) that ensures GAS of the origin for
the xr-dynamics. Consequently, this facilitates the data-
driven design of the sliding variable (3) using perturbed
data collected from a finite-time experiment.

Theorem 1 (Data-Driven Design of φ(xr)) Given
the xr-dynamics of the ct-PNCS (1), let Assump-
tions 2 and 3 hold. If there exist the decision variables
κ1 ∈ R>0, κ2 ∈ R≥0, Q ∈ R(n−1)×(n−1), with Q ≻ 0,
and K ∈ R1×(n−1) such that the subsequent SDP is
satisfied:

κ1In−1−κ2(O+
1 O

+
1

⊤−γγ⊤)

[
K
Q

]⊤
+ κ2O+

1 G⊤

⋆ −κ2GG⊤

⪯0,

(8)

where G :=
[
O⊤

2 O⊤
1

]⊤
, then the state-feedback control

law φ(xr) = KPxr, with P := Q−1 ≻ 0, renders the
origin a GAS equilibrium point for the xr-dynamics of
the ct-PNCS, with a radially unbounded, continuously
differentiable Lyapunov function V(xr) = x⊤r Pxr. □

Proof: Consider the Lyapunov function V(xr) =
x⊤r Pxr with P := Q−1, and hence, P−1 = Q. Under
the control law φ(xr) = KPxr, and according to the
closed-loop representation (7), we have

V̇(xr) = 2x⊤r PS
[
KP
In−1

]
xr

= x⊤r

(
PS

[
KP
In−1

]
+

[
KP
In−1

]⊤
S⊤P

)
xr

= x⊤r P
(
S
[

K
P−1

]
+

[
K

P−1

]⊤
S⊤
)
Pxr.
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Accordingly, we get

V̇(xr)

= x⊤r P
([In−1

S⊤

]⊤ 
0(n−1)×(n−1)

[
K

P−1

]⊤
[

K
P−1

]
0n×n


×

[
In−1

S⊤

])
Pxr. (9)

The goal is to show that V̇(xr) < 0 for all non-zero xr.
However, this is a strict inequality, which makes the im-
plementation challenging. Thus, instead of directly en-
forcing V̇(xr) < 0 for all xr ̸= 0n−1, we ensure that
V̇(xr) ≤ −κ1 x⊤r PPxr, which considering (9), is equiv-
alent to showing

x⊤r P
([In−1

S⊤

]⊤
Ξ1︷ ︸︸ ︷

κ1In−1

[
K

P−1

]⊤
[

K
P−1

]
0n×n


[

In−1

S⊤

])
Pxr

︸ ︷︷ ︸
F

≤ 0.

(10)

If (10) is enforced, since κ1 ∈ R>0 andP ≻ 0, it becomes
evident that V̇(xr) < 0 for all xr ̸= 0n−1, rendering the
origin of the xr-dynamics GAS under the control law
φ(xr) = KPxr.

Concurrently, Assumption 3 can also be reformulated as

[
In−1

Ψ⊤

]⊤ [
−γγ⊤ 0(n−1)×T

⋆ IT

][
In−1

Ψ⊤

]
⪯ 0. (11)

Furthermore, and according to the xr-dynamics of the
ct-PNCS (1), we know that the data gathered satisfies

O+
1 = AO1 + aO2 +Ψ. (12)

Then, considering S = [a A] and G =
[
O⊤

2 O⊤
1

]⊤
, we

have

O+
1

(12)
= SG +Ψ ⇒ Ψ = O+

1 − SG.

Hence, (11) can be rewritten as

−γγ⊤ + (O+
1 − SG)(O+

1 − SG)⊤ ⪯ 0,

or equivalently

[
In−1

S⊤

]⊤ Ξ2︷ ︸︸ ︷[
O+

1 O
+
1

⊤−γγ⊤ −O+
1 G⊤

⋆ GG⊤

][
In−1

S⊤

]
⪯ 0. (13)

Considering (13), and by defining

E :=x⊤r P
[

In−1

S⊤

]⊤[
O+

1 O
+
1

⊤−γγ⊤ −O+
1 G⊤

⋆ GG⊤

][
In−1

S⊤

]
Pxr,

we simply get E ≤ 0. Now, utilizing the classical S-
procedure (Yakubovich et al., 2004), we can show that
V̇(xr) ≤ −κ1 x⊤r PPxr < 0 for all non‑zero xr, while
respecting E ≤ 0. More concretely, by defining z :=[

In−1

S⊤

]
Pxr, we have F = z⊤Ξ1z and E = z⊤Ξ2z ≤ 0.

