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Figure 1: Images under normal context and out-of-context conditions were generated in the VirtualHome environment
[27] using the Unity 3D simulation engine [19]. The same target object (a mug, red bounding box) is shown in different
context conditions: normal context (a, b) and out-of-context conditions including gravity ((c), target object is floating in
the air), change in object co-occurrence statistics (d), combination of both gravity and object co-occurrence statistics (e),
enlarged object size (f), and no context with uniform grey pixels as background (g).

Abstract

Context is of fundamental importance to both human
and machine vision; e.g., an object in the air is
more likely to be an airplane than a pig. The rich
notion of context incorporates several aspects including
physics rules, statistical co-occurrences, and relative object
sizes, among others. While previous work has focused
on crowd-sourced out-of-context photographs from the
web to study scene context, controlling the nature and
extent of contextual violations has been a daunting task.
Here we introduce a diverse, synthetic Out-of-Context
Dataset (OCD) with fine-grained control over scene
context. By leveraging a 3D simulation engine, we
systematically control the gravity, object co-occurrences
and relative sizes across 36 object categories in a
virtual household environment. We conducted a series of

experiments to gain insights into the impact of contextual
cues on both human and machine vision using OCD.
We conducted psychophysics experiments to establish a
human benchmark for out-of-context recognition, and
then compared it with state-of-the-art computer vision
models to quantify the gap between the two. We
propose a context-aware recognition transformer model,
fusing object and contextual information via multi-head
attention. Our model captures useful information for
contextual reasoning, enabling human-level performance
and better robustness in out-of-context conditions compared
to baseline models across OCD and other out-of-context
datasets. All source code and data are publicly
available at https://github.com/kreimanlab/
WhenPigsFlyContext
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1. Introduction
A coffee mug is usually a small object (Fig.1a), which

does not fly on its own (Fig.1c) and can often be found
on a table (Fig.1a) but not on a chair (Fig.1d). Such
contextual cues have a pronounced impact on the object
recognition capabilities of both humans [39], and computer
vision models [34, 7, 25, 22]. Neural networks learn
co-occurrence statistics between an object’s appearance and
its label, but also between the object’s context and its label
[11, 30, 2]. Therefore, it is not surprising that recognition
models fail to recognize objects in unfamiliar contexts
[29]. Despite the fundamental role of context in visual
recognition, it remains unclear what contextual cues should
be integrated with object information and how.

Two challenges have hindered progress in the study
of the role of contextual cues: (1) context has usually
been treated as a monolithic concept and (2) large-scale,
internet-scraped datasets like ImageNet [9] or COCO [21]
are highly uncontrolled. To address these challenges, we
present a methodology to systematically study the effects
of an object’s context on recognition by leveraging a
Unity-based 3D simulation engine for image generation
[19], and manipulating 3D objects in a virtual home
environment [27]. The ability to rigorously control every
aspect of the scene enables us to systematically violate
contextual rules and assess their impact on recognition.
We focus on three fundamental aspects of context: (1)
gravity - objects without physical support, (2) object
co-occurrences - unlikely object combinations, and (3)
relative size - changes to the size of target objects
relative to the background. As a critical benchmark, we
conducted psychophysics experiments to measure human
performance and compare it with state-of-the-art computer
vision models.

We propose a new context-aware architecture, which can
incorporate object and contextual information to achieve
higher object recognition accuracy given proper context and
robustness to out-of-context situations. Our Context-aware
Recognition Transformer Network (CRTNet) uses two
separate streams to process the object and its context
independently before integrating them via multi-head
attention in transformer decoder modules. Across multiple
datasets, the CRTNet model surpasses other state-of-the-art
computational models in normal context and classifies
objects robustly despite large contextual variations, much
like humans do.

