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9 ABSTRACT

10 The computation of total flow in a flooded river is very crucial work in designing economical flood 

11 defense schemes and drainage systems. Further, under non-uniform flow conditions like in 

12 converging and diverging compound channel, the traditional methods provide poor results with 

13 high errors. The analytical methods require the system of non-linear equations to be solved which 

14 are very complex. So, mathematical models that prompt in taking care of complex system of 

15 problem are solved here through an artificial neural network (ANN) and adaptive neuro-fuzzy 

16 inference system (ANFIS). By utilizing ANN and ANFIS, an attempt is taken to predict the 

17 discharge in converging and diverging compound channel. In the analysis, the most influencing 

18 dimensionless parameters such as friction factor ratio, area ratio, hydraulic radius ratio, bed slope, 

19 width ratio, relative flow depth, angle of converging or diverging, relative longitudinal distance, 

20 flow aspect ratio are taken into consideration for computation of discharge. Gamma test and M 

21 test have been performed to achieve the best combinations of input parameters and training length 
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22 respectively. The significant input parameters that influence the discharge are found to be friction 

23 factor ratio, hydraulic radius ratio, relative flow depth, and bed slope. A suitable performance is 

24 achieved by the ANFIS model as compared to ANN model with a high coefficient of determination 

25 of 0.86 and low root mean square error of 0.005 in predicting the discharge of non-prismatic 

26 compound channels taken under consideration.

27

28 Keywords: Non-prismatic compound channels; Gamma Test, M test, relative flow depth; width ratio, 

29 relative flow depth; ANN, ANFIS

30 1 Introduction

31 The sustainability of human civilization depends on rivers due to the availability of water for their 

32 day-to-day activity. But the same river devastates everything and causes the loss of life during the 

33 flood by inundating the surrounding floodplains. Because of the settlements on the adjoining area, 

34 the floodplain widths are found to be increased at some places and reduced at some other places. 

35 These configurations provide the floodplain either a converging or a diverging geometry is known 

36 as non-prismatic floodplains. Hence the flow will be non-uniform due to the non-uniform cross 

37 sections. So, the estimation of the proper discharge in non-prismatic sections is significant for 

38 analyzing the flow as they imitate the natural rivers. There are many investigators devoted their 

39 research on the prismatic compound channel to analyse the flow (Sellin 1964; Wormleaton et al. 

40 1982; Knight and Demetriou 1983; Knight et al. 1989; Devi et al. 2016). But very few 

41 investigations have been carried out on the non-prismatic compound channel. The experiment in 

42 a skewed compound channel has been first performed by James and Brown (1977) considering 

43 different skew angles. Later the effect and the behaviour of energy slope in skewed compound 

44 channels were studied by Chlebek (2009). Shiono et al. (1999) preformed experiments to examine 
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45 the flow behaviors in a meandering compound channel. But very few numbers of researches have 

46 been done for converging and diverging compound channel cases.  Converging compound 

47 channels with three different angles have first been studied by Bousmar et al. (2002). An 

48 asymmetric compound channel with abrupt floodplain contraction with a converging angle 22° 

49 was studied by Proust (2005). A comparison study of flow behavior between converging and 

50 diverging compound channels were done by Bousmar et al. (2006) by conducting experiments in 

51 diverging compound channels.  An analytical model for computing water surface profile was 

52 developed by Rezaei (2006) based on the experiment in converging compound channel (Fig. 1a). 

53 Utilizing the first law of thermodynamics, a one-dimensional energy loss model was developed by 

54 Proust (2010). Though this model predicts the energy loss in each subsection (i.e., left floodplain, 

55 main channel and right floodplain) however the method is complex and contains calibrating 

56 coefficients and also not shows good results for all the relative flow depths. However, due to its 

57 complexity and requirement of calibrating coefficients, the model results are found to be not 

58 satisfactory for different types of flow depths. As it depends upon calibrating coefficients improper 

59 approximation coefficients will lead to inaccurate results. So the requirement of a better model has 

60 been felt which can predict discharge well for these non-prismatic types compound open channels. 

61

62 In the last two and a half decades, many artificial intelligence (AI) techniques have been 

63 used to compute the discharge capacity of the channel. MacLeod (1997); Liu and James (2000) 

64 used artificial neural networks (ANN) for flow discharge calculation of meandering compound 

65 channels. Zahiri and Dehghani (2009); Unal et al. (2010) used ANN for discharge prediction in a 

66 straight compound channel. Parsaei et al. (2017) used ANFIS to predict discharge in prismatic 

67 compound channels. Some of the pertinent works based on time series data as an input to ANN 
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68 include forecast prediction using time series analysis by Hsu et al. (1995). ANN and ANFIS model 

69 used by Yarar et al. (2009) to predict water level changes in lake and Vafakhah (2012) used to 

70 forecast short term flow. Dorum et al. (2010) used ANFIS to model rainfall-runoff data. 

71 Here, in this paper, an attempt has been made to use AI techniques in non-prismatic type 

72 compound open channel to solve the complex flow problems and compared with traditional 

73 discharge estimating approaches. Two AI techniques such as ANN and ANFIS have been used to 

74 develop models which can able to predict the discharge in converging and diverging type 

75 compound channels (Fig. 1b). Between these two models, the most reliable model is suggested at 

76 the end of this paper for this type of compound open channels.

77 Fig. 1. Schematic diagram of the non-prismatic compound channel, (a) converging 

78 compound channel ( =3.81°), (Rezaei 2006) and (b) diverging compound channel ( =3.81°), 

79 (Yonesi et al. 2013)

80 2 Methodology 

81

82 In this section, firstly the four traditional approaches are presented which are generally used to 

83 calculate discharge at different sections. Secondly, Gamma test and M-test have been carried out 

84 to select the most influencing input parameters and training data length, respectively to develop 

85 ANN and ANFIS model.

86 2.1 Traditional Approaches

87 2.1.1. Single channel method (SCM)
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88 In this method, the whole compound channel is taken as a single unit. The same formulae are 

89 executed for both the simple and compound river channel. The disadvantages of this method are 

90 erroneous computation of discharge in the compound river channel. This is due to the fact that 

91 when the water level rises and inundates the floodplain, wetted perimeter as compared to wetted 

92 area suddenly increases in a higher order which leads to under-estimation of the discharge. Thus 

93 the discharge computed by SCM is always less than the actual discharge values. Generally, the 

94 Manning’s formula is used for determining the discharge and given by

95 (1)
0

3
21 SAR

n
Q 

96 where Q - total discharge, n is the equivalent roughness coefficients, R is the hydraulic radius (= 

97 A/P in which A is cross-sectional area and P is wetted -perimeter), S0 is bed slope. 

98 2.1.2 Divided Channel method (DCM)

99 First, Lotter (1933) developed a method for prediction of discharge in compound channels by 

100 dividing the whole compound section into different parts like a left floodplain, main channel and 

101 right floodplain. By introducing division lines such as vertical, horizontal and diagonal lines he 

102 separated by assuming homogenous velocities in each subsection. Then individual discharges are 

103 found out by applying Manning’s equation (Equation 1) in every sub section and total discharge 

104 is assessed by adding all individual discharge together. 

105 Figure 2. Kinds of isolating limit between the main channel and floodplains. (Parsaei et al., 2017) 
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107 where the subscript i stands for subsection, Ai- area of each subsection, Ri- Hydraulic radius of 

108 each subsection. This method is familiar with many hydraulic engineers and widely adopted as a 

109 divided channel method. The divisional lines used are vertical, horizontal and diagonal plain which 

110 are drawn from the intersection between main chnnael and fllodplain as shown in Fig. 2. (Al-

111 Khatib et al. 2012; Devi et al. 2016; Parsaie et al. 2017). It should be noted that these three types 

112 of interfaces either may be included or excluded into the wetted perimeter of the main river channel 

113 but never be considered with floodplain cases. Then the summed of the individual flows of each 

114 sub-section of a particular division line provide the total discharge for that divisional line method 

115 thus there are whole total six distinctive divided channel methods which are either included or 

116 excluded such as DCMv-e, DCMv-i, DCMh-e, DCMh-i, DCMd-e, DCMd-i. In this technique subscripts 

117 h, v, d refer to the partitioned line horizontal, vertical and diagonal respectively. Likewise, i and e 

118 refer to the line as included and excluded from the wetted border of the main channel. Many 

119 commercial softwares like HEC-RAS, Mike 11 and ISIS are based on these DCM (Atabay and 

120 Knight 2006). Figure 3 shows the detailed methodology used in this study to develop a discharge 

121 predictive model.

122 Fig. 3. Flow chart of methodology used to develop a discharge predictive model

123 2.1.3 Interacting Divided Channel Method (IDCM)

124 This method introduces a shearing at the vertical interface of the main channel and floodplain 

125 while computing the independent flow carried by subsections. It should be noted that it has been 

126 proposed to improve the divided channel method (Huthoff et al. 2008). The interface stress τint 

127 related to the momentum transfer is evaluated as 
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128  (3)  22
int 2

1
fpmc UU  

129 where γ = 0.02 is a dimensionless exchange parameter, and ρ = 1000 kg/m3 is the specific mass of 

130 water. The interface stress acts over a stature H – h. An advantage of IDCM is that it provides a 

131 direct analytical expression to determine the individual flow in subsections. 

132 2.1.4 Exchange Discharge Model (EDM)

133 Bousmar and Zech (1999) proposed the exchange discharge model where an extra loss in the head 

134 is taken into account that is added to the friction loss as determined from the divided channel 

135 method. This additional loss is corresponding to the exchange of energy at the junction region due 

136 to momentum transfer. Its magnitude is equal to velocity gradient times the discharge exchanges 

137 through the interface. They identified two distinct exchange discharge such as (1) a turbulent 

138 exchange discharge qt, corresponding to the mass of water oscillating between subsections as a 

139 result of large-scale turbulence structures development; and (2) a geometrical transfer discharge 

140 qg found in non-prismatic or non-uniform flow, where discharge is forced through the interface as 

141 a result of cross-sectional area changes. The exchange discharges are estimated as follows: 

142  and (4) hHUq tt 
dx
dQq gg 

143 where ψt = 0.16 and ψg = 0.5 are fitting coefficients, fixed according to Bousmar&Zech (1999), 

144 and h= bank-full depth. Figure 4 shows the comparison between calculated discharges by 

145 analytical approaches and measured discharges.