Then, according to the S-procedure, if there exists a non-
negative multiplier κ2 ∈ R≥0 such that

Ξ1 − κ2 Ξ2 ⪯ 0, (14)

or equivalentlyκ1In−1−κ2(O+
1 O

+
1

⊤−γγ⊤)

[
K
Q

]⊤
+ κ2O+

1 G⊤

⋆ −κ2GG⊤

⪯0,

which is exactly our proposed condition in (8), we can
conclude

z⊤Ξ2z ≤ 0 =⇒ z⊤Ξ1z︸ ︷︷ ︸
V̇ (xr)+κ1 x⊤

r PPxr

≤ 0, (15)

ensuring that

V̇ (xr) ≤ −κ1 x⊤r PPxr < 0,

for all xr ̸= 0n−1. This renders the origin a GAS equilib-
rium for the xr-dynamics under the control law φ(xr) =
KPxr, thereby concluding the proof. ■

We emphasize that the matrix S := [a A] is entirely
unknown in the closed-loop representation (7). Impor-
tantly, we neither identify S at any stage nor require
it in our proposed SDP (8). This fact alone substan-
tiates that the upper dynamics are not identified. In-
stead, leveraging the closed-loop representation, we pro-
pose the SDP (8) to design the virtual controller directly
from noisy data, without relying on knowledge of A, a,
or their compact form S.
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Remark 4 (On Condition (5)) Due to fulfilling con-
dition (5) in Assumption 2 when gathering data, it is
guaranteed that GG⊤ ≻ 0, which is required for the feasi-
bility of the SDP (8). This highlights the necessity of im-
posing Assumption 2, with its various aspects discussed
in Remark 2. □

Remark 5 (On Scalability) The dimensions of the
decision variables in the SDP (8) depend only on the
number of state variables in the xr-dynamics, i.e., n− 1
rather than n. This implies that even when the function
f in (1) is linear, the proposed SDP scales more effi-
ciently to high-dimensional systems compared to previ-
ous data-driven approaches, and this advantage becomes
even more pronounced when f is nonlinear. In fact, in
the nonlinear case, as mentioned earlier, previous stud-
ies require access to an extensive library of functions
to represent the function f , with the dimensions of the
decision variables depending on the size of that library.
These considerations highlight the superior scalability
of our framework. We also note that the SDP (8) is
linear in all decision variables, with no bilinear terms;
it can be efficiently solved using standard SDP solvers,
such as YALMIP (Lofberg, 2004) in combination with
MOSEK (ApS, 2019). □

Remark 6 (Role of Noisy Data) We note that the
data O2, derived from the xn–dynamics, is significantly
influenced by both the noisy input data I and the distur-
bance D; it enters the SDP (8) through G. The derivative
data O+

1 is likewise noise-corrupted and appears in the
SDP (8). Although I is not explicit in (8), its influ-
ence is fully captured via O2. In fact, the reason that I
does not explicitly appear in the SDP (8) is that xn is
treated as the virtual control input for the xr-dynamics.
Consequently, the influence of I does not manifest it-
self directly in the xr-dynamics. This claim is supported
by (12), where I does not appear. This absence is pre-
cisely what enables our approach to handle noisy input
data without requiring any additional assumptions. □

Having offered the SDP (8) to design the virtual con-
trol input φ(xr), we now proceed with presenting our
data-driven ASSOSM control framework in the follow-
ing subsection.

3.2 ASSOSM Controller Design

Here, we describe the design of the ASSOSM controller
based on the data-driven results established in Sec-
tion 3.1. We show that the sliding variable σ depends
on the data-driven components K and P , which are ob-
tained according to Theorem 1, and consequently, the
ASSOSM controller also depends on them.

We first recall that according to (3) and Theorem 1, the

proposed data-driven sliding variable is

σ = xn −KPxr. (16)

We now proceed to design the ASSOSM controller to
ensure that the sliding variable (16) and its time deriva-
tive converge to zero in finite time. Before that, however,
it is worthwhile to highlight several important aspects
of the approach. First, we note that standard SM and
SOSM control approaches (Bartolini et al., 1998) require
knowledge of certain bounds (cf. the bounds in (22)),
which is not feasible in our setting due to the unavail-
ability of the system model. By employing the ASSOSM
control framework, we circumvent this classical require-
ment, making the approach more suitable for a data-
driven context. Second, by utilizing the ASSOSM frame-
work, the matched disturbance is actively rejected, ren-
dering the origin S-GAS even in the presence of a non-
vanishing disturbance d(t), thereby enabling a robus-
tified data-driven design. This contrasts with previous
data-driven approaches, which typically yield feedback
control laws that do not guarantee asymptotic stability
of the origin under non-vanishing disturbances. Finally,
the resulting control input is continuous, which offers a
clear advantage in practical implementations.