Our contributions in this paper are three-fold. Firstly,
we introduce a challenging new dataset for in- and
out-of-context object recognition that allows fine-grained
control over context violations including gravity, object
co-occurrences and relative object sizes (out-of-context
dataset, OCD). Secondly, we conduct psychophysics
experiments to establish a human benchmark for in-

and out-of-context recognition and compare it with
state-of-the-art computer vision models. Finally,
we propose a new context-aware architecture for
object recognition, which combines object and scene
information to reason about context and generalizes
well to out-of-context images. We release the entire
dataset, including our tools for the generation of
additional images and the source code for CRTNet at
https://github.com/kreimanlab/WhenPigsFlyContext.

2. Related Works
Out-of-context datasets: Notable works on

out-of-context datasets include the UnRel dataset [26]
and the Cut-and-paste dataset presented in [39]. While
UnRel is a remarkable collection of out-of-context natural
images, it is limited in size and diversity. A drawback
of cutting-and-pasting [14] is the introduction of artifacts
such as unnatural lighting, object boundaries, sizes and
positions. Neither of those datasets allow systematic
analysis of individual properties of context. 3D simulation
engines enable easily synthesizing many images and
systematically investigating the violation of contextual
cues. It is challenging to achieve these goals with real-world
photographs. Moreover, these simulation engines enable
precise control of contextual parameters, changing cues
one at a time in a systematic and quantifiable manner.

Out-of-context object recognition: In previous work,
context has mostly been studied as a monolithic property in
the form of the target object’s background. Previous work
included testing the generalization to new backgrounds
[2] and incongruent backgrounds [39], exploring the
impact of foreground-background relationships on data
augmentation [13], and replacing image sub-regions by
another sub-image, i.e. object transplanting [29]. In this
paper, we evaluate different properties of contextual cues
(e.g. gravity) in a quantitative, controlled, and systematic
manner.

3D simulation engines and computer vision: Recent
studies have demonstrated the success of using 3D virtual
environments for tasks such as object recognition with
simple and uniform backgrounds [3], routine program
synthesis [27], 3D animal pose estimation [24], and
studying the generalization capabilities of CNNs [23, 16].
However, to the best of our knowledge, none of these
studies have tackled the challenging problem of how to
integrate contextual cues.

Models for context-aware object recognition: To
tackle the problem of context-aware object recognition,
researchers have proposed classical approaches, e.g.
Conditional Random Field (CRF) [15, 38, 20, 6], and
graph-based methods [32, 37, 33, 7]. Recent studies
have extended this line of work to deep graph neural
networks [17, 8, 10, 1]. Breaking away from these previous

256



works where graph optimization is performed globally
for contextual reasoning in object recognition, our model
has a two-stream architecture which separately processes
visual information on both target objects and context, and
then integrates them with multi-head attention in stacks
of transformer decoder layers. In contrast to other vision
transformer models in object recognition [12] and detection
[5], CRTNet performs in-context recognition tasks given the
target object location.

3. Context-aware Recognition Transformer
3.1. Overview

We propose the Context-aware Recognition Transformer
Network (CRTNet, Figure 2). CRTNet is presented with
an image with multiple objects and a bounding box to
indicate the target object location. The model has three
main elements: First, CRTNet uses a stack of transformer
decoder modules with multi-head attention to hierarchically
reason about context and integrate contextual cues with
object information. Second, a confidence-weighting
mechanism improves the model’s robustness and gives it
the flexibility to select what information to rely on for
recognition. Third, we curated the training methodology
with gradient detachment to prioritize important model
components and ensure efficient training of the entire
architecture.

Inspired by the eccentricity dependence of human vision,
CRTNet has one stream that processes only the target
object (It, 224 × 224), and a second stream devoted to the
periphery (Ic, 224 × 224). It is obtained by cropping the
input image to the bounding box whereas Ic covers the
entire contextual area of the image. Ic and It are resized
to the same dimensions. Thus, the target object’s resolution
is higher in It. The two streams are encoded through
separate 2D-CNNs. After the encoding stage, CRTNet
tokenizes the feature maps of It and Ic, integrates object
and context information via hierarchical reasoning through
a stack of transformer decoder layers, and predicts class
label probabilities yt,c within C classes.

