
Large-Scale Hierarchical Text Classification with
Recursively Regularized Deep Graph-CNN

Hao Peng1,4, Jianxin Li1,4, Yu He1,4, Yaopeng Liu1,4, Mengjiao Bao1,4, Lihong Wang3,
Yangqiu Song2, and Qiang Yang2

1Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University;
2 Department of Computer Science and Engineering, HKUST;

3National Computer Network Emergency Response Technical Team/Coordination Center of China;
4State Key Laboratory of Software Development Environment, Beihang University

1,3,4Beijing, China; 2Clear Water Bay, Hong Kong;
penghao,lijx,heyu,liuyp,baomj@act.buaa.edu.cn;wlh@isc.org.cn;yqsong,qyang@cse.ust.hk

ABSTRACT
Text classification to a hierarchical taxonomy of topics is a common
and practical problem. Traditional approaches simply use bag-of-
words and have achieved good results. However, when there are
a lot of labels with different topical granularities, bag-of-words
representation may not be enough. Deep learning models have
been proven to be effective to automatically learn different levels of
representations for image data. It is interesting to study what is the
best way to represent texts. In this paper, we propose a graph-CNN
based deep learning model to first convert texts to graph-of-words,
and then use graph convolution operations to convolve the word
graph. Graph-of-words representation of texts has the advantage
of capturing non-consecutive and long-distance semantics. CNN
models have the advantage of learning different level of semantics.
To further leverage the hierarchy of labels, we regularize the deep
architecture with the dependency among labels. Our results on
both RCV1 and NYTimes datasets show that we can significantly
improve large-scale hierarchical text classification over traditional
hierarchical text classification and existing deep models.

CCS CONCEPTS
• Information retrieval Retrieval tasks and goals; De-
sign Methodology ; Clustering and classification; Natural Lan-
guage Processing ; • Machine Learning Supervised learn-
ing; • Machine learning approaches Deep Convolutional
Neural Networks;

KEYWORDS
Hierarchical Text Classification; Recursive Regularization; Graph-
of-words; Deep Learning; Deep Convolutional Neural Networks;

1 INTRODUCTION
Topical text classification is a fundamental text mining problem
for many applications, such as news classification [18], question

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-5639-8/18/04..
https://doi.org/10.1145/3178876.3186005

answering [28], search result organization [11], online advertis-
ing [2], etc. When there are many labels, hierarchical categoriza-
tion of texts has been recognized as a natural and effective way
to organize texts and it has been well studied in the past two
decades [5, 6, 13, 30, 39, 43, 44]. Most of the above traditional ap-
proaches represent text as sparse lexical features such as bag-of-
words (BOW) and/or n-grams due to simplicity and effectiveness [1].
Different kinds of feature engineering, such as none-phrases or key-
phrases, were shown no significant improvement on themselves,
while the majority voting over the results of different features are
significantly better [36].

Recently, deep learning has been proven to be effective to per-
form end-to-end learning of hierarchical feature representations,
and has made groundbreaking progress on object recondition in
computer vision and speech recognition problems [24]. Two popu-
lar deep learning architectures have attracted more attention for
text data, i.e., recurrent neural networks (RNNs) [3, 17]1 and convo-
lutional neural networks (CNNs) [8, 25]. RNNs are more powerful
on short messages or word level syntactics or semantics [3]. When
they are applied to long documents, hierarchical RNNs can be devel-
oped [40]. However, hierarchical RNNs assume that the documents
and sentences are considered as natural boundaries for the defini-
tion of the hierarchy where only regular texts and formal languages
satisfy this constraint. Different from RNNs, CNNs use convolu-
tional masks to sequentially convolve over the data. For texts, a
simple mechanism is to recursively convolve the nearby lower-level
vectors in the sequence to compose higher-level vectors [8]. This
way of using CNNs simply evaluates the semantic compositionality
of consecutive words, which corresponds to the n-grams used in
traditional text modeling [1]. Similar to images, such convolution
can naturally represent different levels of semantics shown by the
text data. Higher level represents semantics captured by larger
“n”-grams.

For document-level topical classification of texts, the sequential
information of words might not be as important as it is for language
models [3] or sentiment analysis [45]. For example, when we write
“I love this restaurant! I think it is good. It has great sandwich. But
the service may not be very efficient sine there are always a lot of
people...”, we can easily identify it’s topic as “food” but sentiment
analysis should be conducted more carefully since there is a word
1Here we ignore the discussion of recursive neural networks [38] since it requires
knowing the tree structure of text, which is not as efficient as the others when dealing
with large scale data.

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1063

https://doi.org/10.1145/3178876.3186005
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3178876.3186005&domain=pdf&date_stamp=2018-04-10

“but.” For topic classification, the key words, phrases, and their
composition are more important. In this case, rather than sequential
information, the non-consecutive phrases and long-distance word
dependency are more important for computing the composition of
semantics. For example, in a document, the words “restaurant” and
“sandwich” may not co-occur in a small window. However, “menu”
may co-occur with both of them somewhere else in the document,
and the composition of all of three words is a very strong signal to
classify the document to be “food” related topics. Therefore, a more
appropriate way of modeling non-consecutive and long-distance
semantics is expected for text topical classification.

In this paper, we propose a Hierarchically Regularized Deep
Graph-CNN (HR-DGCNN) framework to tackle the above problems
with the following considerations.

Input. Instead of viewing long documents as sequences, we first
convert them to graphs. A natural way to construct the graph is
based on word co-occurrence, i.e., if two words co-occur in a small
window of texts, we build an edge between them. Then given a
constructed graph, any sub-graphs can be regarded as long distance
n-grams [34]. For each node of the graph, we use a pre-trained
vector based on word2vec [32] as input features. In this way, our
input can be regarded as a graph of vectors. Although word2vec
optimization has been proven to be identical to co-occurrence ma-
trix factorization under mild conditions [26], it is still preferable
to explicitly represent documents as graphs, since for upper level
convolution, the longer distance co-occurrence of words (which cor-
responds convolution over sub-graphs) can be explicitly computed
and evaluated.

Convolution Layers. For lower intermediate layers, we follow
the graph normalization approach [33] tomake the following convo-
lution operators possible. This graph normalization can be regarded
as a local operator to convert a graph to a sorted sequence, where
the order is based on the importance of the node on the graph.
Other graph convolution approaches are discussed in the related
work (Section 2). For the upper intermediate layers, we generally
follow the well defined AlexNet [22] and VGG [37] networks for Im-
ageNet classification. Different from image data, which at most has
three channels, i.e., RGB values, word embeddings have much more
channels. A typical word embedding can have 50 dimensions. In
this way, the input tensor for convolution is slightly different from
images, and thus, we coordinately modify the configuration of all
the following convolution layers to make the feature representation
more effective.