146

147 Fig. 4. Comparison between the results of analytical approaches with the measured discharge 
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148

149 2.2 Gamma Test (GT) 

150 Gamma test firstly reported by Agalbjörn et al. (1997) and later improved and examined in detail 

151 by numerous analysts (Durrant, 2001; Tsui et al., 2002). GT measures the base mean square error 

152 (MSE) that contribute to input data selections. The selected input data can be utilized as a part of 

153 an arrangement of a non-linear model. The logical purposes of intrigue can be found in Agalbjörn 

154 et al. (1997); Noori et al. (2011). The GT results can be organized by considering another term V-

155 ratio, which restores a scaled invariant clamor evaluate in the vicinity of 0 and 1. The V-ratio is 

156 characterized as

157 (5)
)(2 y

ratioV





158 where  = variance of yield y, which provides a standardized measure of the Gamma statistic )(2 y

159 and empowers a judgment to be shaped, freely of the yield range, in the matter of how well the 

160 yield can be displayed by a smooth function. In looking at different yields, or yields from various 

161 informational collections, the V-ratio is a decent number to think about on the grounds that it is 

162 free of the yield range. A V-ratio close to zero demonstrates a high level of consistency (by a 

163 smooth model) of the specific yield. On the off chance that the V- ratio is near to one, the yield is 

164 identical to irregular commotion to the extent a smooth model is concerned. 

165

166 2.3 M-test

167 Deciding the best possible length of the training data is imperative to enhance the prediction 

168 (Choubin and Malekian 2017). M-test curve is a method for deciding the quantity of input data 
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169 required to create a stable asymptote. Here, we utilized M-test dependent on the V-ratio and 

170 gamma value to choose the best length of preparing and testing information in the neural network 

171 technique like some different works (e.g., Evans and Jones 2002; Remesan et al. 2008; Stefansson 

172 et  al. 1997; Tsui et al. 2002; Noori et al. 2011). The values of V-ratio and gamma statistics are 

173 resolved with an expanding number of data points. Information length is resolved based on M-test 

174 curve stabilized for a particular value of V-ratio and gamma. This test decreases overfitting in 

175 nonlinear modelling (Shamim et al. 2016).

176 2.4 Artificial Neural Network

177 Artificial Neural Network (ANN) is a type of ‘black box’ model which is considered to be one of 

178 the computational tools for modeling nonlinear and complex phenomena without any preceding 

179 assumption through the processes involved. By adopting the past data, ANN can cultivate 

180 relatively accurate forecasting of the modelled parameters that may be used as a tool for replicating 

181 any physical phenomenon. In last two and half decade, ANN has gained wider stature among 

182 researchers working in the area of river flow modelling and other water resources problems (Kisi 

183 2005; Choi and Cheong 2006; Cigizoglu and Kisi 2006; Kisi and Cigizoglu 2007; Zhu et al. 2007; 

184 Khuntia et al 2017). The most commonly used artificial neural network model is the multilayer 

185 perceptron feed forward (FF) technique and in which the back-propagation (BP) algorithm is 

186 frequently used for training these networks (Hornik 1989). The topology of FFBP ANNs consists 

187 of a set of neurons associated with links in a number of layers (Sahu et al. 2011). The basic unit 

188 of the network generally consists of an input layer, a hidden layer, and an output layer (Fig. 5). 

189 The input nodes draw the data values and transmit them to the hidden layer nodes. Each node of 

190 the hidden layers collects the inputs from all input nodes subsequently multiplying each input 
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191 value by weight, attaches a bias to this sum, and passes on the results through a nonlinear 

192 transformation like sigmoid transform function. This forms the input either for the second hidden 

193 layer or the resulting transformed output from each output node is the network output. The critical 

194 step in building a robust ANN is to create an architecture, which should be as simple as 

195 conceivable and has a fast capacity for learning the dataset (Haykin 1994). 

196 The flow in a non-prismatic compound channel is a fully complex hydraulic phenomenon, 

197 it was expected that the MLP model was not of a small size. To achieve an optimum structure for 

198 the MLP model, the size of the model is increased step by step. Different transfer functions 

199 including logsig (log-sigmoid transfer function), tansig (hyperbolic tangent sigmoid transfer 

200 function), purelin (linear transfer function) were tested. In other words, firstly, a model with one 

201 hidden layer involved eight (Mask a) or four (Mask b) neurons (equal to features of inputs) was 

202 considered. Then the transfer functions were tested. By choosing the proper transfer function in 

203 the next step was to improve the precision of the developed MLP model, the number of neurons 

204 and the hidden layer could be increased. Many theoretical and experimental works have shown 

205 that a single hidden layer is sufficient for ANNs to approximate any complex non-linear function 

206 (Cybenko, 1989; Jalili-Ghazizade and Noori et al., 2011). A major reason for this is that 

207 intermediate cells do not directly connect to output cells. Hence, they will have very small changes 

208 in their weight and learn very slowly (Gallant, 1993). This approach leads to achieving optimum 

209 structure and suitable performance in terms of computation cost.

210 Figure 5. Architecture of ANN model for discharge prediction with [8-10-1] network structure

211 2.5 Adaptive Neuro-Fuzzy Inference System (ANFIS)
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212 The adaptive neuro-fuzzy inference system (FIS) is an artificial intelligence method, which is a 

213 sequence of the artificial neural network (ANN) and fuzzy system that uses the learning 

214 effectiveness of the ANN to evolve the fuzzy IF-THEN rules with proper membership functions 

215 derived from the training pair, whichever in turns lead to an inference. Such systems disregard the 

216 commitment of manual optimization of fuzzy system parameters and the tuning of the system 

217 parameters can be achieved by means of ANN. The merger of both ANN and FIS along these lines 

218 enhances framework execution without interceding of administrators. ANFIS is frequently used as 

219 a part of many water resources issues such as modeling of hydrological time series, reservoir 

220 operations, rainfall-runoff prediction and other related fields (Xu & Li, 2002; Unal et al. 2010; Yarar 

221 et al. 2009; Dorum et al. 2010).

222 Fig. 6. (a) A schematic diagram of ANFIS structure and (b) A schematic diagram of the fuzzy 

223 based inference system

224

225 The advantage of the approach is that one can utilize the ANFIS design to shape nonlinear 

226 functions to analyze nonlinear parameters yet to figure the desired outcome sensibly (Jang 1991, 

227 1993, 1994). The goal of the present work is to anticipate flow in the converging and diverging 

228 compound channel which can be accomplished by adopting an innovative architecture of ANFIS 

229 structure. The structure can be constituted, a guideline for making an arrangement of fuzzy if-then 

230 principles and fuzzy inference frameworks accommodate membership functions to produce the 

231 result satisfactorily. 

232 2.4.1 Architecture and basic learning rules
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233 ANFIS is a rule-based fuzzy rationale model that its principles perform throughout the training 

234 operation of the model. As shown in Fig. 6a, five layers are utilized to develop this inference 

235 structure. In this network structure, the input (layer 0) and yield (layer 5) hubs depict the sources 

236 of input and the yield, individually. In the hidden layers, there are a few fixed and adaptable hubs 

237 working as membership functions (MFs) and rules. To clarify the methodology of an ANFIS, we 

238 consider two information factors x, y, and one yield variable z. In the ANFIS model, the association 

239 among information and yield is communicated by the usage of if-then fuzzy rules. At that point, 

240 the model includes two fuzzy rules in perspective of Takagi and Sugeno's type (Sahu et al. 2011) 

241 and that can be expressed as follows:

242 Rule 1: If x is A1 and y is B1 then (6)1111 ryqxpz 

243 Rule 2: If x is A2 and y is B2 then (7)2222 ryqxpz 

244 where A1, B1, and A2, B2 are the semantic level, p1, q1, r1 and p2, q2, r2 are the ensuing parameters. 

245 If and are constants instead of linear equations, we have zero order TSK fuzzy-model.  1z 2z

246 ANFIS structure consists of five number of layers (Fig. 6a). Different layers are described below:

247 Layer 1 (Fuzzification layer) - Every node in this layer is a flexible node with a node function, 

248 Layer 2 (Rule layer) -Every node in this layer is a fixed node and acts as a basic multiplier, Layer 

249 3 (Normalization layer)- In this layer, every node is an adaptive node marked as N. The ith node 

250 figures the proportion of the ith rule's terminating quality to the aggregate of all rules’ terminating 

251 strengths, Layer 4 (Defuzzification layer) Every node in this layer is a flexible node with a 

252 function, Layer 5 (Output layer)- In this last layer, the single node is a settled node which processes 

253 the general yield as the entirety of every approaching signal. The purpose of the training algorithm 

254 for this design is to tune the over two parameter sets to make the ANFIS yield organizes the training 

255 information (Jang 1993; Sahu et al. 2011). Therefore, an adaptable framework is presented in Fig. 
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256 6a is practically proportionate to the fuzzy interface framework shown in Fig. 6b. From ANFIS 

257 design (Fig. 6a), it is observed that the given values of the premise parameters, the overall yield z 

258 can be imparted as a linear blend of the resulting parameters. In perspective of this observation, a 

259 hybrid learning standard is used here, which consolidates a back propagation technique and the 

260 least squares method to find a feasible of the forerunner and subsequent parameters (Jang 1991; 

261 Jang 1993). The particulars of the hybrid rule are given by Jang et al. (1997), where it is 

262 additionally asserted to be altogether quicker than the traditional back-propagation technique.

263 The primary confinement of the ANFIS model is related to the number of input parameters. On 

264 the off chance that ANFIS inputs surpass five, the computational time and rule numbers will 

265 increase, so ANFIS with grid partitioning won't have the capacity to show yield as for inputs. For 

266 our case, the quantities of information sources were eight and four, so grid partitioning and sub-

267 clustering has been done respectively to generate FIS.

268 2.4.2 Grid partition (GP)

269 This technique creates a Sugeno-type FIS structure from training datasets. GP isolates the input 

270 data into various nearby fuzzy locales utilizing a pivot paralleled partition in view of a predefined 

271 number of membership functions. GP strategy includes eight membership functions types (trimf, 

272 trapmf, chime MF, gaussmf, gauss2mf, if, dsigmf, psigmf). For mask [101110000] input 

273 combination, this method is adopted to produce FIS. The quantity of MFs can be indicated in a 

274 relationship with each information. Since this is a Sugeno-type, just a single yield can be utilized. 

275 The yield function can be constant or linear. The quantity of yield MFs is the same as the number 

276 of rules created by this technique. In this subsection, the elective models comprise of different FIS 
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277 structures are produced by utilizing diverse MF features (types, numbers) for input membership 

278 function parameters.