A model that always relies on context can make mistakes
under unusual context conditions. To increase robustness,
CRTNet makes a second prediction yt, based on target
object information alone, estimates the confidence p of this
prediction, and computes a confidence-weighted average of
yt and yt,c to get the final prediction yp. If the model makes
a confident prediction based on the target object alone, this
decision overrules the context reasoning stage.

3.2. Convolutional Feature Extraction

CRTNet takes Ic and It as inputs and uses two
2D-CNNs, Ec(·) and Et(·), to extract context and target
feature maps ac and at, respectively, where Ec(·) and Et(·)

are parameterized by θEc and θEt . We use the DenseNet
architecture [18] with weights pre-trained on ImageNet [9]
and fine-tune it. Assuming that different features in Ic and
It are useful for recognition, we do not enforce sharing of
the parameters θEc and θEt . We demonstrate the advantage
of non-shared parameters in the ablation study (Sec. 5.5).
To allow CRTNet to focus on specific parts of the image
and select features at those locations, we preserve the spatial
organization of features and define ac and at as the output
feature maps from the last convolution layer of DenseNet.
Both ac and at are of size D ×W ×H = 1, 664 × 7 × 7,
where D, W and H denote the number of channels, width
and height of the feature maps respectively.

3.3. Tokenization and Positional Encoding

We tokenize the context feature map ac by splitting
it into patches based on locations, following [12]. Each
context token corresponds to a feature vector aic of
dimension D at location i where i ∈ {1, .., L = H ×W}.
To compute target token Tt, CRTNet aggregates the target
feature map at via average pooling:

Tt =
1

L

∑
i=1,...,L

ait (1)

To encode the spatial relations between the target token
and the context tokens, as well as between different
context tokens, we learn a positional embedding of size
D for each location i and add it to the corresponding
context token aic. For the target token Tt, we use the
positional embedding corresponding to the location, within
which the bounding box midpoint is contained. The
positionally-encoded context and target tokens are denoted
by zc and zt respectively.

3.4. Transformer Decoder

We follow the original transformer decoder [36], taking
zc to compute keys and values, and zt to generate the
queries in the transformer encoder-decoder multi-head
attention layer. Since we only have a single target token,
we omit the self-attention layer. In the experiments, we
also tested CRTNet with self-attention enabled and we
did not observe performance improvements. Our decoder
layer consists of alternating layers of encoder-decoder
attention (EDA) and multi-layer perceptron (MLP) blocks.
Layernorm (LN) is applied after each residual connection.
Dropout (DROP) is applied within each residual connection
and MLP block. The MLP contains two layers with a ReLU
non-linearity and DROP.

zt,c = LN(DROP(EDA(zt, zc)) + zt) (2)

z′t,c = LN(DROP(MLP(zt,c)) + zt,c) (3)
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Figure 2: Architecture overview of the Context-aware Recognition Transformer Network (CRTNet). CRTNet consists
of 3 main modules: feature extraction, integration of context and target information, and confidence-modulated classification.
CRTNet takes the cropped target object It and the entire context image Ic as inputs and extracts their respective features.
These feature maps are then tokenized and the information of the two streams is integrated over multiple transformer decoder
layers. CRTNet also estimates a confidence score for recognizing the target object based on object features alone, which is
used to modulate the contributions of yt and yt,c to the final prediction yp. The dashed lines in backward direction denote
gradient flows during backpropagation. The two black crosses denote where the gradient updates stop. See Sec. 3 for details.