Output. For large scale hierarchical text classification, there
have been many existing studies to design better output cost func-
tions [12, 46]. Here, we use the cross entropy objective function
to determine labels and adopt the simple but effective recursive
regularization framework proposed in [13]. The idea is if the two
labels are parent and child in the hierarchy, we assume that the
classification from these two labels to other labels are similar. In the
global view of the hierarchy, it means the children label classifiers
should inherit the parent classifier. To handle large-scale labels, we
also use a tree cut algorithm to automatically divide the trees into
parts, and conquer the regularized models for different parts.

In the experiments, we compare our proposed approach with
state-of-the-art methods, including traditional algorithms and deep

learning approaches. We use two benchmark datasets to demon-
strate both effectiveness and efficiency. RCV1 [27] dataset contains
23,149 training news articles and 784,446 testing news articles with
103 classes. NYTimes2 contains 1,855,658 news articles in 2,318 cat-
egories. The results showed that our approach is very promising to
work on large scale hierarchical text topical classification problems.

The contributions of this paper can be highlighted as follows.
First, we introduce a Deep Graph-CNN approach to text classifica-
tion. There have been proof that bag-of-graph representation [34]
and CNN representation [8] are effective for text topic classification.
However, this is the first attempt to show Graph-CNN is even more
effective. Second, for large scale hierarchical text classification, we
demonstrate that recursive regularization can also be applied to
deep learning. This can be a general framework for deep learn-
ing applied to classifications problems when classifying data into
a hierarchy of labels. Third, we use two benchmark datasets to
demonstrate the efficiency and effectiveness of our algorithm. They
are with either large test set, large label set, or large training set.

The rest of the paper is organized as follows. We first review the
related work in Section 2. Then we introduce the detailed input and
architecture of our algorithm in Sections 3 and 4. Then we show
the experiments in Section 5. Finally, we conclude this paper in
Section 6. Our system is publicly available at https://github.com/
HKUST-KnowComp/DeepGraphCNNforTexts.

2 RELATEDWORK
In this section, we briefly review the related work in following two
categories.

2.1 Traditional Text Classification
Tradition text classification uses feature engineering (e.g., extract-
ing features beyond BOW) and feature selection to obtain good
features for text classification [1]. Dimensionality reduction can
also be used to reduce the feature space. For example, Latent Dirich-
let Allocation [4] has been used to extract “topics” from corpus,
and then represent documents in the topic space. It can be better
than BOW when the feature numbers are small. However, when
the size of words in vocabulary increases, it does not show advan-
tage over BOW on text classification task [4]. There is also existing
work on converting texts to graphs [34, 42]. Similar to us, they
used co-occurrence to construct graphs from texts, and then they
either applied similarity measure on graph to define new document
similarities [42] or applied graph mining algorithms to find fre-
quent sub-graphs in the corpus to define new features for text [34].
Both of them showed some positive results for small label space
classification problems, and the cost of graph mining is more than
our approach which simply performs breadth-first search.

For hierarchical classification with large label space, many ef-
forts have been put on how to leverage the hierarchy of labels to
reduce to time complexity or improve the classification results. For
example, top-down classification mechanism has been shown to be
more efficient than bottom-up classification (or flat classification
which treats each label in the leaf as a category) when there are
many labels [30, 44]. Moreover, the parent-child dependency of
labels in the hierarchy can also be used to improve the model. For

2https://catalog.ldc.upenn.edu/ldc2008t19

2

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1064

https://github.com/HKUST-KnowComp/DeepGraphCNNforTexts
https://github.com/HKUST-KnowComp/DeepGraphCNNforTexts
https://catalog.ldc.upenn.edu/ldc2008t19

He is a true great
goalscorer for club
and England, and it
is fitting that he is
now the highest

goalscorer for both
United and England.

node sequence
selection

N = 8 nodes

neighborhood
assembly

at least NA = 3
nodes

clubgoalscor

englandfit

fit england

clubgoalscor

clubgoalscor

englandfit

clubgoalscor

englandfit

highgoalscor

englandunit

englandgoalscor

clubhigh

truegoalscor

clubgreat

goalscorengland

greattrue

neighborhood
normalization
KS = 3 nodes

Original text

Graph-of-words

graph
generating

fit

true

unit

england

club

high

great

goalscor

goalscor

england

fit

club

high

unit

great

true

Window Size = 3

high

high

high

high

club

club

england

fit 1 2

3fit 4

goalscor england

club

3 4

1 2

high

england

club

goalscor

1 2

3

club

4

goalscor

england fit

1 2

3 club4

goalscor

england
fit

1 2

3england 4

goalscor

fit

high

1 2

3 high4

goalscor

england

unit

1 2

3club 4

goalscor

true

great

1 2

3

goalscor

4great england

true

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Figure 1: Illustration of document to graph. Starting from original raw text, we first build the graph of words based on word
co-occurrence with sliding window of size three words. Then we select a sequence of nodes from the graph based on the rank
of each node. For each node in the sequence, we find a sub-graph containing four nodes and normalize the neighborhoods to
make each sub-graph consistent for further Graph-CNN operations.

example, some hierarchical cost-sensitive loss can be developed [5].
The idea of transfer learning can also be borrowed to improve each
of the classifiers in the hierarchy [43]. Recently, a simpler recursive
regularization of weight vectors of linear classifiers in the hierarchi-
cal model has been developed, and shown to be the state-of-the-arts
in large-scale hierarchical text classification problems [13, 14].

2.2 Deep Learning for Text Classification
As the introduction mentioned, there have been RNN and CNN
models applied to texts. Most of them are language models, which
are inspired by [3]. The advantage of working with language mod-
els is that it can be trained in an unsupervised manner, and then the
features extracted for words can be used for many downstream NLP
tasks [8]. For text classification, both RNNs and CNNs have been
applied. For example, hierarchal RNN has been proposed for long
document classification [40] and later attention model is also in-
troduced to emphasize important sentences and words [45]. CNNs
have also been proposed to perform text classification. For example,
Kalchbrenner et al. [19] used a dynamic CNN for sentence classifi-
cation, and showed significant improvements over traditional tasks
such as sentiment and question type (raw texts) classification. Then
Kim [20] applied a much simpler CNN to sentences classification
and got competitive results. Zhang et al. [48] and Conneau et al. [9]
used a character level CNN with very deep architecture to compete
with traditional BOW or n-gram models. The combination of CNNs
and RNNs are also developed which shows improvements over
topical and sentiment classification problems [23]. All of the above
text classification models still dealt with small label space, i.e., at
most 20 labels. Two recent papers mentioned that they can handle
large scale label space. [29] used similar way to convert multi-label
classification problem to be a set of multiple binary classification
problems and they still used simple CNN model as [20] did. [47]
adopted a general setting for large-scale label set classification but
the text data they used have been preprocessed, which means the
characteristics of texts is not considered.