279 2.4.3 Subtractive clustering (SC)

280 The optimum number and form of fuzzy rules determination is the most crucial step, and various 

281 algorithms have been developed to automate this process, such as k-means clustering, fuzzy C-

282 means clustering, and subtractive clustering (Jang 1993; Noori et al. 2011). When the number of 

283 input parameters is more than five then generally subtractive clustering technique is adopted which 

284 save run time process and take less computational space (Sahu et al. 2016). The subtractive 

285 clustering method assumes that each data point is a potential cluster center and calculates a 

286 measure of the likelihood that each data point would define the cluster center on the basis of the 

287 density of surrounding data points. The steps of the fuzzy-model algorithm can be summarized as 

288 follows: (1) it selects the data point with the highest potential to be the first cluster center (which 

289 is usually considered between 0.2 and 0.5); (2) it removes all data points in the vicinity of the first 

290 cluster center as determined by the range(radius) of influence (which is usually considered as 0.5); 

291 (3) iterate the process until all of the data fall within the radii of a cluster center (which is 

292 considered as 1.25, here). The vector options can be used for identifying clustering algorithm 

293 parameters to override the default values. These components of the vector options are specified as 

294 Range of influence (ROI), Squash factor (SF), Accept ratio (AR) and Reject ratio (RR). In 

295 perspective of the cluster data, a Sugeno-type FIS framework that best models the information 

296 conduct can be produced. The information clustering system used in this paper is subtractive 

297 clustering (Chopra et al. 2006) for input parameter more than five numbers. In light of the thickness 

298 of encompassing information focuses, it can appraise the number of clusters and the cluster centers 

299 in an arrangement of information. The fuzzy principles found by bunching information are more 
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300 uniquely crafted to the input information; subsequently, the FIS will have much fewer rules than 

301 that without information clustering. This algorithm works like a pre-processor to ANFIS for 

302 deciding the basic rules. At the point when the FIS is created, four parameters for subtractive 

303 clustering should be determined (Chopra et al. 2006) which are mentioned below: 

304 1) ROI-range of influence (default 0.5), to show the extent of the effect of a gathering center. The 

305 more neighboring information focuses a data point can encase, the higher potential it has as a 

306 cluster center; 

307 2) SF-squash factor (default 1.25), multiplying q1 to decide the area of a cluster center inside which 

308 the nearness of other bundle centers is discouraged; 

309 3) AR-accept ratio (default 0.5), to set the potential above which another information point will be 

310 acknowledged as a cluster center; 

311 4) RR-reject (default 0.15), to set the potential beneath which an information point will be 

312 dismissed as a cluster center. 

313

314 3 Sources of Data and Influencing Flow Parameters

315 For this research work, we collected the 196 experimental data on converging and diverging 

316 compound channel along from the are published papers by Bousmar (2002); Bousmar et al. (2006); 

317 Rezaei (2006); Yonesi et al. (2013) and Naik and Khatua (2016) are presented in Table 1.

318
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319 Table 1. Details of geometric, hydraulic and surface parameters for all types of channel collected 

320 from published data on diverging and converging compound channel

321 Table 2. Statistical characteristics of the data under consideration

322 From extensive literature survey on compound channels, it is seen that the investigators such as 

323 Knight and Demetriou (1983); Yang (2005); Parsaei et al. (2017); Khuntia et al. (2018) have 

324 suggested that flow in compound channel depends on friction factor ratio, area ratio, width ratio, 

325 hydraulic radius ratio, relative flow depth, flow aspect ratio and bed slope.  Das et al. (2016) proved 

326 the dependency of energy loss and discharge on diverging/converging angles and relative 

327 longitudinal distance for non-prismatic geometry.  Hence, in the present study, for the development 

328 of ANN and ANFIS model, nine non-dimensional input parameters, which influence the flow 

329 quantity at a different section of non-prismatic reach have been considered. The details about these 

330 non-dimensional parameters are described below:

331 Friction factor ratio (Fr) is the ratio of main channel friction factor  fmc  to floodplain ffp, 

332 area ratio (Ar) is the ratio of main channel area to floodplain area, hydraulic radius  ratio (Rr) is 

333 the hydraulic radius of the main channel to that of floodplain, flow aspect ratio () is the ratio of 

334 the width of the main channel  to the depth of flow over main channel, width ratio (α) is the ratio 

335 of width of floodplain (B) to width of the main channel (b), Relative flow depth (β) = (H-h)/H. 

336 where H - height of water at a particular section and, h - bank full depth or main channel depth, 

337 Relative longitudinal distance (Xr=l/L) from a reference or origin is the ratio of the distance (l) of 

338 the arbitrary reach or section in longitudinal direction of the channel to the total length (L) of the 

339 non-prismatic channel, converging or diverging angle (θ) - angle of floodplain to the main channel, 

340 it is taken as positive for diverging angle and negative for converging angle, longitudinal slope 

341 (S0) - bed slope of the channel. The statistical characteristics of the data under consideration are 
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342 presented in Table 2. Table 3 shows the error indices in discharge prediction. evaluated by 

343 analytical approaches 

344 Total nine flow variables were chosen as input parameters and flow as an output parameter. The 

345 dependency flow (Q) on these aforementioned parameters can be written in a functional 

346 relationship as

347 (8) rrrr XSRAffQ ,,,,,,,, *
0 

348 Table 3. Error indices result of the analytical approaches

349 4. Model input selection and training data length

350 In practice, the Gamma () test can be accomplished by utilizing the winGamma software (Durrant 

351 2001). The authors believe that this methodology is very effective and could be used as a part of 

352 various hydraulic nonlinear modelling endeavors. Gamma Test is used to measure uncertainty by 

353  value and V-ratio. This paper shows all blends of information data that influence the flow in a 

354 different section of the non-prismatic compound channel by using full embedding. A full 

355 embedding tries for each blend of contributions to make sense of which blend yields the smallest 

356 absolute  value. It returns the number of results asked. In case there are 'm' scalar sources of 

357 information, by then there are 2m-1 vital blends of data sources (nine in this investigation). The 

358 best one of these assorted blends can be controlled by watching that with the minimum  value, 

359 which demonstrates a measure of the best MSE. Subsequently, we played out the GT in different 

360 estimations by changing the number of contributions to the model and minimum estimation of Γ 

361 was observed when we used every fourth contribution for all four input value. V-ratio is the 

362 measure of predictability of given yields using accessible data sources. An input dataset with a low 

363 value of MSE and V-ratio is considered as the best situation for the modelling. 400 examinations 
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364 have been made in winGamma software for nine to three representative blends of non-dimensional 

365 parameters but in this paper, 20 different blends (including the best one), are orchestrated in Table 

366 4. From Table 4 we can determine that the blend of 8 parameters with mask [111111110] and 4 

367 parameters with mask [101110000] can make a decent model in contrast with other conceivable 

368 blends. For the later mask , the V-ratio value is observed to be superior to the former mask. 

369 Deciding the best possible length of the training data is imperative to enhance the 

370 prediction (Choubin and Malekian 2017) through ANN or ANFIS model. In winGamma software, 

371 M-test curve is a method for deciding the quantity of information required to create a stable 

372 asymptote. Here, we utilized M-test in light of the V-ratio and  value to choose the best length of 

373 training and testing information in the neural network technique similar to some others work (e.g., 

374 Evans and Jones 2002; Remesan et al. 2008; Tsui et al. 2002; Noori et al. 2011). The estimations 

375 of V-proportion and  insights are determined by expanding the number of data points. Data length 

376 is resolved in view of M-test curve stabilized for a particular value of V-ratio and  value (Shamim 

377 et al. 2016; Choubin and Malekian 2017). The M test curves for masks [111111110] and 

378 [101110000] are shown in Figs. 6a and 6b respectively. Figure 7 demonstrates that a training 

379 information length of 154 and 167 is adequate respectively for 8 and 4 input parameters blend in 

380 the Gamma statistics to wind up noticeably steady and low.

381

382 Fig. 7. M-test curve: the variation of gamma statistic and V-ratio with unique data points to 

383 determine the proper length of training data for mask a) [111111110] and b) [101110000]

384

385 Table 4. Determining the best combination for flow (Q) in non-prismatic compound channel

386
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387 5. Development of Models for Discharge Prediction

388 To develop ANN and ANFIS models, the input and output data were mapped into the domain 

389 [0.05,0.95] utilizing the Equation (9), because the best range suggested for normalization is in the 

390 vicinity of 0.05 and 0.95 (Hsu et al. 1995). This would increase the accuracy and speed of ANN 

391 and ANFIS performance. 

392  (9) min

max min

( )0.05 0.90
( )norm

a aa
a a


 



393 where anorm and a are the normalized and original inputs; amin, and amax indicate minimum and 

394 maximum of the input ranges, respectively.

395 The information to be utilized for training ought to be adequately large to cover the 

396 conceivable known variations in the problem domain (Kim and Valdes, 2003). From the M test, 

397 for the input blend of [111111110] mask ( i.e., mask-a), the total 196 data were divided into a 

398 training set 154 and testing set 42 and for [101110000] mask (i.e., mask-b), the training and testing 

399 set are 167 and 29 respectively. These fixed training and testing data length have been considered 

400 in both ANN and ANFIS to develop the robust discharge predictive model.

401 5.1 Artificial Neural Network model 

402 In this approach, a multi-layer perceptron (MLP) feed forward back propagation (FFBP) network 

403 has been developed for both mask-a and mask-b. Tan-sigmoid function (tan) has been taken as a 

404 nonlinear activation function for the hidden layer, and linear transfer function (pure) for the output 

405 layer for both of the case (Noori et al 2011; Parsaei et al 2017). Figure 5 shows the schematic 

406 diagram of a feed-forward MLP with one hidden layer with ten neurons to estimate the discharge. 
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407 For the training of the FFBP network, the Levenberg-Marquardt (LM) method has been used 

408 because of the faster training process and occupy less memory in the system (Yazdi and Bardi 

409 2011). Training and validating data sets are generally known as the calibration set. To compute 

410 the number of hidden neurons, an initial random number was employed. Afterward, the optimum 

411 number of hidden neurons was found to be found out by a trial and error procedure. For this around 

412 250 simulations have been performed to get the best training and testing results for discharge 

413 prediction. The details of the best training parameter of ANN model for mask-a and mask-b is 

414 presented in Table 5.

415 Table 5. Different training parameters used for neural network analysis

416

417 5.2. Artificial Neuro Fuzzy Inference System model 

418  To run a fuzzy model two alternatives are available, which includes subtractive fuzzy clustering 

419 (requiring less computational effort) and grid partitioning (requiring more computational effort). 

420 In this work, for eight inputs parameters, subtractive clustering and for four input parameters, the 

421 grid partitioning has been utilized as specified before. In subtractive clustering different trials have 

422 been made to get optimum value for ROI (0.52), SF (1.2), AR (0.5) and RR (0.15) for the 8 input 

423 parameters blend. The errors for subtractive clustering are shown in Table 6. Similarly, in grid 

424 partitioning for 4 input parameters, different MFs are chosen for each input parameter from 2 to 4 

425 numbers with various MF types and the best optimal outcomes are presented in Table 6.

426

427 Table 6 Details of the best ANFIS model performance

428 6 Results and Discussions 
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429 The analytical approaches, ANN and ANFIS model were surveyed by the data gathered 

430 summarized in Table 1. The precision of the analytical approaches, ANN and ANFIS model have 

431 been evaluated by ascertaining the statistical error indices, for example, the coefficient of 

432 determination (R2), mean absolute percentage error (MAPE), mean absolute error (MAE), root 

433 mean square error (RMSE), Nash-Sutcliff coefficient (E). The definitions of various errors are 

434 explained in (Das and Khatua 2018). It is noticeable that these indices are shown in Tables 3 and 

435 6, present the value for the average error and not give any data about error distribution, so in 

436 addition to ascertaining the error indices, the execution of them are shown in Figs. 8-11 between 

437 the observed values and predicted values.