Our transformer decoder has a stack of X = 6 layers,
indexed by x. We repeat the operations in Eqs 2 and 3 for
each transformer decoder layer by recursively assigning z′t,c
back to zt as input to the next transformer decoder layer.
Each EDA layer integrates useful information from the
context and the target object with 8-head selective attention.
Based on accumulated information from all previous x− 1
layers, each EDA layer enables CRTNet to progressively
reason about context by updating the attention map on zc
over all L locations. We provide visualization examples
of attention maps along the hierarchy of the transformer
decoder modules in Supp. Fig S1.

3.5. Confidence-modulated Recognition

The context classifier Gz(·) with parameters θGz

consists of a fully-connected layer and a softmax layer. It
takes the feature embedding z′t,c from the last transformer
decoder layer and outputs the predicted class distribution
vector: yt,c = Gz(z

′
t,c). Similarly, the target classifier

Gt(·), takes the feature map at as input and outputs the
predicted class distribution vector: yt = Gt(at).

Since neural networks are often fooled by incongruent
context [39], we propose a confidence-modulated
recognition mechanism balancing the predictions from
Gt(·) and Gz(·). The confidence estimator U(·) with
parameters θU takes the target feature map at as input
and outputs a value p indicating how confident CRTNet is
about the prediction yt. U(·) is a feed-forward multi-layer
perceptron network with a sigmoid function to normalize

the confidence score to [0, 1].

p =
1

1 + e−U(at)
(4)

We use p to compute a confidence-weighted average of
yt,c and yt for the final predicted class distribution yp:
yp = pyt + (1 − p)yt,c. The higher the confidence p, the
more CRTNet relies on the target object itself, rather than
on the integrated contextual information, for classification.
We demonstrate the advantage of using yp rather than yt,c
or yt as a final prediction in the ablation study (Sec. 5.5).

3.6. Training

CRTNet is trained end-to-end with three loss functions:
(i) to train the confidence estimator U(·), we use a
cross-entropy loss with respect to the confidence-weighted
prediction yp. This allows U(·) to learn to increase the
confidence value p when the prediction yt based on target
object information alone is correct. (ii) To train Gt(·), we
use a cross-entropy loss with respect to yt. (iii) For the other
components of CRTNet, including the transformer decoder
modules and the classifier Gz(·), we use a cross-entropy
loss with respect to yt,c. Instead of training everything
based on yp, the three loss functions together maintain
strong learning signals for all parts in the architecture
irrespective of the confidence value p.

To facilitate learning for specific components in
CRTNet, we also introduce gradient detachments during
backpropagation (Fig. 2). Gradients flowing through both
U(·) and Gt(·) are detached from Et(·) to prevent them
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from driving the target encoder to learn more discriminative
features, which could impact the efficacy of the transformer
modules and Gz(·). We demonstrate the benefit of these
design decisions in ablation studies (Sec. 5.5).

4. Experimental Details
4.1. Baselines

CATNet [39] is a context-aware two-stream object
recognition model. It processes the visual features
of a cropped target object and context in parallel,
dynamically incorporates object and contextual information
by constantly updating its attention over image locations,
and sequentially reasons about the class label for the target
object via a recurrent neural network.

Faster R-CNN [28] is an object detection algorithm. We
adapted it to the context-aware object recognition task by
replacing the region proposal network with the ground truth
bounding box indicating the location of the target object.

DenseNet [18] is a 2D-CNN with dense connections that
takes the cropped target object patch It as input.

4.2. Datasets

4.2.1 Out-of-context Dataset (OCD)

Our out-of-context dataset (OCD) contains 36 object
classes, with 15,773 test images of complex and rich
scenes in 6 contextual conditions (described below). We
leveraged the VirtualHome environment [27] developed in
the Unity simulation engine to synthesize these images in
indoor home environments within 7 apartments and 5 rooms
per apartment. These rooms include furnished bedrooms,
kitchens, study rooms, living rooms and bathrooms [27]
(see Fig. 1 for examples). We extended VirtualHome with
additional functionalities to manipulate object properties,
such as materials and scales, and to place objects in
out-of-context locations. The target object is always
centered in the camera view; collision checking and camera
ray casting are enabled to prevent object collisions and
occlusions.