Graph-CNN has been developed recently inspired by the success
of CNN on object detection tasks [22, 37] since one can imagine
image lattice as a very regular graph. However, extension to arbi-
trary graphs is not trivial, since the convolution operator cannot

be applied to any size of sub-graphs. Thus, two general ways of
Graph-CNN have been considered. One way is to consider a global
graph which consists of all nodes for all data samples and develop
a global convolution operator for the graph [10, 16, 21]. However,
this way requires a huge input if the nodes of the graphs can be
represented as high dimensional vectors. The other way is to use a
local operator [33] to convolve each sub-graph. This is more similar
to the idea of CNNs used for images. The local operator requires
the sub-graphs to be of fixed size (or smaller than a size constraint)
and the nodes in arbitrary sub-graphs to be ordered, which could be
non-optimal. We introduce this local graph convolution approach to
texts, where the graph is constructed based on word co-occurrence.

3 DOCUMENTS AS GRAPHS
In this section, we introduce how we process text documents into
graphs, and represent each document as a graph of vectors. For-
mally, we denote the set of labels as L = {li |i = 1, 2 . . . ,K}, where
K is the number of labels. Since we focus on hierarchical classifica-
tion, the labels have parent-children relationship. Thus, we also de-
note label l (j)i (j = 1, . . . ,Ki) as the children of li and Ki is the num-
ber of children of li . We denote the training set as D = {ds ,Ts }Ms=1,
whereM is the number of instances in D, ds is a document, Ts is
the label set of ds and Ts ⊆ L.

3.1 Word Co-occurrence Graph
To convert a document to a graph, a natural way is to use the word
co-occurrence. As Figure 1 shows, for a simple sentence, we convert
it as a graph using word co-occurrence. We split each document
to be sentences and further tokens using Stanford CoreNLP tool3.
We also obtain the stems of each token using Stanford CoreNLP.
To remove noise, we first remove stop words such as “the,” “a,”
etc., provided by the RCV1-v2 data [27]. Then we use a fixed-size
sliding window to count the word co-occurrence. For example, for
the sentence in Figure 1, for the word “fitting,” we first perform
stemming to get “fit,” and check a window of two previous words
and build an edge from fit to each of the words in the window.

3http://stanfordnlp.github.io/CoreNLP/

3

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1065

Graph-of-words
Representing

Graph Preprocessing

Sort Neighborhood

g×N

Word vector: D channel

g×N g
D

g×N
K1 kernels

g×N

1×5

64

k1

Max Pooling

K1/2

1×5
k3 kernels

k3

S

Max Pooling

F1

Deep Convolution Neural Networks Layers Full Connection Layers

k2

1×5

Sliding Direction

Output : K Labels

Normalization

Dropout

(g×N+1)×N

ReLU + Normalization + Pooling

(1×5×k1+1)×k2 (1×5×k2+1)×k3 F1×F2S/2×k3×F1

F2×F3

Document

Sigmoid
F2

N Nodes

N

F3

Dropout

Sigmoid Layer

K

Input: document

Graph Generation

Representing by high dimension semantic vector
(F3+1)×K

Dropout

N

K1

rotating

1×5

k2 kernels
Max Pooling

N/2 k2

k1

k3

S/2

Figure 2: A typical configuration of Deep Graph-CNN for text classification.

3.2 Sub-graph of Words
When applying CNN to images, a convolution mask with fixed
size (e.g., 11×11 pixels used in AlexNet [22]) is applied to local
patches on the image to extract low-level features, e.g., edges. The
combinations of convolved features are further convolved to ob-
tain higher-level feature representations, e.g., parts and objects.
Similar to images, we want to apply convolution masks to the
sub-graphs on word co-occurrence graph (corresponding to local
image patches). The combination of distant n-grams mined from
word co-occurrence graph can compose low-level semantics, e.g.,
sub-topics. By further convolving with the output of convolution,
we can obtain higher-level semantics, e.g., super-topics. To enable
the convolution of sub-graphs, we need to select and normalize all
the potential sub-graphs so that we can have a consistent way of
convolution. Here we follow the general approach proposed in [33].
Given a graph of words, we use the following two steps to obtain
the normalized the sub-graphs for further processing.

Sub-graph Generation. We sort all nodes in a graph based
on their degrees (number of neighborhoods of a node). If the de-
grees are the same, we sort the nodes by their occurrences in the
document. If the occurrences are further the same, we use their con-
nections with neighbors to sort, i.e., the number of co-occurrence
with neighborhoods. In this case, we can sort all the nodes in the
graph and select N most important nodes that we think may affect
the topic classification. After obtaining the nodes, we use a simple
breadth-first-search algorithm to expand a sub-graph for each se-
lected node. We set a number of least sub-graph size, i.e., д. If at the
current depth the sub-graph is smaller than size д, we expand one
more tier to see whether the size is satisfied. After this step, we will
obtain N sub-graphs, each of which contains at least д nodes (if
exists). For example, in the middle of Figure 1 we generated eight
sub-graphs.

Sub-graph Normalization. Given a sub-graph, we want to
have an order of nodes for a convolution mask to convolve. Thus, a
labeling of nodes is expected to make the convolution consistent
over all sub-graphs and across documents. An optimal labeling is
defined as follows. Suppose graphs G and G ′ with д nodes are in a
collection of graphs G. Given the labeling s of a graph G, we can
construct an adjacency matrix As (G). Then an optimal labeling is
defined as

s∗ = argmin
s

E[DA(As (G),As (G ′)) − DG (G,G ′)], (1)

where DA(·, ·) is a distance measure of two matrices, such as | |A −
A′ | |L1, andDG (·, ·) is a distance measure of two graphs, such as edit
distance on graphs. However, such labeling is NP-hard and thus we
follow [33] to have an alternative labeling. Starting from the root,
which is the node that triggered the sub-graph in previous step, we
first follow breadth-first-search to use the depth to rank the nodes.
Then in the same tier (depth) of the graph based spanning tree, we
use the degree to rank the nodes. Then if two nodes in the same
tier have the same degree, we further use other factors to break
the tier, such as the edges used in previous step. Then after this
step, we have д nodes for each sub-graph. For the sub-graphs with
more than д nodes in the previous step, we simply use the rank
filter out them. For the sub-graphs with less than д nodes, we add
some dummy nodes disconnected to any nodes in the graph. We
can easily see that, in this way, the normalization applied to a 2-D
lattice such as an image, will be exactly the same as the way CNN’s
first layer is applied to images. The complexity of this sub-graph
normalization is given by [33]. Practically, the complexity can be
at most O(Nд2) [33] where N is the selected node number and д is
the size of sub-graphs. The example of graph normalization is also
shown in the last column of Figure 1.