To proceed with the design, we note that interpret-
ing (16) as the output of the ct-PNCS (1), the resulting
input–output map has relative degree one. 3 However,
designing the ASSOSM controller, which yields a con-
tinuous control input, requires artificially increasing the
relative degree to two. To do so, we introduce the aux-
iliary variables ς1 := σ and ς2 := σ̇, while constructing
the auxiliary system

ς̇1 = ς2, ς̇2 = ∆+ Λν, (17)

where

∆ =
∂f(x)

∂x

[
Axr + axn

f(x) + bu+ d(t)

]
+ḋ(t)−KPA(Axr+axn)

−KPa(f(x) + bu+ d(t)), (18a)
Λ = b, (18b)

are both unknown. Moreover, u̇ = ν, where ν ∈ R de-
notes the discontinuous control input that is to be de-
signed to ensure that ς1 and ς2 reach zero in finite time,
even in the presence of the disturbance d(t).

It is evident that ς2 is unmeasurable, as it depends on the
disturbance d(t), which is unknown. However, to design
ν such that it drives both ς1 and ς2 to zero in finite time,
and in particular to design the adaptation law, the value
of ς2 at each time instant is required. To this end, we

3 That is, the control input u appears explicitly in the first
derivative of the sliding variable (16), i.e., σ̇.
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employ Levant’s differentiator (Levant, 1998, 2003) to
estimate ς2 with high accuracy—in theory, the estimate
becomes exact after a finite time. More concretely, to
estimate ς2 using Levant’s differentiator, we have

˙̂ς1 = −µ0 |ς̂ − ς1|
1
2 sign(ς̂ − ς1) + ς̂2, (19a)

˙̂ς2 = −µ1 sign(ς̂ − ς1), (19b)

where ς̂1 and ς̂2 denote the estimates of ς1 and ς2, respec-
tively. Additionally, µ0 = 1.5L 1

2 and µ1 = 1.1L, where
L ∈ R>0 is the design parameter of the differentiator. It
is important to allow Levant’s differentiator (19) suffi-
cient time to converge in order to obtain a reliable esti-
mate of ς2. Notably, the differentiator is proven to con-
verge in finite time. In particular, increasing the design
parameter L accelerates convergence. However, exces-
sively large values of L can introduce fluctuations in the
estimates of ς2, potentially causing practical implemen-
tation issues. Thus, selecting L should involve a trade-off
between convergence speed and estimation robustness.

Having adopted Levant’s differentiator to estimate ς2, we
can now design the following discontinuous control input
ν to drive both ς1 and ς2 to zero in finite time (Incremona
et al., 2016):

ν = −Υad sign
(
ς1 −

1

2
ςmax
1

)
, (20a)

where Υad is the adaptive control amplitude to be de-
signed, and ςmax

1 denotes the extremal value of ς1 along
its trajectory. To design Υad, we have

Υ̇ad =

{
η1|ς1|+ η2|ς̂2|, if |ς1| > |Θ|,
0, otherwise, (20b)

where η1, η2 ∈ R>0 are design parameters, Θ denotes
the maximum value of the sequence ς1, stored as ςmax

1 ,
and Υad(t0) = Υad0 . We note that while the input ν is
discontinuous, the actual control input u =

∫ t

t0
ν(s)ds

remains continuous.