Normal Context and No Context: There are 2,309
images with normal context (Fig. 1b), and 2,309 images for
the no-context condition (Fig. 1g). For the normal context
condition, each target object is placed in its “typical”
location, defined by the default settings of VirtualHome. We
generate a corresponding no context image for every normal
context image by replacing all the pixels surrounding the
target object with either uniform grey pixels or salt and
pepper noise.

Gravity: We generated 2,934 images where we move
the target object along the vertical direction such that it is
no longer supported (Fig. 1c). To avoid cases where objects
are lifted so high that their surroundings change completely,
we set the lifting offset to 0.25 meters.

Object Co-occurrences: To examine the importance of
the statistics of object co-occurrences, four human subjects
were asked to indicate the most likely rooms and locations
for the target objects. We use the output of these responses
to generate 1,453 images where we place the target objects
on surfaces with lower co-occurrence probability, e.g. a
microwave in the bathroom and Fig. 1d.

Object Co-occurrences + Gravity: We generated 910
images where the objects are both lifted and placed in
unlikely locations. We chose walls, windows, and doorways
of rooms where the target object is typically absent (Fig.
1e). We place target objects at half of the apartment’s
height.

Size: We created 5,858 images where we changed the
target object’s size to 2, 3, or 4 times its original size while
keeping the remaining objects in the scene intact (Fig. 1f).

4.2.2 Real-world Out-of-context Datasets

The Cut-and-paste dataset [39] contains 2,259
out-of-context images spanning 55 object classes. These
images are grouped into 16 conditions obtained through
the combinations of 4 object sizes and 4 context conditions
(normal, minimal, congruent, and incongruent) (Fig. 3b).

The UnRel [26] Dataset contains more than 1,000
images with unusual relations among objects spanning 100
object classes. The dataset was collected from the web
based on triplet queries, such as “dog rides bike” (Fig. 3c).

4.3. Performance Evaluation

Evaluation of Computational Models: We trained
the models on natural images from COCO-Stuff [4]
using the annotations for object classes overlapping with
those in the respective test set (16 overlapping classes
between VirtualHome and COCO-Stuff, 55 overlapping
classes between Cut-and-paste and COCO-Stuff and 33
overlapping classes between UnRel and COCO-Stuff). The
models were then tested on OCD, the Cut-and-paste dataset,
UnRel, and on a COCO-Stuff test split.

Behavioral Experiments: We evaluated human
recognition on OCD and the Cut-and-paste dataset, as
schematically illustrated in Fig. 3d, on Amazon Mechanical
Turk (MTurk) [35]. We recruited 400 subjects per
experiment, yielding ≈ 67, 000 trials. To avoid biases and
potential memory effects, we took several precautions: (a)
Only one target object from each class was selected; (b)
Each subject saw each room only once; (c) The trial order
was randomized.

Computer vision and most psychophysics experiments
enforce N-way categorization (e.g. [31]). Here we used
a more unbiased probing mechanism whereby subjects
could use any word to describe the target object. We
independently collected ground truth answers for each
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(a) OCD (b) Cut-and-paste (c) UnRel (d) Schematic of human psychophysics experiment

Figure 3: Datasets and psychophysics experiment scheme. (a-c) Example images for each dataset. The red box indicates
the target location. In (a), two contextual modifications (gravity and size) are shown. In (b), the same target object is cut and
pasted into either incongruent or congruent conditions. (c) consists of natural images. (d) Subjects were presented with a
fixation cross (500 ms), followed by a bounding box indicating the target object location (1000 ms). The image was shown
for 200 ms. After image offset, subjects typed one word to identify the target object.

object in a separate MTurk experiment with infinite viewing
time and normal context conditions. These Mturk subjects
did not participate in the main experiments. Answers in the
main experiments were then deemed correct if they matched
any of the ground truth responses [39].