3.3 Graphs of Embeddings
To incorporate as much semantic information as possible, instead of
representing each node in the graph (a word in a document) as an
ID, we follow other CNN and RNN algorithms reviewed in Section 2
to use word embeddings as input. We use word2vec [31, 32] trained
by the larger corpus, i.e., Wikipedia, with CBOW model, where the
window size is set to be five and the dimension of word embeddings
is set to be 50 for all the experiments in this paper. Other parameters
for word2vec are set to be default values. In this way, we have a
graph of embeddings as input. Then the convolution introduced in
the next section will be operated over sub-graphs of embeddings.

4 HIERARCHICALLY REGULARIZED DEEP
GRAPH-CNN

We design the architecture with several convolutional layers. The
number of convolutional layers can be adjusted and based on the
size of datasets and total labels. Here we illustrate the architecture
with a typical configuration, which is shown in Figure 2.

4

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1066

4.1 Convolutional Layers
The first convolutional layer takes the feature space of size N ×д×D
as input, where N number of selected and normalized sub-graphs,
д is the size of receptive field (size of the sub-graphs), and D is
the dimension of word embeddings. For example, in Figure 2, we
have д = 5 and D = 50. We use a д × D kernel to convolve the
N × д × D input tensor. This kernel serves as a composition of
semantics of each input sub-graph to have a higher level semantic
meaning. Then for all the N input sub-graphs, we use k1 kernels
to convolve the same way to generate a N × k1 matrix. After that,
we use a max pooling layer to generate a N /2 × k1 matrix, which
means we select half of the sub-graphs which can better represent
the topics for further processing. Then we use a 5 × 1 kernel to
convolve the N /2 sub-graphs to obtain higher level of semantics
(combination of sub-graphs). Here we use k2 such 5 × 1 kernels
to generate k2 dimensions. Thus, we have a k1 × k2 matrix. Till
now, we have successfully convolved over different dimensions of
word embeddings, different words in each sub-graph, and different
sub-graphs in the documents. Then we can further convolve to have
composition of higher-level semantics. For example, in Figure 2, we
use a max polling layer after k1×k2matrix to generate a k1/2×k2
matrix, followed by k3 1× 5 kernel with sliding step 3 to generate a
S ×k3matrix. This can be regarded as a composition of the original
k1 different д × D kernels applied to N × д × D input tensor. Then
we apply a max pooling layer to generate a S/2 × k3 matrix as the
input to the fully connected layers. These two steps (S × k3 and
S/2×k3matrices) are empirically set. Throughout the convolutional
layers, we use ReLU as activation function to speed up the process
of training and avoid over-fitting.

4.2 Fully Connected and Output Layers
To perform classification, we add three fully connected layers. These
layers are mostly used to deal with nonlinearity of classification. As
shown in Figure 2, we have F1 = 2048, F2 = 1024, and F3 = 1024 (or
512) for the final three layers. Here we apply dropout to avoid over-
fitting where the dropout rate is set to be 0.5. Empirically dropout
roughly doubled the number of iteration of convergence, but it
improves the robustness of the network and boosts the prediction
accuracy. The final layer is further connected to a set of K Sigmoid
functions, which correspond to the K labels in the hierarchy. Given
a set of M labeled documents andm = 1, . . . ,M , our model opti-
mizes the cross-entropy between the true label distribution and the
predicted distribution:

H = −
M∑

m=1

K∑
k=1

lk (dm) log Pk (dm) + (1 − lk (dm)) log(1 − Pk (dm)),

(2)
where lk (dm) is binary label to indicate whether document dm
belongs to label k , and Pk (dm) refers to the probability of neural
network prediction of label k .

4.3 Recursive Regularization
If we simply treat each label as an independent decision, we can
use Eq. (2) to train the neural network. However, as we mentioned,
most of the practical problems have a hierarchy of labels. In the
hierarchy, the parent label is a super-topic of the children labels. In

this case, introducing dependency among labels can significantly
improve the classification, because when the leaf nodes has less
training examples, the decision can be regularized by its parent.
Thus, similar to [13], we use a recursive regularization over the
final fully connected layer. As a simplification, the hierarchical
dependencies between labels encourage the parameters of labels
to be similar, if two labels are close in the hierarchy. For example,
in Figure 3, there is edge between ‘Computing’ and “Artificial in-
telligence,” so the parameters of the two labels could be similar
to each other. Formally, we denote wi as parameters in the final
fully connected layer for label li in the hierarchy, and we denote
W = {wli : li ∈ L}. l (j)i refers to a children of li . Then we use the
following regularization term to regularize the parameters of the
final fully connected layer:

λ(W) =
∑
li ∈L

∑
l (j)i

1
2 | |wli −w

l (j)i
| |2. (3)

We denote our algorithmHierarchically Regularized DeepGraph-
CNN (HR-DGCNN) using the following loss function to optimize
the parameters:

J = H +Cλ(W), (4)

where C is the penalty parameter.

4.4 Recursive Hierarchical Segmentation
To handle large-scale label hierarchies, we use a recursive hierarchi-
cal segmentation to divide and conquer the original problem. In this
way, we can perform training over each sub-problem separately and
significantly reduce the learning complexity for each sub-problem.
An example of recursive hierarchical segmentation is shown in
Figure 4. Suppose we want to have a segmentation of sub-trees
containing at most five leaves. Then we perform depth-first and
preorder traversal from root to leaf nodes with following steps.
When traversing node A, the number of children leaf nodes is 5, so
the sub-tree (i) can be firstly segmented. Then the sub-tree (i) is
merged as one logical label as a leaf. When we backtrack to node B,
the children leaf number also is 5. So it’s divided into sub-tree (ii)
and merged into one logical label as a leaf. According to the law
of depth-first and preorder traversal, the sub-graph (iii) will also
be divided, and merged into one logical label as a leaf. When the
number of children leaf nodes is less than the threshold value, it
will continue to traverse until no more nodes. So the sub-graph iv
is divided and merged into one logical label. The children leaf nodes
of F is 4, so we combine the nodes E and F to meet the requirement
of having five leaf nodes. Although the hierarchy is divided into
sub-graphs for parallel and distributed deep CNN models, the mas-
ter program learns to classify top level nodes, such as the B, E, and
F in Figure 4, and recursively calls other deep CNN models when
testing.

5 EXPERIMENTS
In the experiments, we compare our proposed algorithms with
state-of-the-art traditional hierarchical text classification as well as
recently developed deep learning architectures on two datasets.

5

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1067

Technology and applied sciences

Transport EngineeringComputing

Artificial
intelligence

Computer
security

Chemical
engineering

Materials
science

Organic chemistry

Technology and applied sciences

General EngineeringComputing

Chemical
engineering

Materials
science

Organic
chemistry

Inorganic
chemistry

Internet

Robotics

Complexity
science Media

Figure 3: Label hierarchies. The left is a pure hierarchical structure of labels, and the right is graph structure of labels but has
no cycles in the graph. Both are commonly used in practice and can be handled by recursive regularization.