438 6.1 Analysis of analytical approaches

439 The strength of the traditional methods was assessed for ascertaining the flow in the non-prismatic 

440 compound open channel by utilizing the gathered datasets. The outputs of traditional methods are 

441 presented in Fig. 4. To know more about the strengths of the traditional methods, other specified 

442 statistical errors analysis was ascertained and exhibited in Table 3. With respect to Table 3, the 

443 DCMv–i is the most correct among the different approaches and has an appropriate accuracy by the 

444 coefficient of determination of 0.74. The appropriate accuracy of this technique is identified with 

445 separating the compound open channel cross segment as a main channel and floodplains and 

446 considering the idea of the mass and force in the method development process. As appeared in Fig. 

447 4, for given actual discharge there is a huge variation in predicted results. This is because, for a 

448 single discharge value in converging and diverging compound channels, the flow is calculated at 

449 different sections of the non-prismatic portion using common formula. The present analytical 

450 approaches which are providing some good results for prismatic compound channel segments does 

451 not include the concept of mass and momentum exchange between main channel and floodplains 
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452 for non-prismatic geometry (Bousmar et al. 2006). Table 4 demonstrates that the poorest execution 

453 is identified with the SCM by correlation of around 47%, and it is seen from Fig. 4 that, by 

454 increasing the discharge, the performance of this technique for a various segment of non-prismatic 

455 compound channel quickly decreases. The fundamental explanation behind the infirmity of SCM 

456 is identified with ignoring the energy exchanging between the main channel and floodplains. 

457 IDCM and EDM also provide discharge values with MAPE of 35% and 33% respectively for non-

458 sections. For a given discharge, at converging and diverging compound channels, the predicted 

459 values evaluated by analytical approaches are overestimated and underestimated for most of the 

460 sections. Because the flow is non-uniform from section to section and the presented analytical 

461 model does not consider any parameter which can manage the non-uniformity of flow.

462 6.2 Analysis using the ANN and ANFIS model 

463 In this work, distinctive blends of information (non-dimensional datasets) are investigated to 

464 evaluate their effect on flow modelling (Table 5). The ANN and ANFIS model have been created 

465 and tried for anticipating flow in the non-prismatic compound channel. The two non-dimensional 

466 parameters blends are chosen from the Gamma test, mask a (incorporates Fr, Ar, Rr, , S0,*,, 

467 Xr) and mask-b (incorporates Fr, Rr, , S0). The amount of information required to foresee the 

468 alluring yield was analyzed utilizing the M-Test with different information lengths for two blends. 

469 This demonstrates that a training data length of 154 and 167 is adequate for the  statistics 

470 respectively for mask-a and mask-b blends to become stable and low. Measurable aftereffects of 

471 various blends are presented in Table 4. From Table 4, it is noticed that from 9 non-dimensional 

472 input parameters, converging and diverging angle i.e.,  isn't significant in anticipating discharge 

473 from section to section. This is on account of our goal to predict the discharge that crosses a 

Page 22 of 63

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



Draft

474 specific section. For a given , there are different sections can be found and the sectional geometry 

475 can be taken care of by Ar or Rr, so the  value is redundant in demonstrating flow in non-prismatic 

476 compound channels. 

477 Figures 8 and 9 show the results of model calibration and testing stages against observed data from 

478 the best-trained ANN model. The figure indicates that the predicted values of discharge generally 

479 have a good agreement with the observed data. On the other hand, it shows that the extreme 

480 discharge values obtained from the ANN model do not correspond to the observed ones. There 

481 was a significant difference between the predicted and observed extreme values. Therefore, 

482 although the ANN model generally produces an acceptable performance in predicting discharge 

483 in the non-prismatic compound channel, it is not capable of predicting the extreme values 

484 accurately. ANN model found to provide MAPE value of 16.3% and 13.2% respectively for mask 

485 –a and mask –b respectively.

486 Fig. 8 Predicted and observed data for calibration step of ANN model a) for 8 input parameters 

487 and b) for 4 input parameters

488

489 Fig. 9 Predicted and observed data for testing step of ANN model a) for 8 input parameters and 

490 b) for 4 input parameters

491

492

493 For simulation with the ANFIS model, a FIS structure from information utilizing 

494 subtractive clustering for mask-a and grid portioning for mask-b have been produced. In 

495 subtractive clustering (SC) technique for grid generation, different parameters are enhanced to get 
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496 best outcomes as demonstrated in Table 6. The execution of the ANFIS demonstrates utilizing SC 

497 strategy amid the training and testing stages appears in Figs. 10 (a) and 11 (a). In grid partition 

498 (GP) technique of grid generation, the utility of different MFs, for example, generalized bell shape 

499 MF (gbellmf), Gaussian curve MF(gaussmf), and triangular-shaped MF (trimf) were tested. Amid 

500 the development, ANFIS model found that the gaussmf has a superior performance in contrast 

501 with others. The structure of the ANFIS demonstrates which had the best performance is presented 

502 in Table 6. The Gaussian function (gaussmf) was considered for the MF with 4 numbers and the 

503 weighted average (wtaver) approach was considered for the defuzzification technique. Allocating 

504 of the MFs to the info parameters, depending on the trial and error procedure (Sahu et al. 2012). 

505 The execution of the ANFIS model amid the preparation and testing stages is shown in the Figs. 

506 10 (b) and 11 (b).

507 Fig. 10 Predicted and observed data for calibration step of ANFIS model a) for 8 input 

508 parameters and b) for 4 input parameters

509

510 Fig. 11 Predicted and observed data for testing step of ANFIS model a) for 8 input parameters 

511 and b) for 4 input parameters

512

513 The results of the computation of the error indices for the ANFIS model are shown in Table 6. 

514 From Table 6, for the SC method, the R-value of the ANFIS model amid the preparation and 

515 testing stage are 0.99 and 0.82, respectively. For the GP method, the R2 esteem is observed to be 

516 0.98 and 0.86 for preparing and testing stage respectively. The ANFIS model structure affirms the 

517 results of the ANN modelling the flow in the compound open channel. MAPE esteem for SC-

518 ANFIS model and GP-ANFIS model is observed to be 16.3% and 9.4% which demonstrates that 

Page 24 of 63

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



Draft

519 SC demonstrates which incorporates eight non-dimensional info parameters indicates poor 

520 outcomes contrasted with GP strategy containing four input parameters. This is due to of the 

521 modelling of flow by considering parameters like Fr, Rr, , and S0 is significant, contrasting with 

522 the including of other four more input parameters like Ar, and Xr to it as it clarified in gamma 

523 test. For mask-a, eight input parameters in the gamma test give the gamma value as - 0.001 and V-

524 value as - 0.007 while four input parameters named as mask-b gives 0.0002 and 0.001 which is 

525 very close to zero. Additionally, to evaluate the performance of the ANN and ANFIS model, 

526 observed discharge values are plotted against the predicted ones (SC model for mask-a and GP 

527 model for mask-b) in Figs. 12 and 13 for testing stage information respectively. In Fig. 12 for both 

528 the mask the R2 value found to be less than 0.85. Figure 13 indicates that the GP model for mask 

529 10111000 demonstrates the high value of the coefficient of determination which implies the 

530 ANFIS model with four non-dimensional parameters like Fr, Rr, , and S0 gives a better model to 

531 predict discharge in converging and diverging compound channels.

532 Fig. 12 Comparison between the ANN model predicted value and observed value of discharge

533

534 Fig. 13 Comparison between the ANFIS model predicted value and the observed value of 

535 discharge

536

537 ANN and ANFIS model both are able to predict the discharge with more than 80% accuracy but 

538 due to less number of data set (196 data) consider in this study, the learning ability of training 

539 parameters is faster in ANFIS. The number of simulations to get best training and testing results 

540 are much more than ANFIS simulation trials. ANN has a problem of overt-training, it has been 

541 observed that by increasing the number hidden layers, there are no significant changes in the 
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542 results. ANN model provides higher error in terms of MAPE in comparison GP technique adopted 

543 in ANFIS modelling. 

544

545 7. Conclusions 

546 In this investigation, some well-known scientific methodologies for computing the flow in the non-

547 prismatic compound open channel were surveyed. For this reason, 196, exploratory data on a non-

548 prismatic compound channel which were found from some reputed journal were collected. The 

549 results of the error indices for the output of analytical approaches showed that the performance of 

550 DCMv-i by the coefficient of determination of about 0.73 has acceptable performance for 

551 evaluating the flow in converging and diverging compound open channels. To accomplish more 

552 noteworthy exactness in the flow computation, the ANN and ANFIS soft-computing techniques 

553 are prepared based on the same data collected. Gamma test and M test has been performed to 

554 choose the most significant non-dimensional info parameters blends for modelling the discharge. 

555 The following results have been achieved in the present investigation: 

556 • Gamma test reveals that for the present study, the friction factor proportion, relative flow 

557 depth, relative hydraulic radius and bed slope are the most critical parameter to predict the 

558 discharge in non-prismatic compound channel over the other non-dimensional parameters, such 

559 as, area ratio, width ration, flow aspect ratio, relative longitudinal distance and converging or 

560 diverging angles. 

561 • Two models in ANFIS has been tried where for FIS generation, subtractive grouping for 

562 eight input parameters and grid partition for four input parameters has been performed. 

563 Ascertaining the errors for the ANFIS results demonstrated that the performance of the ANFIS 
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564 model utilizing 4 non-dimensional information parameters give an R2-value of 0.96 and 0.86 for 

565 training and testing stages respectively is so appropriate for modelling the flow of converging and 

566 diverging compound channels.

567 • Converging or diverging angle is observed to be insignificant to predict the discharge at 

568 various section of the non-prismatic compound channels as it has been taken care by relative 

569 hydraulic radius. 

570 • Comparison of the performance of the ANFIS model with ANN and analytical approaches 

571 demonstrated that the ANFIS model is more precise as it is evident from the error indices.