A completely fair machine-human comparison is close
to impossible since humans have decades of visual+
experience with the world. Despite this caveat, we find it
instructive to show results for humans and models on the
same images. We tried to mitigate the differences in training
by focusing on the qualitative impact of contextual cues
in perturbed conditions compared to the normal context
condition. We also show human-model correlations to
describe their relative trends across all conditions.

5. Results

5.1. Recognition in our OCD Dataset

Figure 4 (left) reports recognition accuracy for humans
over the 6 context conditions (Sec. 4.2.1, Fig. 1) and 2
target object sizes (total of 12 conditions). Comparing the
no-context condition (white) versus normal context (black),
it is evident that contextual cues lead to improvement in
recognition, especially for smaller objects, consistent with
previous work [39].

Gravity violations led to a reduction in accuracy. For
small objects, the gravity condition was even slightly worse
than the no context condition; the unusual context can be
misleading for humans. The effects were similar for the
changes in object co-occurrences and relative object size.
Objects were enlarged by a factor of 2, 3, or 4 in the relative
size condition. Since the target object gets larger, and
because of the improvement in recognition with object size,
we would expect a higher accuracy in the size condition
compared to normal context. However, increasing the size

of the target object while keeping all other objects intact,
violates the basic statistics of expected relative sizes (e.g.,
we expect a chair to be larger than an apple). Thus, the
drop in performance in the size condition is particularly
remarkable and shows that violation of contextual cues can
override basic object recognition.

Combining changes in gravity and in the statistics
of object co-occcurrences led to a pronounced drop in
accuracy. Especially for the small target objects, violation
of gravity and statistical co-occurrences led to performance
well below that in the no context condition.

These results show that context can play a facilitatory
role (compare normal versus no context), but context can
also impair performance (compare gravity+co-occurrence
versus no context). In other words, unorthodox contextual
information hurts recognition.

Figure 4 (right) reports accuracies for CRTNet. Adding
normal contextual information (normal context vs no
context) led to an improvement of 4% in performance
for both small and large target objects. Remarkably,
the CRTNet model captured qualitatively similar effects
of contextual violations as those observed in humans.
Even though the model performance was below humans
in absolute terms (particularly for small objects), the basic
trends associated with the role of contextual cues in humans
can also be appreciated in the CRTNet results. Gravity,
object co-occurrences, and relative object size changes
led to a decrease in performance. As in the behavioral
measurements, these effects were more pronounced for the
small objects. For CRTNet, all conditions led to worse
performance than the no context condition for small objects.

5.2. Recognition in the Cut-and-paste Dataset

Synthetic images offer the possibility to systematically
control every aspect of the scene, but such artificial
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Figure 4: The CRTNet model exhibits human-like recognition patterns
across contextual variations in our OCD dataset. Different colors denote
contextual conditions (Sec. 4.2.1, Fig. 1). We divided the trials into two
groups based on target object sizes in degrees of visual angle (dva). Error bars
denote the standard error of the mean (SEM).

OCD Overall
CRTNet (ours) 0.89

Baselines
CATNet [39] 0.36

Faster R-CNN [28] 0.73
DenseNet [18] 0.66

Ablations
Ablated-SharedEncoder 0.84

Ablated-TargetOnly 0.89
Ablated-Unweighted 0.83

Ablated-NoDetachment 0.88

Table 1: Linear correlations between
human and model performance over
12 contextual conditions.

images do not follow all the statistics of the natural
world. Therefore, we further evaluated CRTNet and human
performance in the naturalistic settings of the Cut-and-paste
dataset [39] (see Table 2). The CRTNet model yielded
results that were consistent with, and in many conditions
better than, human performance. As observed in the human
data, performance increases with object size. In addition,
the effect of context was more pronounced for smaller
objects (compare normal context (NC) versus minimal
context (MC) conditions).