Remark 7 (On Computing ςmax
1 ) In addition to es-

timating ς2, Levant’s differentiator (19) can also be em-
ployed to compute ςmax

1 by storing the value of ς1 at time
instants when the sign of ς̂2 changes. The corresponding
procedure is illustrated in Fig. 1. □

It is crucial to note that in the non-adaptive ver-
sion (Bartolini et al., 1998), the control amplitude Υad

is constant and must satisfy

Υad = Υad0 > max
{∆̄
Λ
,

4∆̄

3Λ− Λ̄

}
, (21)

Levant’s
differentiator

(19)
ς1

Zero crossing
test

Storing
ς1

ςmax
1

ς̂2
if true

Fig. 1. Schematic illustration of using Levant’s differentia-
tor (19) to compute ςmax

1 .

where ∆̄, Λ, and Λ are known positive constants satis-
fying

|∆| ≤ ∆̄, Λ ≤ Λ ≤ Λ̄. (22)

However, it is evident that finding such bounds on (18a)
and (18b) is nearly impossible, particularly in our data-
driven setting, where all components of the system are
unknown (cf. Definition 1 and Assumption 1), thus
demonstrating the advantage of adopting the ASSOSM
control framework.

Remark 8 (On (20b)) We note that in (20b), the
control amplitude Υad increases adaptively when the
magnitude of the sliding variable tends to exceed that of
Θ; otherwise, Υad retains its previous value. As shown
by Incremona et al. (2016), if Υad is updated according
to (20b), it satisfies (21) in finite time. Consequently, as
demonstrated by Bartolini et al. (1998), ς1 and ς2 reach
zero in finite time, thereby steering the sliding vari-
able (16) and its time derivative to zero. Recalling (2)
and noting that the bounds in (22) exist over any bounded
domain—regardless of its size—we conclude that there
exists a finite Υad that satisfies (21). It is worth noting
that larger values of η1 and η2 enable Υad to satisfy (21)
more rapidly, but this comes at the cost of increased con-
trol effort u. Therefore, a trade-off should be considered
when choosing these parameters. □

The following theorem, as another main result of this
work, establishes that the origin is an S-GAS equilibrium
for the system under the control input u, given that both
σ and σ̇ converge to zero in finite time.

Theorem 2 (Convergence to σ = 0) Let Assump-
tions 1-3 hold. Consider the auxiliary system (17) under
the discontinuous control input ν defined in (20a), with
the adaptive control amplitude Υad given by (20b), along
with Levant’s differentiator (19). Assume that t0 ≥ tL,
with tL being the finite time required for the conver-
gence of the differentiator. Then, within a finite time
tr ≥ td ≥ t0, where td is the time instant at which (21)
holds, the auxiliary system state variables ς1 and ς2 are
driven to the origin of the auxiliary system’s state space.
That is, a sliding mode σ = 0, with σ defined in (16), is
enforced, i.e.,

xn = KPxr, (23)

thereby rendering the origin an S-GAS equilibrium for the
ct-PNCS (1) under the continuous control input u̇ = ν.
□
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Proof: Since we employ Levant’s differentiator and as-
sume t0 ≥ tL, the value of ς2 is known exactly, as the es-
timate ς̂2 becomes theoretically exact after a finite time,
as previously discussed. This implies that the extremal
value ςmax

1 can, in principle, be detected with ideal accu-
racy using the procedure outlined in Remark 7. Simulta-
neously, according to Remark 8, the control amplitude
Υad increases adaptively until it satisfies (21) in finite
time td. Hence, one gets ∃tr ≥ td ≥ t0 : σ(t) = σ̇(t) =
0, ∀t ≥ tr, where tr is called the reaching time. Once
the sliding variable (16) is enforced to zero, (23) follows
directly. Moreover, since the bounds in (22) exist within
any arbitrarily large yet bounded domain, a finite Υad

satisfying (21) also exists. Therefore, there always exists
a discontinuous control input ν that drives ς1 and ς2 to
the origin of the auxiliary system’s state space.
In addition, the xr-dynamics of the ct-PNCS (1) pos-
sess a GAS equilibrium at the origin under φ(xr) =
KPxr (cf. Theorem 1), ensuring that no initial condi-
tion leads to divergence of either xr or φ(xr). Thus, since
there always exists a discontinuous control input ν that
drives ς1 and ς2 to the origin of the auxiliary system’s
state space, one can also conclude that the continuous
control input u̇ = ν achieves semi-global stabilization
despite the existence of the disturbance d(t), rendering
the origin an S-GAS equilibrium point for the closed-
loop system, thereby concluding the proof. ■

We present Algorithm 1, which outlines all the necessary
steps for designing the proposed data-driven ASSOSM
controller.