572 APPENDIX

573 Appendix 1. All nine input variables data of converging and diverging compound channel 

574 collected 

575 NOMENCLATURE

576  Discharges carried by the floodplain𝑄𝑓𝑝

577  Measured discharge𝑄

578 Discharges carried by the main channel 𝑄𝑚𝑐

579  Hydraulic radius of floodplain𝑅𝑓𝑝

580  Hydraulic radius of main channel𝑅𝑚𝑐

581  Bed slope of channel𝑆0

582  Relative hydraulic radius𝑅𝑟

583  Darcy’s friction factors 𝑓

584 n Manning’s roughness coefficient 
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585 b Main channel bottom width 

586 H Total flow depth over main channel

587 h Bank full depth

588 P Wetted perimeter 

589 R Hydraulic radius 

590  Area of the compound channel𝐴

591 Total width of compound channel 𝐵

592 E Nash-Sutcliff coefficient

593  Discharges carried by the whole channel 𝑄

594  Top width of compound section 𝑇

595  Local stream wise velocity𝑈

596  Relative friction factor𝑓𝑟

597 Area ratio𝐴𝑟

598 Relative longitudinal distance𝑋𝑟

599  Gravitational acceleration𝑔

600  Width ratio𝛼 

601 Relative flow depth𝛽  

602 Flow aspect ratio of main channel𝛿 ∗

603  Diverging or converging angle𝜃

604 R2 Coefficient of Determination

605  Density of water𝜌

606 Geometrical exchange dischargegq
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607 Turbulence exchange discharge

608

609 Abbreviations

610 DCM Divided Channel Method 

611 EDM Exchange Discharge Model

612 IDCM Interacting Divide channel method

613 MAPE Mean Absolute Percentage Error

614 RMSE Root Mean Square Error

615 SCM Single Channel Method

616 FIS Fuzzy Inference System

617
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749 Figure 1. Schematic diagram of non-prismatic compound channel, (a) Converging 
750 compound channel ( =3.81°), (Rezaei 2006) and (b) Diverging compound channel ( =3.81°), 
751 (Yonesi et al. 2013)

752 Figure 2. Kinds of isolating limit between the main channel and floodplains. (Parsaei et al., 

753 2017)

754 Figure 3. Flow chart of methodology used to develop a discharge predictive model

755 Figure 4. Correlation between the result of analytical approaches versus the measured discharge

756 Figure 5: Architecture of ANN model for discharge prediction with [8-10-1] network structure

757 Figure 6. (a) A schematic diagram of ANFIS structure and (b) A schematic diagram of fuzzy 
758 based inference system
759
760 Figure 7. M-test curve: the variation of gamma statistic and V-ratio with unique data points to 
761 determining the proper length of training data for mask a) [111111110] and b) [101110000]
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763 Figure 8. Predicted and observed data for calibration step of ANN model

764 Figure 9. Predicted and observed data for testing step of ANN model

765 Figure 10.  Predicted and observed data for calibration step of ANFIS model

766 Figure 11. Predicted and observed value for testing step of ANFIS model

767 Figure 12. Comparison between the ANN model predicted value and observed value of discharge

768 Figure 13. Comparison between the ANFIS model predicted value and observed value of 
769 discharge
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Figure 1. Schematic diagram of non-prismatic compound channel, (a) Converging compound 

channel ( =3.81°), (Rezaei 2006) and (b) Diverging compound channel ( =3.81°), (Yonesi et al. 2013)

Figure 2. Kinds of isolating limit between the main channel and floodplains. (Parsaei, 2016)
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Figure 3. Flow chart of methodology used to develop a discharge predictive model
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Figure 4. Correlation between the result of analytical approaches versus the measured discharge 
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Figure 5: Architecture of ANN model for discharge prediction with [8-10-1] network structure
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(a)

(b)

Figure 6. (a) A schematic diagram of ANFIS structure and (b) A schematic diagram of fuzzy 

based inference system
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Figure 7. M-test curve: the variation of gamma statistic and V-ratio with unique data points to 

determining the proper length of training data for mask a) [111111110] and b) [101110000]
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Figure 8. Predicted and observed data for calibration step of ANN model 

Page 43 of 63

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



Draft
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44

0

0.02

0.04

0.06

0.08
Observed data ANN model

(a) Mask [111111110]

D
is

ch
ar

ge
 Q

 (m
3 /s

)

Data Number

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.02

0.04

0.06

0.08
Observed data ANN model

(b) Mask [101110000]

D
is

ch
ar

ge
 Q

 (m
3 /s

)

Data Number

Figure 9. Predicted and observed data for testing step of ANN model 
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Figure 10.  Predicted and observed data for calibration step of ANFIS model 
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Figure 11. Predicted and observed value for testing step of ANFIS model 
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Table 1. Details of geometric, hydraulic and surface parameters of converging and diverging 
compound channel collected from published data 

Verified Test 
Channel Q in (m3/s) n  S0 b h   

1 2 3 4 5 6 7 8 9 10
B/Cv3.81 0.010-0.020 0.0107 0.213-0.537 0.00099 0.4 0.05 3.81 1.0-3.0 8
B/Cv11.3 0.010-0.020 0.0107 0.18-0.532 0.00099 0.4 0.05 11.31 1.0-3.0 8
B et al./Dv3.81 0.012-0.020 0.0107 0.218-0.514 0.00099 0.4 0.05 3.81 3.0-1.0 8
B et al./Dv5.71 0.012-0.020 0.0107 0.253-0.541 0.00099 0.4 0.05 5.71 3.0-1.0 8
R/Cv1.91 0.015-0.040 0.0084 0.178-0.522 0.002003 0.398 0.05 1.91 1.0-3.0 7.96
R/Cv3.81 0.014-0.025 0.0091 0.151-0.509 0.002003 0.398 0.05 3.81 1.0-3.0 7.96
R/Cv11.31 0.013-0.023 0.0091 0.198-0.505 0.002003 0.398 0.05 11.31 1.0-3.0 7.96
Y et al./Dv3.81 0.037-0.0615 0.0139 0.142-0.363 0.00088 0.4 0.18 3.81 3.0-1.0 2.22
Y et al./Dv5.71 0.037-0.0615 0.0139 0.142-0.352 0.00088 0.4 0.18 5.71 3.0-1.0 2.22
Y et al./Dv11.3 0.037-0.0615 0.0139 0.143-0.359 0.00088 0.4 0.18 11.31 3.0-1.0 2.22
NK /Cv5 0.043-0.062 0.011 0.15-0.30 0.0011 0.5 0.1 5 1.0-1.8 5
NK /Cv9 0.042-0.059 0.011 0.15-0.30 0.0011 0.5 0.1 9 1.0-1.8 5
NK /Cv12.3 0.040-0.054 0.011 0.15-0.30 0.0011 0.5 0.1 12.38 1.0-1.8 5
B-Bousmar (2002), B et al.-Bousmar et al. (2006), R- Rezaei (2006), Y et al.- Yonesi et al (2013), NK- Naik and 

Khatua (2016), Observed discharge in m3/s- Q, Manning's roughness coefficient-n, Relative depth-b, 
Longitudinal slope-S0, Main channel width in meter- b, Main channel depth in meter -h, Converging/Diverging 

angle in degree - , Width ratio- , Aspect ratio-
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Table 2. Statistical characteristics of the data under consideration

Statistical 

characteristics

Fr Ar Rr  S0 *  Xr  Q

Maximum 0.84 22.59 35.09 0.54 0.002003 6.54 3.02 1.00 11.31 0.0615

Minimum 0.31 0.93 1.70 0.11 0.000880 1.41 1.33 0.00 -13.4 0.0100

Std. Dev. 0.09 3.73 3.15 0.12 0.000423 1.27 0.55 0.32 7.01 0.0136

Mean 0.70 4.37 3.51 0.34 0.001226 4.40 2.10 0.42 -2.17 0.0244

Median 0.71 3.00 2.80 0.33 0.000990 4.19 2.00 0.33 -1.91 0.0199
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Table 3. Error indices result of the analytical approaches

Methods R2 MAE MAPE RMSE E

SCM 0.47 0.0073 43.57 0.017 -3.293

DCMv-e 0.73 0.0079 36.93 0.011 -2.990

DCMv-i 0.74 0.0064 30.67 0.009 -1.651

DCMh-e 0.57 0.0088 41.01 0.013 -4.517

DCMh-i 0.59 0.0073 32.50 0.010 -2.032

DCMd-e 0.72 0.0066 31.18 0.010 -2.018

DCMd-i 0.68 0.0064 26.20 0.008 -0.732

IDCM 0.51 0.0091 35.37 0.039 -8.213

EDM 0.69 0.0072 32.81 0.008 -0.814
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Table 4. Determining the best combination for flow (Q) in non-prismatic compound channel

Exp. 

No.

Combination of Input 

parameters

Gamma Std. error V-ratio Mask

1 All inputs -0.009 0.006 -0.036 111111111

2 All inputs-fr -0.006 0.005 -0.027 011111111

3 All inputs- -0.003 0.004 -0.014 111111011

4 All inputs-Xr -0.006 0.006 -0.027 111111101

5 All inputs- -0.001 0.007 -0.007 111111110

6 All inputs- Xr, 0.004 0.004 0.017 111111100

7 All inputs- Xr, -0.008 0.007 -0.034 111111001

8 All inputs- ,  0.061 0.023 0.247 111110110

9 All inputs- , Xr 0.004 0.004 0.017 111111100

10 All inputs-  , Xr,  0.008 0.003 0.034 111111000

11 All inputs-Ar,Rr -0.011 0.006 -0.045 100111111

12 All inputs- Ar,Rr  0.003 0.007 0.014 100111110

13 Fr, Ar,Rr,,S0 0.017 0.017 0.070 111110000

14  ,   , Xr, S0, 0.07 0.030 0.280 000110111

15  ,   , Xr, S0 0.005 0.003 0.023 000111110

16 Fr, Ar,Rr, S0 0.054 0.020 0.216 111010000

17 Fr, Rr,, S0 0.0002 0.010 0.001 101110000

18  ,  S0 0.097 0.053 0.388 000110100

19 Fr, Rr,S0 0.038 0.012 0.155 101010000

20 Fr, ,S0 0.028 0.011 0.114 100110000
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Table 5. Different training parameters used for neural network analysis

Parameter Value Description
 Mask [a] Mask [b]  

8 4 Neuron in the input layer
10 8 Neuron in the hidden layer

Network structures
 
 1 1 Neuron in the output layer
net.trainParam.epochs 1500 1500 Maximum epochs
net.trainParam.lr 0.01 0.01 % learning rate
net.trainParam.mu 0.6 0.6 Momentum parameter
net.trainParam.goal 1 × 10−10 1× 10−10 Mean square error
net.trainParam.grad 2.58 2.72 Minimum performance gradient
net.trainParam. 1.42 1.53 Maximum performance to increase
max_perf_inc
net.trainParam.time 

 
inf

 
inf

 
Maximum time to train seconds
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Table 6. Details of the best ANFIS model performance

Subtractive clustering Grid partitioning (gaussmf-linear)

8 input Parameters Fr, Ar, Rr, , S0,*,, Xr 4 input Parameters Fr, Rr, ,S0

Rules 18 No. of  MF 4444

Range of influence 0.52 MF gaussmf

Squash factor 1.2 And method prod

Accept ratio 0.5 Or method max

Reject ratio 0.15 Defuzz method wtaver

Type Sugeno Agg method max

R2 (Training) 0.99 R2 (Training) 0.96

R2 (Testing) 0.82 R2 (Testing) 0.86

MAPE  (Training) 1.3% MAPE  (Training) 8.62%

MAPE  (Testing) 16.1% MAPE  (Testing) 9.42%

RMSE  (Training) 0.0001 RMSE  (Training) 0.0026

RMSE  (Testing) 0.0055 RMSE  (Testing) 0.0051

MAE  (Testing) 0.003 MAE  (Testing) 0.0027

E (Testing) 0.99 E  (Testing) 0.78

Page 53 of 63

https://mc06.manuscriptcentral.com/cjce-pubs

Canadian Journal of Civil Engineering



Draft

Table 7.  All nine input variables data of converging and diverging compound channel collected 