B

F

E

A

C

D

(i)

(ii)

(v)

(iv)

(iii)

Figure 4: Illustration of Recursive Hierarchical Segmenta-
tion. The leaf nodes refer to class-labels, and the internal
nodes are super topics. The hierarchy is recursively divided
into 5 parts of sub-graphs.

Table 1: Dataset Statistics. The training/test split for RCV1
is done by [27]. The training/test split for NYTimes is done
by ourselves, which is 90% for training and 10% for test. For
both of the data, we randomly sample 10% from the training
data as development sets.

Dataset Training Testing Class-Labels Depth avg#Tokens

RCV1 23,149 784,446 103/137 6 240
NYTimes 1,670,093 185,566 2,318 10 629

5.1 Datasets and Evaluation Metrics
The two datasets we used are RCV1 and NYTimes datasets. A sum-
marization of statistics of these two datasets is shown in Table 1.

• RCV1 [27]. RCV1 dataset is a manually labeled newswire col-
lection of Reuters News from 1996-1997. The news documents are
categorized with respect to three controlled vocabularies: industries,
topics, and regions. We use the topic-based hierarchical classifi-
cation as it has been most popular in evaluation. There are 103
categories including all classes except for root in the hierarchy. Ac-
cording to [13–15], we also consider the 137 categories by adding
some virtual classes.4 On average, there are 225 documents per

4If any internal node in the hierarchy had positive examples, we created a new leaf
under it and re-assigned all instances to the leaf node. For all graph based dependencies,
if there are two adjacent nodes both of which have training examples, we created an
empty dummy node in between them. This is to prevent classes from getting directly

Ranked Label Id

10
0

10
1

10
2

#
S

a
m

p
le

s

10
0

10
2

10
4 RCV1

Figure 5: Label statistics of RCV1 training dataset.

label for 103 labels for training. The distribution of RCV1 labels is
shown in Figure 5.

• NYTimes [35]. This corpus contains nearly every article pub-
lished in the New York Times between January 01, 1987 and June
19th, 2007. As a large scale corpus, NYTimes was widely used in doc-
ument routing, document categorization, entity extraction, cross
document coreference resolution, and information retrieval, etc. We
use the standard of taxonomic classifier labeled in this corpus to test
large-scale hierarchical text classification. On average, there are 720
documents per label for 2,318 labels for training. The distribution
of NYTimes labels is shown in Figure 6.

We follow [13] to use Micro-F1 and Macro-F1 as our evaluation
metrics for hierarchical classification.

• Micro-F1 is a F1 score considering overall precision and re-
call of all the labels. Let TPt , FPt , FNt denote the true-positives,
false-positives, and false-negatives for the t-th label in label set
L respectively. Then micro-averaged F1 is: P =

∑
t∈L T Pt∑

t∈L T Pt+F Pt
,

R =
∑
t∈L T Pt∑

t∈L T Pt+FNt
,Micro − F1 = 2PR

P+R .

• Macro-F1 is another F1 which evaluates averaged F1 of all
different class-labels in the hierarchy.Macro−F1 gives equal weight
to each label. Formally, macro-averaged F1 is defined as: Pt =

T Pt
T Pt+F Pt , Rt =

T Pt
T Pt+FNt

,Macro − F1 = 1
|L |

∑
t ∈L

2PtRt
Pt+Rt .

5.2 Methods for Comparison
We compare both traditional hierarchical text classification base-
lines and modern deep learning based classification algorithms.

• Flat baselines: We used both Logistic Regression (LR) and
Support Vector Machines (SVM) to learn from data. We call them

regularized towards each other, but regularize towards their mean (the parameters of
the dummy node) instead.

6

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1068

Ranked Label Id

10
0

10
1

10
2

10
3

#
S

a
m

p
le

s

10
0

10
5

NYT Annotated Corpus

Figure 6: Label statistics of NYTimes training dataset.

Table 2: DGCNN Configurations. The convolutional lay-
ers parameters are denoted as “conv<receptive field size>-
<number of channels>.”

1 Layer 3 Layers 6 Layers
conv5-64 conv5-64 conv5-64
maxpool2 maxpool2 maxpool2

conv5-128 conv5-128
maxpool2 maxpool2
conv5-256 conv5-256
maxpool2 maxpool2

conv5-512
maxpool2
conv5-512
maxpool2
conv5-1024
maxpool2

FC-1024 FC-2048 FC-2048
FC-1024 FC-1024 FC-1024
FC-512 FC-512 FC-1024

flat baselines since we treat each leaf node as a label and train a
multi-class classifier. Then for the internal nodes, we simply add all
the ancestors of a leaf to be the labels to the document in the leaf.

• Hierarchical SVMs. We use the implementation of Hierarchical
SVM (HSVM) [41] released by the authors and implement our
version of Top-down Support Vector Machines (TD-SVM) [30].

• Hierarchical Regularization. We implemented both Hierarchi-
cally Regularized Logistic Regression (HR-LR) and Hierarchically
Regularized Support Vector Machines (HR-SVM) [13, 14] accord-
ing to the paper’s introduction to the algorithms.

•Hierarchical RNN based Models. We compare two RNNmodels,
i.e., Hierarchical Long Short-term Memory Network (HLSTM) [7]
and Hierarchical Attention Network [45] (HAN). Both use RNN
models to encode sentence level representation based on words,
and then use RNN models to encode document level representa-
tion based on sentence representation. HAN further uses a global
attention mechanism to attend useful words and sentences. They
are originally used for document level sentiment classification. We
used the implementation release along [7].

• CNNs based Models. We compare with XML-CNNmodel [29]
which considered multi-label text classification using simple CNN
model originally applied to sentence classification [20] and Recur-
rent Convolutional Neural Network model (RCNN) [23]. We also
added experiments to test whether deeper models help. Here, we

augment the simple CNN model [20] to be three layers and six lay-
ers, which we call deep CNN (DCNN-3 andDCNN-6). The window
size for CNN is 3 (the best setting shown in [20]), and for DCNN,
all following layers were set to have convolution windows of size 5.

• Deep Graph-CNN Models. We implemented our proposed
methods, i.e., DeepGraphConvolutional Neural Networks (DGCNN)
and Hierarchically Regularized Deep Graph Convolutional Neural
Networks (HR-DGCNN) with different numbers of convolutional
layers, such as 1, 3, 6 layers. To construct the graph of words, we
considered word co-occurrence in a window of size 5 for all the
experiments. The configurations of different CNN layers are shown
in Table 2,

Table 3: Comparison between stemmed and original words
on RCV1 dataset.

Types Model Classes Macro-F1 Micro-F1
Stemmed DGCNN-3 103 0.4322 0.7611
Original DGCNN-3 103 0.4143 0.7597

Table 4: Comparison among different sub-graph numbers
(N) and normalized sub-graph sizes (d) on RCV1 dataset.