4 Simulation Results

In this section, we demonstrate the effectiveness of the
proposed data-driven framework through three case
studies. Specifically, the first case study highlights the
practicality of our framework on real-world systems; the
second illustrates the discussion in Remark 2 regarding
the full-row-rank assumption on data; and the third
demonstrates the applicability of our approach to sys-
tems with a highly nonlinear function f , as well as its
ability to achieve semi-global stabilization for systems
whose states are initialized with arbitrarily large values.
All simulations were conducted using Matlab R2023b
on a MacBook Pro with an Apple M2 Max chip and
32 GB of memory.

4.1 Physical Benchmark: Inverted Pendulum

The first benchmark illustrates the practical applicabil-
ity of the proposed data-driven framework on a physical
system. To this end, we consider the inverted pendulum
described by Khalil (2002, Example 13.21), whose dy-

Algorithm 1 Data-driven design of ASSOSM control
Require: Assumptions 1–3, ψ̄
1: Collect O1, O2, and O+

1 as in (4)
2: Compute noise bound γγ⊤ according to Remark 3

based on ψ̄
3: Obtain K,Q, κ1, and κ2 by solving the SDP (8)
4: Compute P as Q−1

5: Design the virtual control input φ(xr) = KPxr as
in Theorem 1

6: Construct the sliding variable σ as in (3)
7: Employ Levant’s differentiator (19) to estimate ς2
8: Design the adaptive Υad as in (20b)
9: Compute ςmax

1 according to Fig. 1
10: Design the discontinuous input ν as in (20a)
11: Compute the continuous control input u =∫ t

t0
ν(s)ds

Ensure: Semi-global stabilizer u, disturbance rejection

namics are given by

Σ :

{
ẋ1 = x2,

ẋ2 = −10 sin(x1)− x2 + 10u+ d(t).
(24)

We note that (24) conforms to the structure of the ct-
PNCS (1) with A = 0, a = 1, b = 10, and f(x) =
−10 sin(x1) − x2, all of which are assumed to be fully
unknown. The considered disturbance is also given in
Fig. 2c. The goal is to design an ASSOSM controller for
the unknown system (24) using a noisy data trajectory,
thereby demonstrating the practicality of our proposed
framework.

To this end, we first collect noisy data by applying the
arbitrary input u = 0.1 cos(t) and setting the initial con-
dition to x(0) = [1 1]⊤. We note that this choice of con-
troller is used solely for data collection. The sampling
time is set to τ = 0.1, and we gather T = 3 samples,
which is the minimum required according to Remark 2.
It is worth recalling that in (De Persis et al., 2023, Ex-
ample 1), for a disturbance-free discrete-time inverted
pendulum system, 10 noise-free samples were required,
which underscores the data efficiency of our framework.
We assume that the noise Ψ follows a uniform distri-
bution over the interval [−0.5, 0.5]. Thus, according to
Remark 3, we have γγ⊤ = 0.75. Then, we collect the
following data to proceed with the further steps:

O1

O2

O+
1

 =


1 1.0588 1.0397

1 0.1857 −0.5515

0.9366 −0.5117 −1.3232

.
Utilizing this data and solving the SDP in (8), we obtain

K = −0.7343, Q = 0.6708 ⇒ P = 1.4907,

κ1 = 0.5134, κ2 = 0.4990.
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Thus, according to Theorem 1, the virtual control input
is given by φ(xr) = −1.0946x1, resulting in the sliding
variable (16) being obtained as σ = x2 + 1.0946x1.

Following the procedure described in Section 3.2, we now
design the ASSOSM controller. The design parameter of
Levant’s differentiator (19) is selected as L = 300. For
the adaptive control amplitude Υad, defined in (20b), we
set Υad0 = 1, η1 = 30, and η2 = 15. Moreover, ςmax

1
is determined according to the procedure illustrated in
Fig. 1. The discontinuous control input ν is obtained as
in (20a), and accordingly, the continuous control input
u is computed. In Fig. 2, the simulation results for the
unknown system (24) under the designed ASSOSM con-
troller u are presented. As observed, the results are in
complete agreement with the theoretical predictions.

It is worthwhile mentioning that if a sufficiently rich
function library for f(x) is not available—i.e., the sys-
tem nonlinearity is neglected, as discussed by De Persis
et al. (2023, Example 7) for the discrete-time case—
three key shortcomings arise, which also apply to the
continuous-time setting. First, one should assume that
the neglected nonlinearity is bounded with a known
bound, which can be restrictive in practical scenarios.
Second, the experiment for data collection should be
performed from an initial condition very close to the
equilibrium. Finally, although the result guarantees
that the origin is asymptotically stable, an estimate of
the region of attraction should still be obtained for the
completeness of the analysis.