Sl no. fr Ar Rr  S0 *  Xr  Q
1 0.631 2.39 3.98 0.207 0.002003 6.31 3.02 0 -3.81 0.0139
2 0.635 3.09 3.91 0.214 0.002003 6.26 2.51 0.250 -3.81 0.0139
3 0.621 4.85 4.17 0.203 0.002003 6.34 2.01 0.500 -3.81 0.0139
4 0.607 9.76 4.46 0.202 0.002003 6.36 1.51 0.750 -3.81 0.0139
5 0.710 1.65 2.79 0.301 0.002003 5.56 3.02 0.000 -3.81 0.0164
6 0.719 2.07 2.69 0.320 0.002003 5.41 2.51 0.250 -3.81 0.0164
7 0.702 3.23 2.89 0.306 0.002003 5.52 2.01 0.500 -3.81 0.0164
8 0.668 6.90 3.36 0.285 0.002003 5.69 1.51 0.750 -3.81 0.0164
9 0.773 1.24 2.17 0.400 0.002003 4.78 3.02 0.000 -3.81 0.0198

10 0.771 1.62 2.18 0.409 0.002003 4.70 2.51 0.250 -3.81 0.0198
11 0.756 2.45 2.31 0.404 0.002003 4.74 2.01 0.500 -3.81 0.0198
12 0.719 5.03 2.69 0.390 0.002003 4.85 1.51 0.750 -3.81 0.0198
13 0.824 0.98 1.79 0.504 0.002003 3.95 3.02 0.000 -3.81 0.0249
14 0.816 1.30 1.84 0.509 0.002003 3.91 2.51 0.250 -3.81 0.0249
15 0.795 1.97 1.99 0.503 0.002003 3.96 2.01 0.500 -3.81 0.0249
16

R
/ C

v3.81

0.746 4.02 2.41 0.488 0.002003 4.07 1.51 0.750 -3.81 0.0249
17 0.602 2.77 4.59 0.179 0.002003 6.54 3.02 0.000 -1.91 0.015
18 0.615 2.95 4.30 0.192 0.002003 6.43 2.76 0.250 -1.91 0.015
19 0.625 3.24 4.09 0.204 0.002003 6.34 2.51 0.500 -1.91 0.015
20 0.642 3.55 3.78 0.224 0.002003 6.18 2.26 0.750 -1.91 0.015
21 0.657 4.05 3.53 0.245 0.002003 6.01 2.01 1.000 -1.91 0.015
22 0.685 1.84 3.11 0.269 0.002003 5.82 3.02 0.000 -1.91 0.018
23 0.705 1.91 2.85 0.297 0.002003 5.60 2.76 0.250 -1.91 0.018
24 0.705 2.21 2.86 0.300 0.002003 5.57 2.51 0.500 -1.91 0.018
25 0.708 2.57 2.82 0.308 0.002003 5.50 2.26 0.750 -1.91 0.018
26 0.712 3.07 2.77 0.322 0.002003 5.39 2.01 1.000 -1.91 0.018
27 0.774 1.23 2.16 0.402 0.002003 4.76 3.02 0.000 -1.91 0.0269
28 0.772 1.41 2.17 0.403 0.002003 4.75 2.76 0.250 -1.91 0.0269
29 0.768 1.64 2.20 0.403 0.002003 4.75 2.51 0.500 -1.91 0.0269
30 0.760 2.00 2.28 0.396 0.002003 4.81 2.26 0.750 -1.91 0.0269
31 0.741 2.65 2.45 0.374 0.002003 4.98 2.01 1.000 -1.91 0.0269
32 0.830 0.96 1.75 0.519 0.002003 3.83 3.02 0.000 -1.91 0.0396
33 0.827 1.09 1.77 0.522 0.002003 3.80 2.76 0.250 -1.91 0.0396
34 0.819 1.28 1.82 0.516 0.002003 3.85 2.51 0.500 -1.91 0.0396
35 0.808 1.56 1.90 0.507 0.002003 3.92 2.26 0.750 -1.91 0.0396
36

R
\C

v1.91

0.786 2.08 2.06 0.476 0.002003 4.17 2.01 1.000 -1.91 0.0396
37 0.622 2.50 4.15 0.199 0.002003 6.38 3.02 0.667 -11.31 0.013
38

R
\ 

C
v1

0.619 4.92 4.22 0.202 0.002003 6.36 2.01 0.833 -11.31 0.013
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39 0.708 1.66 2.82 0.299 0.002003 5.58 3.02 0.667 -11.31 0.015
40 0.697 3.31 2.96 0.299 0.002003 5.58 2.01 0.833 -11.31 0.015
41 0.774 1.23 2.16 0.402 0.002003 4.76 3.02 0.667 -11.31 0.018
42 0.753 2.50 2.35 0.396 0.002003 4.81 2.01 0.833 -11.31 0.018
43 0.825 0.98 1.78 0.506 0.002003 3.93 3.02 0.667 -11.31 0.0234
44

1.31

0.794 1.98 2.00 0.500 0.002003 3.98 2.01 0.833 -11.31 0.0234
45 0.837 0.93 1.70 0.538 0.000990 3.69 3.00 0.000 -3.81 0.02
46 0.829 1.12 1.76 0.534 0.000990 3.73 2.67 0.167 -3.81 0.02
47 0.817 1.42 1.83 0.529 0.000990 3.77 2.33 0.333 -3.81 0.02
48 0.800 1.92 1.95 0.520 0.000990 3.84 2.00 0.500 -3.81 0.02
49 0.770 2.96 2.19 0.505 0.000990 3.96 1.67 0.667 -3.81 0.02
50 0.709 6.13 2.81 0.487 0.000990 4.10 1.34 0.833 -3.81 0.02
51 0.755 1.35 2.33 0.369 0.000990 5.05 3.00 0.000 -3.81 0.012
52 0.746 1.67 2.41 0.360 0.000990 5.12 2.67 0.167 -3.81 0.012
53 0.734 2.15 2.53 0.348 0.000990 5.22 2.33 0.333 -3.81 0.012
54 0.717 3.02 2.72 0.331 0.000990 5.35 2.00 0.500 -3.81 0.012
55 0.691 4.86 3.03 0.308 0.000990 5.54 1.67 0.667 -3.81 0.012
56

B
\ C

v3.81

0.646 10.72 3.70 0.278 0.000990 5.77 1.34 0.833 -3.81 0.012
57 0.692 1.80 3.02 0.278 0.000990 5.78 3.00 0.000 -11.31 0.01
58 0.677 2.53 3.22 0.263 0.000990 5.89 2.50 0.083 -11.31 0.01
59 0.657 4.07 3.52 0.246 0.000990 6.03 2.00 0.167 -11.31 0.01
60 0.610 9.71 4.40 0.205 0.000990 6.36 1.50 0.250 -11.31 0.01
61 0.743 1.42 2.43 0.351 0.000990 5.19 3.00 0.000 -11.31 0.01
62 0.734 1.93 2.53 0.345 0.000990 5.24 2.50 0.083 -11.31 0.01
63 0.721 2.96 2.67 0.338 0.000990 5.30 2.00 0.167 -11.31 0.01
64 0.683 6.39 3.14 0.312 0.000990 5.50 1.50 0.250 -11.31 0.01
65 0.745 1.41 2.42 0.354 0.000990 5.17 3.00 0.000 -11.31 0.012
66 0.734 1.93 2.53 0.345 0.000990 5.24 2.50 0.083 -11.31 0.012
67 0.715 3.04 2.73 0.329 0.000990 5.37 2.00 0.167 -11.31 0.012
68 0.669 6.92 3.33 0.288 0.000990 5.69 1.50 0.250 -11.31 0.012
69 0.832 0.95 1.74 0.524 0.000990 3.81 3.00 0.000 -11.31 0.012
70 0.820 1.28 1.81 0.522 0.000990 3.82 2.50 0.083 -11.31 0.012
71 0.799 1.93 1.96 0.519 0.000990 3.85 2.00 0.167 -11.31 0.012
72 0.749 3.90 2.38 0.511 0.000990 3.91 1.50 0.250 -11.31 0.012
73 0.835 0.94 1.72 0.531 0.000990 3.75 3.00 0.000 -11.31 0.016
74 0.821 1.27 1.81 0.525 0.000990 3.80 2.50 0.083 -11.31 0.016
75 0.800 1.92 1.95 0.521 0.000990 3.83 2.00 0.167 -11.31 0.016
76 0.747 3.98 2.40 0.501 0.000990 3.99 1.50 0.250 -11.31 0.016
77 0.834 0.94 1.72 0.530 0.000990 3.76 3.00 0.000 -11.31 0.016
78 0.821 1.27 1.81 0.525 0.000990 3.80 2.50 0.083 -11.31 0.016
79

B
\ C

v11.31

0.798 1.95 1.97 0.513 0.000990 3.90 2.00 0.167 -11.31 0.016
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80 0.745 4.08 2.42 0.489 0.000990 4.09 1.50 0.250 -11.31 0.016
81 0.624 12.46 4.11 0.241 0.000990 6.07 1.33 0.167 3.81 0.012
82 0.648 6.15 3.68 0.244 0.000990 6.05 1.67 0.333 3.81 0.012
83 0.652 4.18 3.60 0.240 0.000990 6.08 2.00 0.500 3.81 0.012
84 0.649 3.25 3.66 0.231 0.000990 6.15 2.33 0.667 3.81 0.012
85 0.636 2.80 3.89 0.214 0.000990 6.29 2.66 0.833 3.81 0.012
86 0.644 2.26 3.74 0.222 0.000990 6.23 3.00 1.000 3.81 0.012
87 0.662 9.69 3.45 0.310 0.000990 5.52 1.33 0.167 3.81 0.012
88 0.699 4.67 2.93 0.322 0.000990 5.43 1.67 0.333 3.81 0.012
89 0.714 3.06 2.74 0.327 0.000990 5.38 2.00 0.500 3.81 0.012
90 0.722 2.28 2.65 0.329 0.000990 5.36 2.33 0.667 3.81 0.012
91 0.722 1.86 2.66 0.323 0.000990 5.42 2.66 0.833 3.81 0.012
92 0.730 1.51 2.57 0.331 0.000990 5.35 3.00 1.000 3.81 0.012
93 0.644 10.97 3.75 0.274 0.000990 5.81 1.33 0.167 3.81 0.016
94 0.704 4.54 2.87 0.331 0.000990 5.36 1.67 0.333 3.81 0.016
95 0.721 2.95 2.66 0.339 0.000990 5.29 2.00 0.500 3.81 0.016
96 0.730 2.20 2.57 0.341 0.000990 5.27 2.33 0.667 3.81 0.016
97 0.732 1.78 2.55 0.338 0.000990 5.30 2.66 0.833 3.81 0.016
98 0.740 1.45 2.47 0.346 0.000990 5.24 3.00 1.000 3.81 0.016
99 0.620 12.80 4.20 0.235 0.000990 6.12 1.33 0.167 3.81 0.02