Types Model Classes Macro-F1 Micro-F1
N=32 DGCNN-3 103 0.3191 0.6971
N=64 DGCNN-3 103 0.4322 0.7611
N=128 DGCNN-3 103 0.4326 0.7611
k=3 DGCNN-3 103 0.3919 0.7430
k=5 DGCNN-3 103 0.4322 0.7611
k=7 DGCNN-3 103 0.4318 0.7546

5.3 Experimental Settings
All of our experiments were run on 32 core Intel Xeon E5-2650-
v3@2.30GHz, with 256GB RAM cluster and K80 GPUs. The operat-
ing system and software platforms are Debian 7.0, TensorFlow r0.12
and Python 3.4. For all the deep learning based models, we used pub-
lic release of word2vec5 to train 506 dimensional word embeddings
over the 100 billion words from Wikipedia corpus based on CBOW
model with window size of five (with other default parameters).
We also generated vectors for both stemmed and original words
for following graph-of-words generation using the same data. The
common parameters of training the models were empirically set,
such as batch size = 128, MOMENTUM = 0.9, Dropout = 0.5, mov-
ing average = 0.0005, and regularization weight decay = 0.00005,
etc. Both data were trained on 90% of the training data shown in
Table 1, and terminated based on the other 10%. For deep learning
baselines, we used the same cost function as our DGCNN model
for the final layer. We tried our best to use the best parameters
either shown in the paper or the default parameters in the software.
However, since most of the models were designed for sentiment
classification, we found sometimes they may not work well on the
two datasets we compared. Thus, we also put efforts on tuning the
5https://github.com/dav/word2vec
6Here, we consider balancing the computational complexity of deep learning model
and the integrity of the word semantic expression.

7

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1069

https://github.com/dav/word2vec

Table 5: Comparison of results on RCV1 dataset.

Models #Classes Macro-F1 Micro-F1 Classes Macro-F1 Micro-F1 Remarks

LR 103 0.3281 0.6921 137 0.5339∗ 0.8008∗ We implemented TD-SVM and HR-LR/SVM. The numbers with
*’s are the numbers directly copied from [13], which are mainly
used to verify the correctness of our experiments. Note that the
numbers of TD-SVM with 137 classes seem very similar to our
TD-SVM results with 103 classes and have different behavior
compared to others reported by [13].

SVM 103 0.3295 0.6905 137 0.5472∗ 0.8082∗
HSVM 103 0.3329 0.6932 137 – –
TD-SVM 103 0.3368 0.6964 137 0.3415∗ 0.7134∗
HR-LR 103 0.3217 0.7159 137 0.5581∗ 0.8123∗
HR-SVM 103 0.3858 0.7275 137 0.5656∗ 0.8166∗
HLSTM 103 0.3102 0.6726 137 0.3201 0.7019 For all the deep learning based baselines, we slightly modified

the output as a set of binary classifications as Eq. (2) shows to
handle many labels. DCNN-3 and DCNN-6 are models we
developed to increase the depth of original architecture in [20]
to see whether it helps.

HAN 103 0.3268 0.6964 137 0.3411 0.7211
RCNN 103 0.2931 0.6859 137 0.3219 0.6952

XML-CNN 103 0.3007 0.6955 137 0.3106 0.7149
DCNN-3 103 0.3987 0.7323 137 0.5843 0.8169
DCNN-6 103 0.3479 0.7158 137 0.5013 0.8072
DGCNN-1 103 0.3631 0.7418 137 0.5495 0.8168 HR-based models improve non-HR-based models. Our best

configuration (HR-DGCNN-3) improves the best baseline
model (DCNN-3) by about 3 points (both F1 scores) for 103
classes and about 7 points on Macro-F1 and 1 point on
Micro-F1 for 137 classes.

DGCNN-3 103 0.4322 0.7611 137 0.6182 0.8175
DGCNN-6 103 0.3905 0.7404 137 0.5637 0.8149

HR-DGCNN-1 103 0.3682 0.7481 137 0.5649 0.8166
HR-DGCNN-3 103 0.4334 0.7618 137 0.6586 0.8255
HR-DGCNN-6 103 0.3992 0.7489 137 0.5623 0.8142

models that did not work well. As a result, all the deep learning
baselines are the best results to our best efforts. Before numerous
experiments, we also fairly tested the difference between stemmed
and original words on RCV1 data classification, under DGCNN
with three convolutional layers (DGCNN-3). It is shown in Table 3
that both Micro-F1 and Macro-F1 are improved after stemming for
better quality of word representations. Thus, we will present all
the following classification results based on stemmed words for all
models (the word embeddings are also trained based on stemmed
words).

5.4 Performance on RCV1
For RCV1 data, with DGCNN and HR-DGCNN models, we set the
number of selected nodes in graph-of-words N limited by 64, the
size of selected and normalized sub-graphs to be 5, dimensionality
of word vectors as 50, the other configurations to follow Table 2,
and the numbers of classification neurons are 103/137 respectively,
according to the introduction in Section 5.1. We tried different N ’s
and k’s shown in Table 4 and it shows that N = 64 and k = 5 can
already show good enough results for RCV1 data.

The comprehensive comparison is shown in Table 5. For tradi-
tional text classification algorithms, we can see that SVM is better
than LR. HSVM is comparable to TD-SVM, although HSVM uses
more complicated structural output cost function. It seems sim-
ple top-down mechanism can do well on this dataset. HR-LR and
HR-SVM are better than LR and SVM. In our implementation, the
HR-SVM improvement is greater than HR-LR. Both show consistent
results compared to the numbers shown in [13].

For deep learning based approaches, we can see that RNN based
algorithms, HLSTM and HAN, are comparable to SVM and LR on
103 classes. However, they do not perform well on 137 classes.
RCNN is even worse on both settings. We would presume that for
fine-grained topical classification, recurrent models may not have
advantage since it will compress the whole sequence of words as
a dense vector for classification. RNNs have advantage for senti-
ment classification since it can model the dependencies of words

like “very,” “but,” “not,” etc. However, when we want to extract
non-consecutive and long-distance semantics, it cannot capture
such information. Note that in our experiments, HAN is better than
HLSTM. This means that attention to particular topical words and
boosting their weights can help final classification decision. For
baseline CNN models, it is shown that XML-CNN does not perform
very well on our tasks. However, deeper CNN models can signifi-
cantly improve the performance (by 9 points of Macro-F1 with 103
classes and 27 points with 137 classes).

For our DGCNNmodels, we tried different configurations shown
in Table 2. From the results we can see that, hierarchical regulariza-
tion indeed helps. For the 137 classes case, the improvement is very
significant (by 4 points on Macro-F1). This again verifies why the
authors of [13] used an extended problem of RCV1 rather than the
original 103 classes to apply recursive regularization. The DGCNN
without hierarchical regularization is also better than XML-CNN
and deeper CNN we implemented. The improvements are around
1-7 points for different settings and metrics. This shows that by
representing the original text as a graph instead of a sequence, we
can gain benefit from non-consecutive and long-distance semantics
for topical text classification.

