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Abshc-This paper is concerned with the optimum design of prestrcssed concrete beams. Both minimum 
weight and minimum cost optimization formulations are given for simply supported beams having three 
different sections. Sensitivity of the optimum designs, with respect to various design parameters, are also 
discussed. The formulation is programmed for interactive use on micro-computers. An example is given 

_ - and results are discussed. 

1. INTRODUCTION 

This paper deals with the optimum design of pre- 
stressed concrete beams using linear programming. 
Mathematical programming techniques, and in par- 
ticular linear programming, have been successfully 
used in several optimum designs of fully prestressed 
concrete [I-IO], and recently, in partially prestressed 
concrete beams [ 1 I]. 

Optimal design of a prestressed concrete member is 
interesting, as well as being complex. The problem 
covers a variety of design considerations and par- 
ameters, including investigations into service and 
ultimate strengths, material characteristics, loading 
conditions, prestressing force, tendon configuration 
and cross-sectional dimensions. The objective func- 
tion is either the weight or the cost; cost minimization 
addressing a more general problem. 

The available studies on optimization of pre- 
stressed concrete beams differ from each other in (i) 
the objective function and what it includes, (ii) the 
fixed problem parameters, (iii) design variables, (iv) 
constraints and (v) solution algorithms. A compara- 
tively general problem would be posed as a nonlinear 
program [ 1,6,9,11]. Various linear programming 
formulations are suggested in [2-5,7, lo]. 

In this paper, both minimum weight and minimum 
cost optimization formulations and solutions are 
given for simply supported beams having three differ- 
ent sections. In the minimum cost problem, the costs 
of concrete, steel and forming are included. The 
minimum weight problem considers weights of con- 
crete and steel. The constraints cover working 
stresses, detlections, ultimate strength, buckling and 
section adequacy requirements. The prestressing 
force and the width of the cross-section (rectangular 
sections), or the width of the web (flanged sections) 
are chosen to be the design variables. This addresses 
not only a practical problem in prestressed concrete 
construction, but also allows for a linear program- 

ming formulation which has well-known advan- 
tages [3]. 

The paper presents sample results and also dis- 
cusses the sensitivity of the optimum designs with 
respect to some unit cost, geometric, material and 
loading design parameters. The numerical calcu- 
lations are carried out using a specially written 
interactive computer program operational on IBM 
personal computers, their compatibles and Apple 
Macintosh computers. 

2. PROBLEM DEFlNITION AND FORMULATION 

We consider the total cost and the total weight 
minimization of simply supported prestressed con- 
crete beams, having the cross-sections shown in 
Fig. 1. 

For all cross-sections the depth, h, is shown, and 
the objective is to find the optimum width, b (rec- 
tangular cross-sections), or width of the web, b 
(flanged sections), and the prestressing force, F,. The 
cross-sectional properties of the sections in Fig. 1 are 
taken as follows: 

A, = a, b, Z, = a,, b, Z, = a,, b, 

Z=a,b, p =apb, (1) 

where A, - - area of concrete, Z, = section modulus 
with respect to extreme top fibre, Z, = section modu- 
lus with respect to extreme bottom fibre, I = moment 
of inertia, p = perimeter of concrete section, and aA, 

4, , a rb, a, and up are constant parameters. 
The objective function is either the total cost, i.e. 

Z, = C,G$J + ‘3%) + C,(PL) 

or the total weight, i.e. 

Z,= A,L,y,+ A,Ly,. 

(2) 

(3) 
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? I-v-4 + 
Fig. 1. Beam sections. 

In eqns (2) and (3), C, = cost of prestressing steel 
per unit weight, L, = length of prestressing steel, 
A, = area of prestressed reinforcement in tension 
zone, y, = unit weight of steel, C’, = unit cost of 
concrete, L = beam span, C,= unit cost of forming 
and y, = unit weight of concrete. 

We consider two categories of constraints, 
namely behavioural and side. The behavioural con- 
straints are the working stresses, deflections, and the 
buckling load. The side constraints are the section 
adequacy constraints. The ultimate and cracking 
moments are not included as constraints, however, 
they are checked at the end of the optimization 
process. 

The stresses under service load conditions must 
stay within permissible limits stated by design specifi- 
cations. In this study the design requirements of 
AC1 [12] are used. For deflections we impose three 
conditions representing (i) the initial stage of loading 
which normally starts at one-week-old concrete, (ii) a 
stage of loading which normally starts at 28-day-old 
concrete and (iii) the final loading stage taking care 
of sustained loads. These are represented as 

6, + 86 > &, 4, < A,,, L + 6, + 4, < A,, (4) 

where 6, = deflection due to prestressing force, 
BG = deflection due to self-weight, 6,, = deflection due 
to superimposed live load, Lid, = deflection due to 
superimposed dead load, 6, = deflection due to 
sustained loading = S,, + S,, , A, = allowable cam- 
ber, Z,, = allowable live load deflection and 
5, = maximum allowable deflection. 