100 0.683 5.10 3.14 0.295 0.000990 5.64 1.67 0.333 3.81 0.02
101 0.710 3.13 2.80 0.320 0.000990 5.44 2.00 0.500 3.81 0.02
102 0.725 2.25 2.62 0.334 0.000990 5.33 2.33 0.667 3.81 0.02
103 0.742 1.70 2.45 0.354 0.000990 5.17 2.66 0.833 3.81 0.02
104 0.738 1.46 2.49 0.342 0.000990 5.26 3.00 1.000 3.81 0.02
105 0.709 6.09 2.81 0.493 0.000990 4.06 1.33 0.167 3.81 0.016
106 0.770 2.97 2.19 0.506 0.000990 3.95 1.67 0.333 3.81 0.016
107 0.798 1.95 1.97 0.514 0.000990 3.89 2.00 0.500 3.81 0.016
108 0.812 1.46 1.87 0.513 0.000990 3.89 2.33 0.667 3.81 0.016
109 0.824 1.16 1.79 0.519 0.000990 3.85 2.66 0.833 3.81 0.016
110 0.832 0.95 1.73 0.525 0.000990 3.80 3.00 1.000 3.81 0.016
111 0.709 6.01 2.80 0.499 0.000990 4.00 1.33 0.167 3.81 0.02
112 0.769 2.99 2.20 0.503 0.000990 3.98 1.67 0.333 3.81 0.02
113 0.797 1.96 1.97 0.512 0.000990 3.90 2.00 0.500 3.81 0.02
114 0.812 1.47 1.87 0.512 0.000990 3.91 2.33 0.667 3.81 0.02
115 0.822 1.16 1.80 0.516 0.000990 3.87 2.66 0.833 3.81 0.02
116

B
 et al\ D

v3.81

0.828 0.97 1.76 0.515 0.000990 3.88 3.00 1.000 3.81 0.02
117 0.638 11.38 3.85 0.264 0.000990 5.89 1.33 0.250 5.71 0.012
118 0.670 5.47 3.33 0.275 0.000990 5.80 1.67 0.500 5.71 0.012
119 0.682 3.60 3.16 0.278 0.000990 5.78 2.00 0.750 5.71 0.012
120

B
 et al./ 

D
v5.71

0.681 2.78 3.17 0.270 0.000990 5.84 2.33 1.000 5.71 0.012
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121 0.670 9.12 3.33 0.329 0.000990 5.37 1.33 0.250 5.71 0.012
122 0.709 4.40 2.80 0.341 0.000990 5.27 1.67 0.500 5.71 0.012
123 0.726 2.89 2.61 0.347 0.000990 5.22 2.00 0.750 5.71 0.012
124 0.731 2.18 2.56 0.344 0.000990 5.25 2.33 1.000 5.71 0.012
125 0.675 8.79 3.25 0.342 0.000990 5.27 1.33 0.250 5.71 0.016
126 0.716 4.25 2.73 0.353 0.000990 5.17 1.67 0.500 5.71 0.016
127 0.740 2.69 2.47 0.373 0.000990 5.02 2.00 0.750 5.71 0.016
128 0.743 2.06 2.43 0.364 0.000990 5.09 2.33 1.000 5.71 0.016
129 0.660 9.80 3.48 0.307 0.000990 5.55 1.33 0.250 5.71 0.02
130 0.711 4.36 2.78 0.344 0.000990 5.25 1.67 0.500 5.71 0.02
131 0.740 2.69 2.47 0.373 0.000990 5.02 2.00 0.750 5.71 0.02
132 0.754 1.96 2.33 0.383 0.000990 4.93 2.33 1.000 5.71 0.02
133 0.710 5.79 2.79 0.519 0.000990 3.85 1.33 0.250 5.71 0.016
134 0.775 2.84 2.15 0.529 0.000990 3.77 1.67 0.500 5.71 0.016
135 0.804 1.86 1.92 0.538 0.000990 3.70 2.00 0.750 5.71 0.016
136 0.821 1.39 1.81 0.539 0.000990 3.69 2.33 1.000 5.71 0.016
137 0.710 5.76 2.79 0.522 0.000990 3.83 1.33 0.250 5.71 0.02
138 0.776 2.79 2.14 0.537 0.000990 3.70 1.67 0.500 5.71 0.02
139 0.804 1.86 1.92 0.537 0.000990 3.70 2.00 0.750 5.71 0.02
140 0.820 1.40 1.81 0.537 0.000990 3.70 2.33 1.000 5.71 0.02

141./ 0.305 20.60 35.09 0.146 0.000880 1.90 1.33 0.167 3.81 0.041
142 0.384 10.37 17.69 0.145 0.000880 1.90 1.67 0.333 3.81 0.041
143 0.446 6.65 11.24 0.151 0.000880 1.89 2.00 0.500 3.81 0.041
144 0.500 4.76 7.98 0.158 0.000880 1.87 2.33 0.667 3.81 0.041
145 0.552 3.59 5.94 0.167 0.000880 1.85 2.66 0.833 3.81 0.041
146 0.594 2.91 4.78 0.172 0.000880 1.84 3.00 1.000 3.81 0.041
147 0.432 8.83 12.44 0.340 0.000880 1.47 1.33 0.167 3.81 0.0615
148 0.548 4.34 6.09 0.346 0.000880 1.45 1.67 0.333 3.81 0.0615
149 0.631 2.85 3.99 0.351 0.000880 1.44 2.00 0.500 3.81 0.0615
150 0.696 2.13 2.97 0.353 0.000880 1.44 2.33 0.667 3.81 0.0615
151 0.754 1.67 2.33 0.359 0.000880 1.42 2.66 0.833 3.81 0.0615
152

Y
 et al /D

v3.81

0.806 1.37 1.91 0.364 0.000880 1.41 3.00 1.000 3.81 0.0615
153 0.372 11.41 19.43 0.146 0.000880 1.90 1.60 0.100 11.31 0.041
154 0.450 6.51 10.97 0.154 0.000880 1.88 2.00 0.167 11.31 0.041
155 0.534 3.92 6.56 0.159 0.000880 1.87 2.60 0.267 11.31 0.041
156 0.576 3.14 5.25 0.159 0.000880 1.87 3.00 0.333 11.31 0.041
157 0.526 4.89 6.87 0.341 0.000880 1.46 1.60 0.100 11.31 0.0615
158 0.630 2.85 4.00 0.351 0.000880 1.44 2.00 0.167 11.31 0.0615
159 0.741 1.76 2.46 0.355 0.000880 1.43 2.60 0.267 11.31 0.0615
160

Y
 et al/ D

v 11.31

0.801 1.39 1.94 0.359 0.000880 1.42 3.00 0.333 11.31 0.0615
161 N 0.584 8.02 5.01 0.156 0.001100 4.22 1.80 0.000 -5 0.037
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162 0.547 10.37 6.09 0.126 0.001100 4.37 1.77 0.044 -5 0.037
163 0.527 21.08 6.85 0.118 0.001100 4.41 1.40 0.500 -5 0.037
164 0.678 4.76 3.21 0.262 0.001100 3.69 1.80 0.000 -5 0.04
165 0.640 6.10 3.81 0.214 0.001100 3.93 1.77 0.044 -5 0.04
166 0.617 11.72 4.26 0.213 0.001100 3.94 1.40 0.500 -5 0.04
167 0.701 4.18 2.90 0.299 0.001100 3.51 1.80 0.000 -5 0.043
168 0.682 4.83 3.15 0.271 0.001100 3.65 1.77 0.044 -5 0.043
169 0.646 9.60 3.71 0.260 0.001100 3.70 1.40 0.500 -5 0.043
170 0.716 3.85 2.73 0.325 0.001100 3.37 1.80 0.000 -5 0.045
171 0.697 4.43 2.95 0.295 0.001100 3.52 1.77 0.044 -5 0.045
172

K
/ 

C
v 

5

0.660 8.67 3.48 0.288 0.001100 3.56 1.40 0.500 -5 0.045
173 0.593 7.65 4.80 0.163 0.001100 4.18 1.80 0.000 -9 0.032
174 0.588 8.48 4.92 0.160 0.001100 4.20 1.74 0.079 -9 0.032
175 0.573 15.59 5.31 0.160 0.001100 4.20 1.40 0.500 -9 0.032
176 0.659 5.30 3.50 0.236 0.001100 3.82 1.80 0.000 -9 0.035
177 0.655 5.79 3.55 0.234 0.001100 3.83 1.74 0.079 -9 0.035
178 0.614 11.95 4.32 0.209 0.001100 3.96 1.40 0.500 -9 0.035
179 0.683 4.65 3.15 0.269 0.001100 3.66 1.80 0.000 -9 0.038
180 0.677 5.12 3.22 0.265 0.001100 3.67 1.74 0.079 -9 0.038
181 0.639 10.11 3.84 0.247 0.001100 3.77 1.40 0.500 -9 0.038
182 0.712 3.94 2.77 0.317 0.001100 3.41 1.80 0.000 -9 0.041
183 0.709 4.25 2.81 0.319 0.001100 3.40 1.74 0.079 -9 0.041
184

N
K

/ C
v 9

0.667 8.18 3.37 0.305 0.001100 3.48 1.40 0.500 -9 0.041
185 0.601 7.32 4.62 0.171 0.001100 4.15 1.80 0.000 -13.38 0.031
186 0.575 9.52 5.27 0.149 0.001100 4.25 1.70 0.119 -13.38 0.031
187 0.516 22.59 7.26 0.111 0.001100 4.45 1.40 0.595 -13.38 0.031
188 0.630 6.23 4.01 0.201 0.001100 4.00 1.80 0.000 -13.38 0.034
189 0.622 7.26 4.16 0.195 0.001100 4.02 1.70 0.119 -13.38 0.034
190 0.591 13.87 4.84 0.180 0.001100 4.10 1.40 0.595 -13.38 0.034
191 0.679 4.73 3.19 0.264 0.001100 3.68 1.80 0.000 -13.38 0.037
192 0.665 5.68 3.40 0.250 0.001100 3.75 1.70 0.119 -13.38 0.037
193 0.638 10.12 3.84 0.247 0.001100 3.77 1.40 0.595 -13.38 0.037
194 0.715 3.86 2.73 0.324 0.001100 3.38 1.80 0.000 -13.38 0.04
195 0.707 4.45 2.83 0.319 0.001100 3.40 1.70 0.119 -13.38 0.04
196

N
K

/ C
v 13.38

0.669 8.04 3.34 0.311 0.001100 3.45 1.40 0.595 -13.38 0.04
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Appendix: All nine input variables data of converging and diverging compound channel collected 

Sl no. fr Ar Rr  S0 *  Xr  Q
1 0.631 2.39 3.98 0.207 0.002003 6.31 3.02 0 -3.81 0.0139
2 0.635 3.09 3.91 0.214 0.002003 6.26 2.51 0.250 -3.81 0.0139
3 0.621 4.85 4.17 0.203 0.002003 6.34 2.01 0.500 -3.81 0.0139
4 0.607 9.76 4.46 0.202 0.002003 6.36 1.51 0.750 -3.81 0.0139
5 0.710 1.65 2.79 0.301 0.002003 5.56 3.02 0.000 -3.81 0.0164
6 0.719 2.07 2.69 0.320 0.002003 5.41 2.51 0.250 -3.81 0.0164
7 0.702 3.23 2.89 0.306 0.002003 5.52 2.01 0.500 -3.81 0.0164
8 0.668 6.90 3.36 0.285 0.002003 5.69 1.51 0.750 -3.81 0.0164
9 0.773 1.24 2.17 0.400 0.002003 4.78 3.02 0.000 -3.81 0.0198