5.5 Performance on NYTimes
For NYTimes dataset, since the label space of NYTimes is large
(Table 1), we divided the original problem by constraining the sub-
problems to be at least 300 labels but no more than 600 labels. Then
we got 9 such sub-problems. We applied this divide and conquer
strategy for all the deep learning based models, while keeping SVM
based models working on the original problem. For our DGCNN
models, we set the number of selected nodes as 192, since from Ta-
ble 1 we can see that on average there are more tokens in NYTimes
than in RCV1 data. The size of sub-graphs of words is still limited
to 5. The dimensionality of word embeddings is 50, and all the other
configurations follow Table 2. The results shown in Table 7 have
consistent conclusion as RCV1 dataset. The difference of NYTimes
dataset is that it has much larger training data. Thus, we observe

8

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1070

Table 6: Comparison of training time based on GPU and CPU. (Test evaluations for all the models were performed by CPU.)

Types Model Datasets 1-Batch Time (sec.) Train Time (hr.) Test Time (hr.) Macro-F1 Micro-F1
CPU DGCNN-3 RCV1 1.416 12 2.5 0.4320 0.7611
GPU DGCNN-3 RCV1 0.767 6 2.5 0.4322 0.7611
CPU DGCNN-6 NYTimes 1.437 168 0.6 0.2985 0.6566
GPU DGCNN-6 NYTimes 0.401 48 0.6 0.2991 0.6566

Table 7: Comparison of results on NYtimes dataset.

Models Classes Macro-F1 Micro-F1
SVM 2,318 0.2158 0.5217
HSVM 2,318 0.2187 0.5213
TD-SVM 2,318 0.2249 0.5404
HR-SVM 2,318 0.2571 0.6123
HLSTM 2,318 0.2141 0.5271
HAN 2,318 0.2217 0.5395
RCNN 2,318 0.2019 0.5311

XML-CNN 2,318 0.2001 0.5292
DCNN-3 2,318 0.2471 0.5793
DCNN-6 2,318 0.2669 0.6055
DGCNN-1 2,318 0.2147 0.5195
DGCNN-3 2,318 0.2791 0.6030
DGCNN-6 2,318 0.2991 0.6566

HR-DGCNN-1 2,318 0.2209 0.5293
HR-DGCNN-3 2,318 0.2807 0.6146
HR-DGCNN-6 2,318 0.2995 0.6612

that the deeper models perform better on this data (DCNN-6 and
DGCNN-6 are better than DCNN-3 and DGCNN-3). Moreover, by
comparing Figures 5 and 6, we can see that RCV1 dataset is more
balanced. This is why the Macro-F1’s of NYTimes data are less than
the ones of RCV1 data even when the Macro-F1 scores are similar.

We also compare the results with and without hierarchical seg-
mentation on NTYimes dataset, which is shown in Table 8. Al-
though the Macro-F1 and Micro-F1 are close between recursive
hierarchical segmentation and stand-alone DGCNN-6 models. The
training time of stand-alone DGCNN-6 takes several days. The
DGCNN-6 model can have up to 7.5 times speedup with our recur-
sive hierarchical segmentation process.

Table 8: Comparsion of training time and results on NY-
Times dataset. The evaluations for stand-alone (Native) and
recursive hierarchical segmentation (RHS) programs were
performed by DGCNN-6 and GPU.

Model Macro-F1 Micro-F1 Training Time (days)
Native 0.2993 0.6481 15
RHS 0.2991 0.6566 2

Table 9: Number of parameters (in millions).

Dataset 1 Layer 3 Layers 6 Layers
RCV1 3.73 4.99 9.57

NYTimes 3.92 5.21 12.32

5.6 Time Consumption
We compared our models trained with different devices with dif-
ferent configurations, shown in Table 6. It results in that GPU can
speed up the training time by about 2 times for RCV1 and 3.5 times
for NYTimes, while the test errors are almost the same. Moreover,
test time for RCV1 data is much more than NYTimes, because the
test data of RCV1 is larger than NYTimes, according to Table 1.
We also tested whether recursive hierarchical segmentation can
help improve the efficiency of the model. As Table 8 shown, we
can improve NYTimes training time more than seven times while
maintaining the classification performance almost the same or even
better.

5.7 Number of Parameters
In Table 9, we report the number of parameters for each dataset.
All configurations follow the generic design presented in Table 2,
while the size of graph-of-words employs the best performance in
experiments. Specifically, here we have N = 64,k = 5 in RCV1 and
N = 192,k = 5 in NYTimes. The number of parameters are shown
in Table 9. Note that we divide the large-scale of label hierarchies
of NYTimes dataset into 9 sub-problems. The scale of parameters
of stand-alone DGCNN-6 in NYTimes was up to 105 millions.

6 CONCLUSIONS
In this paper, we present a deep graph CNNmodel to perform large-
scale hierarchical text classification. We first convert bag-of-words
to graph of words. Then we leverage the convolution power of
semantic composition to generate text document representation
for topic classification. The experiments compared to both tradi-
tional state-of-the-art text classification models as well as recently
developed deep learning models show that our approach can signif-
icantly improve the results on two datasets, RCV1 and NYTimes. In
the future, we plan to extend our deep graph CNN model to other
complex text classification datasets and applications.

7 ACKNOWLEDGMENTS
The corresponding author is Jianxin Li. This work is supported
by NSFC program (No.61472022,61772151,61421003) and partly by
the Beijing Advanced Innovation Center for Big Data and Brain
Computing. Yangqiu Song is supported by China 973 Fundamental
R&D Program (No. 2014CB340304) and the Research Grants Council
of the Hong Kong Special Administrative Region, China (Project
No. 26206717). Qiang Yang is supported by China 973 Fundamental
R&D Program (No. 2014CB340304) and Hong Kong CERG projects
16211214, 16209715 and 16244616. We also thank the anonymous
reviewers for their valuable comments and suggestions that help
improve the quality of this manuscript.

9

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1071

REFERENCES
[1] Charu C. Aggarwal and ChengXiang Zhai. 2012. A Survey of Text Classification

Algorithms. In Mining Text Data. 163–222.
[2] Rahul Agrawal, Archit Gupta, Yashoteja Prabhu, and Manik Varma. 2013. Multi-

label Learning with Millions of Labels: Recommending Advertiser Bid Phrases
for Web Pages. InWWW. 13–24.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. 2003. A
Neural Probabilistic Language Model. Journal of Machine Learning Research 3
(2003), 1137–1155.

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. Journal of Machine Learning Research 3 (2003), 993–1022.