On the other hand, since our framework does not require
a library of functions for f , all of these difficulties are
avoided. Moreover, as the proposed controller achieves
semi-global stabilization, the region of attraction can be
arbitrarily enlarged to include any given compact set—
regardless of its size—by appropriately adjusting the
controller parameters (cf. the third benchmark in Sec-
tion 4.3).

4.2 Comparison Benchmark

The purpose of the second benchmark is to substantiate
the arguments presented in Remark 2 and to draw a
comparison with the work by De Persis and Tesi (2019).
For the sake of clarity, we consider a simple linear system,
whose dynamics evolve according to

Σ :

{
ẋ1 = x2,

ẋ2 = x1 + x2 + u+ d(t).
(25)

The system model is assumed to be completely unknown.
Moreover, for now, we assume the system is not sub-
ject to any disturbance (i.e., d(t) ≡ 0), with noise-free
state-derivative data. As is evident, the open-loop sys-
tem is unstable, which makes data collection challeng-
ing even over short time periods. For instance, starting

(a) State variables evolution

(b) Auxiliary system trajectory

(c) Control input u and disturbance d over time

Fig. 2. Inverted Pendulum. Fig. 2a illustrates the evolu-
tion of the state variables over time from the initial condition
x(0) = [5 − 5]⊤, showing convergence to the origin under
the designed controller. Fig. 2b depicts the phase portrait
of the auxiliary system (17), demonstrating that the sliding
variable σ is steered to zero. Fig. 2c illustrates that the de-
signed control input effectively rejects the disturbance and
drives the system state toward the sliding manifold, thereby
ensuring the asymptotic stability of the origin.

from x(0) = [2 3]⊤ with a sampling time of τ = 0.5,
the magnitudes of both state variables exceed 100 at
t = 2.5 seconds—after collecting just 5 samples, the min-
imum required to apply the results of De Persis and Tesi
(2019)—potentially causing severe damage to the sys-
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(a) State variables evolution

(b) Auxiliary system trajectory

(c) Control input u and disturbance d over time

Fig. 3. Comparison Benchmark. Fig. 3a displays the state
trajectories from the initial condition x(0) = [8 − 4]⊤, con-
firming convergence to the origin. Fig. 3b provides the phase
portrait of the auxiliary system (17), illustrating that the
sliding variable σ is steered to zero. Fig. 3c demonstrates
that the controller rejects the disturbance while driving the
state variables to the sliding manifold.

tem.

To address the above issue, one possible solution is to em-
ploy a feedback controller during data collection. For in-
stance, suppose that prior knowledge about system (25)
indicates that, under the feedback law u = −2x1−x2, the
system exhibits oscillatory rather than unstable behav-

ior. However, using the indicated control input for data
collection violates condition (6) in Remark 2, thereby
preventing the application of the results of De Persis
and Tesi (2019). More concretely, in the noise-free case
and following (De Persis and Tesi, 2019, Remark 2), by
defining

X1,T :=

[
O+

1

O+
2

]
, X0,T :=

[
O1

O2

]
, U0,1,T := I,

if there exists a matrix Q ∈ RT ×n satisfying{
X1,TQ+Q⊤X⊤

1,T ≺ 0,

X0,TQ ≻ 0,
(26)

then u = Kx, with K = U0,1,TQ(X0,TQ)−1, is a stabi-
lizing controller for (25). However, it is evident that if
one collects data using u = −2x1 − x2, then

U0,1,T =
[
−2 −1

]
X0,T ,

and, therefore, we get

u = Kx = U0,1,TQ(X0,TQ)−1x

=
[
−2 −1

] ≻0︷ ︸︸ ︷
X0,TQ(X0,TQ)−1︸ ︷︷ ︸

In

x = −2x1 − x2,

which corresponds to the control input used for data col-
lection. However, it is not a stabilizing controller for sys-
tem (25). This confirms that violation of condition (6) in
Remark 2 precludes the use of the method in (De Persis
and Tesi, 2019), even if condition (26) is satisfied.