In accordance with previous work [39], compared
to the minimal context condition, congruent contextual
information (CG) typically enhanced recognition whereas
incongruent context (IG) impaired performance. Although
the congruent context typically shares similar correlations
between objects and scene properties, pasting the object
in a congruent context led to weaker enhancement than
the normal context. This lower contextual facilitation
may be due to erroneous relative sizes between objects,
unnatural boundaries created by pasting, or contextual
cues specific to each image. CRTNet was relatively
oblivious to these effects and performance in the congruent
condition was closer to that in the normal context
condition whereas these differences were more striking for
humans. In stark contrast, incongruent context consistently
degraded recognition performance below the minimal
context condition for both CRTNet and humans.

5.3. Recognition in the UnRel Dataset

The Cut-and-paste dataset introduces artifacts (such as
unnatural boundaries and erroneous relative sizes) due to
the cut-and-paste process. Therefore, we also evaluated
CRTNet on the UnRel dataset [26]. We use the performance
on the COCO-Stuff [4] test split as reference for normal
context in natural images. CRTNet showed a slightly lower
recognition accuracy in the out-of-context setting (Fig. 5).

5.4. Comparison with Baseline Models

Performance Evaluation: Although Faster R-CNN and
CATNet leverage global contextual information, CRTNet
outperformed both models, especially on small objects
(OCD: Fig. 4 and Supp. Fig. S7-S8; Cut-and-Paste: Table2;
UnRel: Fig. 5). Furthermore, Table 1 shows that CRTNet’s
performance pattern across the different OCD conditions is
much more similar to the human performance pattern (in
terms of correlations) than the other baseline models.

Figure 5: CRTNet surpasses all baselines in both
normal (COCO-Stuff [4]) and out-of-context (UnRel
[26]) conditions.

Architectural Differences: While all baseline models
can rely on an intrinsic notion of spatial relations, CRTNet
learns about spatial relations between target and context
tokens through a positional embedding. A visualization of
the learned positional embeddings (Supp. Fig. S1) shows
that CRTNet learns image topology by encoding distances
within the image in the similarity of positional embeddings.

In CATNet, the attention map iteratively modulates the
extracted feature maps from the context image at each
time step in a recurrent neural network, whereas CRTNet
uses a stack of feedforward transformer decoder layers
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Size [0.5, 1] dva Size [1.75, 2.25] dva Size [3.5, 4.5] dva Size [7, 9] dva
NC CG IG MC NC CG IG MC NC CG IG MC NC CG IG MC

Humans 56.0 18.8 5.9 10.1 66.8 48.6 22.3 38.9 78.9 66.0 38.8 62.0 88.7 70.7 59.0 77.4
[39] (2.8) (2.3) (1.3) (1.7) (2.7) (2.8) (2.4) (2.8) (2.4) (2.7) (2.6) (2.8) (1.7) (2.6) (2.8) (2.3)

CRTNet 50.2 43.9 10.6 17.4 78.4 81.4 41.2 56.7 91.5 87.3 51.1 76.6 92.9 87.7 66.4 83.0
(ours) (2.8) (2.8) (1.7) (2.1) (3.0) (2.8) (3.5) (3.6) (1.1) (1.3) (1.9) (1.6) (0.9) (1.2) (1.7) (1.4)

CATNet 37.5 29.2 3.6 6.1 53.0 46.5 10.9 22.1 72.8 71.2 24.5 38.9 81.8 78.9 47.6 74.8
[39] (4.0) (2.4) (1.0) (2.0) (4.1) (2.5) (1.6) (3.6) (3.6) (2.4) (2.2) (3.9) (3.0) (2.1) (2.6) (3.5)

Faster R-CNN 24.9 10.9 5.9 7.2 44.3 27.3 20.1 16.5 65.1 53.2 39.0 42.9 71.5 64.3 55.0 64.6
[28] (2.4) (1.7) (1.3) (1.4) (3.6) (3.2) (2.9) (2.7) (1.8) (1.9) (1.9) (1.9) (1.6) (1.7) (1.8) (1.7)