Since, prestressed concrete simply supported beams 
are members under compression, and since in 
many cases very long and slender beams are used, 
buckling may occur. To avoid this, we restrict Fi to 
be less than the critical axial load defined by Euler’s 
equation. 

AC1 [12] requirements for the ultimate strength of 
the section and the cracking moment 

and 

are 

(5) 

where M, = strength design moment, M, = nominal 
moment resistance, M, = cracking moment and 

4 = 0.9. As was stated before, these two conditions 
have not been used as constraints, but were checked 
for the optimal solution. 

Finally, two more constraints imposed are the 
section adequacy constraints for the minimum 
required section moduli 

where AM = bending moment due to superimposed 
dead and live load, Mti = minimum bending 
moment at section considered under service load 
conditions, q = ratio of final prestressing force to 
initial prestressing force, ZcJ = allowable service 
(final) compressive stress in concrete, d,, = allowable 
initial tensile stress in concrete, 6cl = allowable initial 
compressive stress in concrete and, b,# = allowable 
service (final) tensile stress in concrete. 
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Fig. 2. Flowchart of PRECO 
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Table 1. Data for the examples 

Design variables 

Sections, Rect. (I), I(2), T(3) 
Height 
Concrete cover (in) 
Beam span (ft) 
Unit weight of concrete (lb/ft’) 
Unit weight of steel (lb/ft’) 
Ratio of final to initial PF 
Concrete compressive strength (psi) 
Tensile strength of PS steel (ksi) 
Superimposed dead load (lb/ft) 
Superimposed live load (lb/ft) 
Allowable camber (in) 
Allowable live load deflection (in) 
Upper limit of displacement (in) 
Reinforcement edge eccentricity (in) 
Reinforcement trajectory 
Age of beam at initial load (Days) 
Age of beam at final loading (Days) 
Total life of structure (Years) 
Type of curing, moist (1) or steam (2) 

Value 

h 
4 
L 
Yr 
Yd 

fp. 
DL 

1.4 

I 

1,2,3 
40 
3 
70 
150 
490 
0.83 
5000 
250 
40 
400 
-2.3333 
2.333 
3 
0 
1 
7 
30 
40 
1 

T& of cement, Type i il) or Type111 (2) 1 

3. COMPUTER IMPLEMENTATION 

The ten constraints indicated above and the objec- 
tive functions given in eqns (2) and (3) are then used 
to define a linear program using two design variables, 
namely, b and Fi , and the solution is carried out using 
the Simplex algorithm. The computer program 
PRECO (Fig. 2) is written in Microsoft Quick Basic 
version 4.0, and is operational on any IBM computer 
or its compatibles. The program can also be intro- 
duced to Apple Macintosh computers without any 
changes if Macintosh Microsoft Basic is used. 
PRECO is an interactive program, therefore the 
required data for any problem is fed to the computer 
by answering questions appearing on the computers 
monitor. 

4. NUMERICAL APPLICATIONS 

For illustrative purposes we report the results 
obtained for a 70 ft long beam with a parabolic 
prestressing reinforcement trajectory. The beam car- 
ries 400 lb/ft as dead load, in addition to its own 
weight. Rest of the relevant data on materials, geome- 
try and loading are given in Table 1. Using this data 
three examples are considered for cost optimization. 
The results are shown in Table 2. 

Since we have only two design variables the 
solution can also be obtained using the direct 
method. The results are shown in Figs 3-5. The check 
for the ultimate strength and cracking moment of 

Table 2. Results of examples 

Example Section b (in) 4 (lb) Z, (SR)t 

1 0 6.66 230,156.7 1798.02 
2 I 2.83 122,620.3 1435.48 
3 T 3.81 195,621.2 1204.38 

t SR = Saudi Riyals. 

the sections showed that they do not govern the 
solutions. 

5. SENSITIVITY OF THE OPTIMAL DESIGNS 

In any optimization problem a change in the design 
parameters may affect the optimal solution, i.e. the 
solution may be sensitive with respect to such par- 
ameters. For the optimal design problem reported in 
this paper an extensive sensitivity analysis in cost and 
weight minimization have been carried out to test the 
effects of (i) C,/C, ratio, (ii) beam span, L, (iii) beam 
height, h, and (iv) compressive strength of concrete, 
f:, on the optimal solution. Some of the results are 
shown in Table 3 and Figs 6-13. The effect of C,/C, 
ratio on the cost minimization problem is shown in 
Table 3. The rectangular section b and F, values are 

b (in) 

Fig. 3. Graphical solution of Example 1. 
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Fig. 4. Graphical solution of Example 2. Fig. 5. Graphical solution of Example 3. 