To demonstrate the effectiveness of our approach on
this benchmark, we revisit system (25), now considering
d(t) = cos(t). The sampling time is set to τ = 0.5, and
the initial condition is chosen as x(0) = [2 3]⊤. We col-
lect T = 3 samples under the same input u = −2x1−x2.
The noise Ψ is assumed to follow a uniform distribution
over the interval [−1, 1]. Hence, according to Remark 3,
we obtain γγ⊤ = 3. The collected samples are presented
as 

O1

O2

O+
1

 =


2 3.3133 4.0258

3 2.1330 0.6289

3.3242 0.7827 −1.1786

.
Solving the SDP (8) with this data results in

K = −0.3924, Q = 0.2915 ⇒ P = 3.4305,

κ1 = 0.2278, κ2 = 0.0655, σ = x2 + 1.3461x1.
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Now, we proceed to design the ASSOSM controller. To
do so, we consider the exact parameters mentioned in
Section 4.1. Fig. 3 presents the simulation results of ap-
plying the designed ASSOSM controller to system (25),
demonstrating the effectiveness of our approach.

We note that our framework is not only capable of han-
dling scenarios in which samples are collected under a
feedback controller, but it can also be employed when
no input is applied during data collection, provided that
the samples satisfy condition (5) in Assumption 2.

4.3 Highly-Nonlinear Benchmark

The final benchmark aims to demonstrate that our pro-
posed framework can handle highly nonlinear dynam-
ics, for which obtaining a representative library of func-
tions, as required in previous works, is challenging. It
also demonstrates that the proposed ASSOSM controller
achieves semi-global stabilization from a significantly
large initial condition. To this end, we consider the sys-
tem

Σ :


ẋ1 = −x1 + x2,

ẋ2 = −x2 + x3,

ẋ3 = −x3 + x4,

ẋ4 = ln(1 + sin2(x1x2)) +
x3

1+x2
3
+ u+ d(t),

(27)

where the system dynamics are assumed to be fully un-
known. The disturbance is d(t) = tanh(t).

Similarly to the previous benchmarks, we begin by col-
lecting noisy data from the system. To do so, we set the
initial condition to x(0) = [7 −7 3.5 −3.5]⊤. The sam-
pling time is τ = 0.5, and we collect T = 15 samples.
During data collection, the input applied to the system
is u = − sin(t). The noise Ψ is assumed to follow a uni-
form distribution over the interval [−0.1, 0.1], resulting
in γγ⊤ = 0.45I3. Due to the relatively large number of
samples, the resulting data matrices are not reported for
the sake of brevity. However, the parameters obtained
by solving the SDP (8) are provided as follows:

K =


−0.2832

0.2328

−0.1733


⊤

, P =


20.2193 8.1914 −21.1564

8.1914 8.9159 −2.7685

−21.1564 −2.7685 31.4177

,
with κ1 = 0.0018 and κ2 = 0.0142, resulting in the slid-
ing variable σ = x4+0.1539x1−0.2355x2+0.0961x3. For
the ASSOSM control design, all parameters are selected
as in Section 4.1, except for the design parameter of Lev-
ant’s differentiator (19), which is set to L = 3 × 105.
This choice is motivated by the fact that, in this bench-
mark, we consider large initial conditions and therefore

(a) State variables evolution

(b) Auxiliary system trajectory

Fig. 4. Highly-Nonlinear Benchmark. Fig. 4a shows the
evolution of the state variables from significantly large initial
conditions (in the order of 105), illustrating convergence to
the origin. Fig. 4b depicts the phase portrait of the auxiliary
system, demonstrating that the sliding variable σ is driven
to zero.

require the estimate ς̂2 to converge to the true value of
ς2 more rapidly.

The simulation results for this benchmark are presented
in Fig. 4. As shown, despite the large initial conditions,
in the order of 105, the designed controller successfully
steers the sliding variable σ to zero, thereby rendering
the origin asymptotically stable. Nonetheless, it is worth
noting that the selection of design parameters plays a key
role, particularly when the initial condition is selected
in a large bounded domain.

5 Conclusions

In this work, we developed a direct data-driven approach
for designing ASSOSM controllers for unknown single-
input nonlinear systems with perturbed strict-feedback
dynamics. The system was decomposed into lower and
upper subsystems, and noisy data from a finite-time ex-
periment enabled the formulation of a data-dependent
condition as an SDP. Accordingly, the feasibility of the
proposed SDP yielded a virtual controller that ensured
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GAS of the origin for the upper dynamics. Building on
this result, we constructed a data-driven sliding variable
to synthesize an ASSOSM controller for the full-order
system, ensuring S-GAS of the origin despite the pres-
ence of disturbances. Extending this work to more gen-
eral system models and HOSM controllers is a promising
future research direction.
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