DenseNet 13.1 10.0 11.2 12.5 45.4 42.3 39.7 46.4 67.1 62.3 55.4 67.1 74.9 67.2 63.5 74.9
[18] (1.9) (1.7) (1.8) (1.8) (3.6) (3.5) (3.5) (3.6) (1.8) (1.9) (1.9) (1.8) (1.6) (1.7) (1.7) (1.6)

Table 2: Recognition accuracy of humans, the CRTNet model, and three different baselines on the Cut-and-paste
dataset [39]. There are 4 conditions for each size: normal context (NC), congruent context (GC), incongruent context (IG)
and minimal context (MC) (Sec. 4.2.2). Bold highlights the best performance. Numbers in brackets denote the standard error
of the mean.

with multi-head encoder-decoder attention. These decoder
layers hierarchically integrate information via attention
maps, modulating the target token features with context.

DenseNet takes cropped targets as input with only a few
surrounding pixels of context. Its performance dramatically
decreases for smaller objects, which also results in lower
correlation with the human performance patterns. For
example, in the Cut-and-paste dataset, CRTNet outperforms
DenseNet by 30% for normal context and small objects
(Table 2) and in OCD, DenseNet achieves a correlation of
0.66 vs. 0.89 for CRTNet (Table 1).

5.5. Ablation Reveals Critical Model Components

We assessed the importance of design choices by training
and testing ablated versions of CRTNet on the OCD dataset.

Shared Encoder: In the CRTNet model, we trained two
separate encoders to extract features from target objects and
the context respectively. Here, we enforced weight-sharing
between these two encoders (Ablated-SharedEncoder) to
assess whether the same features for both streams are
sufficient to reason about context. The results (Table 1,
Supp. Fig. S3) show that the ablated version achieved a
lower recognition accuracy and lower correlation with the
psychophysics results.

Recognition Based on Target or Context Alone: In the
original CRTNet model, we use the confidence-weighted
prediction yp. Here, we tested two alternatives: CRTNet
relying only on the target object (yt, Ablated-TargetOnly)
and CRTNet relying only on contextual reasoning (yt,c,
Ablated-Unweighted). The original model benefits from
proper contextual information compared to the target-only
version but it is slightly more vulnerable to some of the
context perturbations as would be expected. It consistently
outperforms the context-only version demonstrating the
usefulness of the confidence-modulation mechanism.

Joint Training of the Target Encoder: In Sec. 3.6, we
use gradient detachments to make the training of the target
encoder Et(·) independent of Gt(·) such that it cannot force

the target encoder to learn more discriminative features.
Here we remove this constraint (Ablated-NoDetachment,
Supp. Fig. S6). The results are inferior to the ones of
our original CRTNet, supporting the use of the gradient
detachment method.

6. Conclusion
We introduced the OCD dataset and used it to

systematically and quantitatively study the role of context
in object recognition. OCD allowed us to rigorously
scrutinize the multi-faceted aspects of how contextual cues
influence visual recognition. We conducted experiments
with computational models and complemented them with
psychophysics studies to gauge human performance.
Since the synthetic images in OCD can still be
easily distinguished from real photographs, we addressed
potential concerns due to the domain gap with experiments
on two additional datasets consisting of real-world images.

We showed consistent results for humans and
computational models over all three datasets. The
results demonstrate that contextual cues can enhance visual
recognition, but also that the “wrong” context can impair
visual recognition capabilities both for humans and models.

We proposed the CRTNet model as a powerful and
robust method to make use of contextual information
in computer vision. CRTNet performs well compared
to competitive baselines across a wide range of context
conditions and datasets. In addition to its performance
in terms of recognition accuracy, CRTNet’s performance
pattern was also found to resemble human behavior more
than that of any baseline model.
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