Table 3. Sensitivity of optimum design vs CJC, ratio 

React. section beam I-se&ion beam T-section beam 
c; 
c, 

O.F. 
b {in) 6 (lb) b (in) Fi Ob) b (in) 4 (lb) (SR) 

45 6.66 230156.70 1230.25 2.83 122620.30 971.12 4.32 134915.10 1256.45 
40 2: 230156.70 1210.61 2.83 122620.30 939.31 4.32 134915.10 1230.44 
35 230156.70 1150.97 2.83 122620.30 907.31 3.81 195621.20 1194.69 
30 666 230156.70 1091.33 2.83 122620.30 875.70 3.81 195621.20 1143.92 
:; ::ZZ 230156.70 230156.70 1031.69 972.05 2.83 2.53 122620.30 177631 843.90 797.99 3.81 3.81 195621.20 195621.20 1042.39 1093.16 

not sensitive to the change in CJC, ratio. The 
I-section b and F, values are sensitive when the CJC, 
ratio is less than 25 and the T-section b and Fi values 
show sensitivity for C,&‘, > 35. 

The effect of changing the beam span, L, on 
the design variables and the total weight are 
shown in Figs 6-8. It is seen that the shape of the b 
versus L, curve changes when L > 80. The same 
applies to the total weight versus 1 curve. The pre- 

0 Rect. section 
A I section 

IO o T section 

P I 

,I-L--L-I-L-J 90 E-3 

Beamspan (ft) 

Fig. 6. Span effect on the widths of the beams. 

stressing force increases with the increase in 1, as 
expected. 

Figures 9-l 1 show the effect of the cross-sectional 
height, h, on the design variables and the total weight 
of the beam. b, Fi and the total weight all decrease 
with increase in h. For 20 in < h c 35 in, b and Fi are 

60 

0 
30 40 00 60 70 80 so I 

Beam span (ft) 

Fig. 7. Span e&t on the weight of the beams. 
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Fig. 8. Span effect on the prestressing force. 

quite sensitive to a change in h. The rectangular 
section beam does not show much sensitivity in 
changes for h for h > 35 in. 

The effect offi on b, 5 and the total weight of the 
rectangular section beam are shown in Figs 12 and 
13, showing that some savings in b and 4 can be 
made but not at a significant degree. 

6. CONCLUSIONS 

The paper considers optimum design of simply 
supported prestressed concrete beams using linear 
programming. Both minimum cost and minimum 
weight designs are studied. The formulation is pro- 
grammed for interactive use on micro-computers. 
Sensitivity of the optimum solutions with respect to 
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Fig. 9. Beam depth effect on the widths of the beams. Fig. 11. Beam depth effect on the weight of the beams. 
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Fig. 10. Beam depth effect on the widths of the beams. 

several design parameters is also discussed. Some of 
the main points and results of the study may be 
summarized as follows: 

1. A linear programming problem is obtained 
using transformation of variables. 

2. The design variables have been chosen to be the 
prestressing force, 4 and the widths, b, of the con- 
sidered sections. This allows the use of the direct 
search method to be used graphically. The constraints 
are defined on stresses, deflections, section adequacy 
and buckling. 

3. The working stress inequality constraints are 
expressed in terms of Fi and b. The eccentricity is 
taken at its maximum practical value, leading to a 
more efficient use of the prestressing force. This seems 
to be more realistic than the common practice of 

the assigning a known section and determining 
optimum Fi and the eccentricity. 

60 

60 

o Rect. 
4 I beam 
0 Tbeam 
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Fig. 12. Effect onfc on the rectangular section beam. RRFERENCES 

4. The example design problems, although 
limited in number, show that the minimum cost 
and minimum weight optimizations give the same 

l Rectangular beam 

.\ 

.\ 
.\ 
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loot 

Fig. 13. Effect off: on the weight of the rectangular section 
beam. 

results, for beams of rectangular sections, for 
L < 85 ft. 

5. For I-beams where C/C, < 25 and T-beams 
where C/C, < 35 the results of minimum cost and 
minimum weight optimizations give the same results. 

6. b and Fi values are sensitive to changes in span, 
L, as expected. 

7. Again as expected, b and F values are decreased 
with a decrease in beam height, h. However, 
especially for rectangular section beams, this decrease 
is quite small for h > L/24. 
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