[5] Lijuan Cai and Thomas Hofmann. 2004. Hierarchical Document Categorization
with Support Vector Machines. In CIKM. 78–87.

[6] Hao Chen and Susan Dumais. 2000. Bringing Order to the Web: Automatically
Categorizing Search Results. In CHI. 145–152.

[7] Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin, and Zhiyuan Liu. 2016.
Neural sentiment classification with user and product attention. In EMNLP. 1650–
1659.

[8] Ronan Collobert, JasonWeston, Léon Bottou,Michael Karlen, Koray Kavukcuoglu,
and Pavel P. Kuksa. 2011. Natural Language Processing (Almost) from Scratch.
Journal of Machine Learning Research 12 (2011), 2493–2537.

[9] Alexis Conneau, Holger Schwenk, LoÃŕc Barrault, and Yann Lecun. 2016. Very
Deep Convolutional Networks for Text Classification. (2016).

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional Neural Networks on Graphs with Fast Localized Spectral Filtering. In NIPS.
3837–3845.

[11] Susan Dumais and Hao Chen. 2000. Hierarchical classification of Web content.
In SIGIR. ACM, 256–263.

[12] Eva Gibaja and Sebastián Ventura. 2015. A tutorial on multilabel learning. ACM
Computing Surveys (CSUR) 47, 3 (2015), 52.

[13] Siddharth Gopal and Yiming Yang. 2013. Recursive regularization for large-scale
classification with hierarchical and graphical dependencies. In KDD. 257–265.

[14] Siddharth Gopal and Yiming Yang. 2015. Hierarchical Bayesian inference and
recursive regularization for large-scale classification. ACMTransactions on Knowl-
edge Discovery from Data (TKDD) 9, 3 (2015), 18.

[15] Siddharth Gopal, Yiming Yang, Bing Bai, and Alexandru Niculescu-Mizil. 2012.
Bayesian models for large-scale hierarchical classification. In NIPS. 2411–2419.

[16] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional Networks
on Graph-Structured Data. CoRR abs/1506.05163 (2015). http://arxiv.org/abs/
1506.05163

[17] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[18] Thorsten Joachims. 1998. Text Categorization with Support Vector Machines:
Learning with Many Relevant Features. In ECML. 137–142.

[19] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A Convolutional
Neural Network for Modelling Sentences. In ACL. 655–665.

[20] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification. In
EMNLP. 1746–1751.

[21] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In NIPS. 1097–1105.

[23] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. Recurrent Convolutional
Neural Networks for Text Classification. In AAAI. 2267–2273.

[24] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. Nature
521 (2015), 436–444.

[25] Yann Lecun, LÃľon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. In Proceedings of the IEEE. 2278–
2324.

[26] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix
factorization. In NIPS. 2177–2185.

[27] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. 2004. RCV1: A new bench-
mark collection for text categorization research. Journal of Machine Learning
Research 5, Apr (2004), 361–397.

[28] Xin Li and Dan Roth. 2002. Learning question classifiers. In ACL. 1–7.
[29] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. 2017. Deep

Learning for Extreme Multi-label Text Classification. In SIGIR. 115–124.
[30] Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng, Zheng Chen, and Wei-

Ying Ma. 2005. Support vector machines classification with a very large-scale
taxonomy. ACM SIGKDD Explorations Newsletter 7, 1 (2005), 36–43.

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. Computer Science (2013).

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
NIPS. 3111–3119.

[33] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
Convolutional Neural Networks for Graphs. In ICML. 2014–2023.

[34] François Rousseau, Emmanouil Kiagias, and Michalis Vazirgiannis. 2015. Text
categorization as a graph classification problem. In ACL, Vol. 15. 107.

[35] Evan Sandhaus. 2008. The New York Times Annotated Corpus LDC2008T19. In
Linguistic Data Consortium.

[36] Sam Scott and Stan Matwin. 1999. Feature Engineering for Text Classification. In
ICML. 379–388.

[37] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks
for large-scale image recognition. In ICLR.

[38] Richard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, and Christo-
pher D. Manning. 2011. Dynamic Pooling and Unfolding Recursive Autoencoders
for Paraphrase Detection. In NIPS. 801–809.

[39] Aixin Sun and Ee-Peng Lim. 2001. Hierarchical Text Classification and Evaluation.
In ICDM. 521–528.

[40] Duyu Tang, Bing Qin, and Ting Liu. 2015. Document Modeling with Gated
Recurrent Neural Network for Sentiment Classification. In EMNLP. 1422–1432.

[41] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin
Altun. 2005. Large margin methods for structured and interdependent output
variables. Journal of Machine Learning Research 6, Sep (2005), 1453–1484.

[42] Wei Wang, Diep Bich Do, and Xuemin Lin. 2005. Term graph model for text clas-
sification. In International Conference on Advanced Data Mining and Applications.
Springer, 19–30.

[43] Lin Xiao, Dengyong Zhou, and Mingrui Wu. 2011. Hierarchical classification via
orthogonal transfer. In ICML. 801–808.

[44] Gui-Rong Xue, Dikan Xing, Qiang Yang, and Yong Yu. 2008. Deep classification
in large-scale text hierarchies. In SIGIR. 619–626.

[45] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, and Ed-
uardH. Hovy. 2016. Hierarchical AttentionNetworks for Document Classification.
In NAACL–HLT. 1480–1489.

[46] Min-Ling Zhang and Zhi-Hua Zhou. 2014. A review on multi-label learning
algorithms. IEEE Transactions on Knowledge and Data Engineering 26, 8 (2014),
1819–1837.

[47] Wenjie Zhang, Liwei Wang, Junchi Yan, Xiangfeng Wang, and Hongyuan Zha.
2017. Deep Extreme Multi-label Learning. CoRR abs/1704.03718 (2017).

[48] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classification. In NIPS. 649–657.

10

Track: Web Content Analysis, Semantics and Knowledge WWW 2018, April 23-27, 2018, Lyon, France

1072

http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1506.05163

	Abstract
	1 Introduction
	2 Related Work
	2.1 Traditional Text Classification
	2.2 Deep Learning for Text Classification

	3 Documents as Graphs
	3.1 Word Co-occurrence Graph
	3.2 Sub-graph of Words
	3.3 Graphs of Embeddings

	4 Hierarchically Regularized Deep Graph-CNN
	4.1 Convolutional Layers
	4.2 Fully Connected and Output Layers
	4.3 Recursive Regularization
	4.4 Recursive Hierarchical Segmentation

	5 Experiments
	5.1 Datasets and Evaluation Metrics
	5.2 Methods for Comparison
	5.3 Experimental Settings
	5.4 Performance on RCV1
	5.5 Performance on NYTimes
	5.6 Time Consumption
	5.7 Number of Parameters

	6 Conclusions
	7 Acknowledgments
	References