10 0.771 1.62 2.18 0.409 0.002003 4.70 2.51 0.250 -3.81 0.0198
11 0.756 2.45 2.31 0.404 0.002003 4.74 2.01 0.500 -3.81 0.0198
12 0.719 5.03 2.69 0.390 0.002003 4.85 1.51 0.750 -3.81 0.0198
13 0.824 0.98 1.79 0.504 0.002003 3.95 3.02 0.000 -3.81 0.0249
14 0.816 1.30 1.84 0.509 0.002003 3.91 2.51 0.250 -3.81 0.0249
15 0.795 1.97 1.99 0.503 0.002003 3.96 2.01 0.500 -3.81 0.0249
16

R
/ C

v3.81

0.746 4.02 2.41 0.488 0.002003 4.07 1.51 0.750 -3.81 0.0249
17 0.602 2.77 4.59 0.179 0.002003 6.54 3.02 0.000 -1.91 0.015
18 0.615 2.95 4.30 0.192 0.002003 6.43 2.76 0.250 -1.91 0.015
19 0.625 3.24 4.09 0.204 0.002003 6.34 2.51 0.500 -1.91 0.015
20 0.642 3.55 3.78 0.224 0.002003 6.18 2.26 0.750 -1.91 0.015
21 0.657 4.05 3.53 0.245 0.002003 6.01 2.01 1.000 -1.91 0.015
22 0.685 1.84 3.11 0.269 0.002003 5.82 3.02 0.000 -1.91 0.018
23 0.705 1.91 2.85 0.297 0.002003 5.60 2.76 0.250 -1.91 0.018
24 0.705 2.21 2.86 0.300 0.002003 5.57 2.51 0.500 -1.91 0.018
25 0.708 2.57 2.82 0.308 0.002003 5.50 2.26 0.750 -1.91 0.018
26 0.712 3.07 2.77 0.322 0.002003 5.39 2.01 1.000 -1.91 0.018
27 0.774 1.23 2.16 0.402 0.002003 4.76 3.02 0.000 -1.91 0.0269
28 0.772 1.41 2.17 0.403 0.002003 4.75 2.76 0.250 -1.91 0.0269
29 0.768 1.64 2.20 0.403 0.002003 4.75 2.51 0.500 -1.91 0.0269
30 0.760 2.00 2.28 0.396 0.002003 4.81 2.26 0.750 -1.91 0.0269
31 0.741 2.65 2.45 0.374 0.002003 4.98 2.01 1.000 -1.91 0.0269
32 0.830 0.96 1.75 0.519 0.002003 3.83 3.02 0.000 -1.91 0.0396
33 0.827 1.09 1.77 0.522 0.002003 3.80 2.76 0.250 -1.91 0.0396
34 0.819 1.28 1.82 0.516 0.002003 3.85 2.51 0.500 -1.91 0.0396
35 0.808 1.56 1.90 0.507 0.002003 3.92 2.26 0.750 -1.91 0.0396
36

R
\C

v1.91

0.786 2.08 2.06 0.476 0.002003 4.17 2.01 1.000 -1.91 0.0396
37 0.622 2.50 4.15 0.199 0.002003 6.38 3.02 0.667 -11.31 0.013
38 0.619 4.92 4.22 0.202 0.002003 6.36 2.01 0.833 -11.31 0.013
39

R
\ 

C
v11.3

1

0.708 1.66 2.82 0.299 0.002003 5.58 3.02 0.667 -11.31 0.015
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40 0.697 3.31 2.96 0.299 0.002003 5.58 2.01 0.833 -11.31 0.015
41 0.774 1.23 2.16 0.402 0.002003 4.76 3.02 0.667 -11.31 0.018
42 0.753 2.50 2.35 0.396 0.002003 4.81 2.01 0.833 -11.31 0.018
43 0.825 0.98 1.78 0.506 0.002003 3.93 3.02 0.667 -11.31 0.0234
44 0.794 1.98 2.00 0.500 0.002003 3.98 2.01 0.833 -11.31 0.0234
45 0.837 0.93 1.70 0.538 0.000990 3.69 3.00 0.000 -3.81 0.02
46 0.829 1.12 1.76 0.534 0.000990 3.73 2.67 0.167 -3.81 0.02
47 0.817 1.42 1.83 0.529 0.000990 3.77 2.33 0.333 -3.81 0.02
48 0.800 1.92 1.95 0.520 0.000990 3.84 2.00 0.500 -3.81 0.02
49 0.770 2.96 2.19 0.505 0.000990 3.96 1.67 0.667 -3.81 0.02
50 0.709 6.13 2.81 0.487 0.000990 4.10 1.34 0.833 -3.81 0.02
51 0.755 1.35 2.33 0.369 0.000990 5.05 3.00 0.000 -3.81 0.012
52 0.746 1.67 2.41 0.360 0.000990 5.12 2.67 0.167 -3.81 0.012
53 0.734 2.15 2.53 0.348 0.000990 5.22 2.33 0.333 -3.81 0.012
54 0.717 3.02 2.72 0.331 0.000990 5.35 2.00 0.500 -3.81 0.012
55 0.691 4.86 3.03 0.308 0.000990 5.54 1.67 0.667 -3.81 0.012
56

B
\ C

v3.81

0.646 10.72 3.70 0.278 0.000990 5.77 1.34 0.833 -3.81 0.012
57 0.692 1.80 3.02 0.278 0.000990 5.78 3.00 0.000 -11.31 0.01
58 0.677 2.53 3.22 0.263 0.000990 5.89 2.50 0.083 -11.31 0.01
59 0.657 4.07 3.52 0.246 0.000990 6.03 2.00 0.167 -11.31 0.01
60 0.610 9.71 4.40 0.205 0.000990 6.36 1.50 0.250 -11.31 0.01
61 0.743 1.42 2.43 0.351 0.000990 5.19 3.00 0.000 -11.31 0.01
62 0.734 1.93 2.53 0.345 0.000990 5.24 2.50 0.083 -11.31 0.01
63 0.721 2.96 2.67 0.338 0.000990 5.30 2.00 0.167 -11.31 0.01
64 0.683 6.39 3.14 0.312 0.000990 5.50 1.50 0.250 -11.31 0.01
65 0.745 1.41 2.42 0.354 0.000990 5.17 3.00 0.000 -11.31 0.012
66 0.734 1.93 2.53 0.345 0.000990 5.24 2.50 0.083 -11.31 0.012
67 0.715 3.04 2.73 0.329 0.000990 5.37 2.00 0.167 -11.31 0.012
68 0.669 6.92 3.33 0.288 0.000990 5.69 1.50 0.250 -11.31 0.012
69 0.832 0.95 1.74 0.524 0.000990 3.81 3.00 0.000 -11.31 0.012
70 0.820 1.28 1.81 0.522 0.000990 3.82 2.50 0.083 -11.31 0.012
71 0.799 1.93 1.96 0.519 0.000990 3.85 2.00 0.167 -11.31 0.012
72 0.749 3.90 2.38 0.511 0.000990 3.91 1.50 0.250 -11.31 0.012
73 0.835 0.94 1.72 0.531 0.000990 3.75 3.00 0.000 -11.31 0.016
74 0.821 1.27 1.81 0.525 0.000990 3.80 2.50 0.083 -11.31 0.016
75 0.800 1.92 1.95 0.521 0.000990 3.83 2.00 0.167 -11.31 0.016
76 0.747 3.98 2.40 0.501 0.000990 3.99 1.50 0.250 -11.31 0.016
77 0.834 0.94 1.72 0.530 0.000990 3.76 3.00 0.000 -11.31 0.016
78 0.821 1.27 1.81 0.525 0.000990 3.80 2.50 0.083 -11.31 0.016
79 0.798 1.95 1.97 0.513 0.000990 3.90 2.00 0.167 -11.31 0.016
80

B
\ C

v11.31

0.745 4.08 2.42 0.489 0.000990 4.09 1.50 0.250 -11.31 0.016
81 B

 0.624 12.46 4.11 0.241 0.000990 6.07 1.33 0.167 3.81 0.012
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82 0.648 6.15 3.68 0.244 0.000990 6.05 1.67 0.333 3.81 0.012
83 0.652 4.18 3.60 0.240 0.000990 6.08 2.00 0.500 3.81 0.012
84 0.649 3.25 3.66 0.231 0.000990 6.15 2.33 0.667 3.81 0.012
85 0.636 2.80 3.89 0.214 0.000990 6.29 2.66 0.833 3.81 0.012
86 0.644 2.26 3.74 0.222 0.000990 6.23 3.00 1.000 3.81 0.012
87 0.662 9.69 3.45 0.310 0.000990 5.52 1.33 0.167 3.81 0.012
88 0.699 4.67 2.93 0.322 0.000990 5.43 1.67 0.333 3.81 0.012
89 0.714 3.06 2.74 0.327 0.000990 5.38 2.00 0.500 3.81 0.012
90 0.722 2.28 2.65 0.329 0.000990 5.36 2.33 0.667 3.81 0.012
91 0.722 1.86 2.66 0.323 0.000990 5.42 2.66 0.833 3.81 0.012
92 0.730 1.51 2.57 0.331 0.000990 5.35 3.00 1.000 3.81 0.012
93 0.644 10.97 3.75 0.274 0.000990 5.81 1.33 0.167 3.81 0.016
94 0.704 4.54 2.87 0.331 0.000990 5.36 1.67 0.333 3.81 0.016
95 0.721 2.95 2.66 0.339 0.000990 5.29 2.00 0.500 3.81 0.016
96 0.730 2.20 2.57 0.341 0.000990 5.27 2.33 0.667 3.81 0.016
97 0.732 1.78 2.55 0.338 0.000990 5.30 2.66 0.833 3.81 0.016
98 0.740 1.45 2.47 0.346 0.000990 5.24 3.00 1.000 3.81 0.016
99 0.620 12.80 4.20 0.235 0.000990 6.12 1.33 0.167 3.81 0.02

100 0.683 5.10 3.14 0.295 0.000990 5.64 1.67 0.333 3.81 0.02
101 0.710 3.13 2.80 0.320 0.000990 5.44 2.00 0.500 3.81 0.02
102 0.725 2.25 2.62 0.334 0.000990 5.33 2.33 0.667 3.81 0.02
103 0.742 1.70 2.45 0.354 0.000990 5.17 2.66 0.833 3.81 0.02
104 0.738 1.46 2.49 0.342 0.000990 5.26 3.00 1.000 3.81 0.02
105 0.709 6.09 2.81 0.493 0.000990 4.06 1.33 0.167 3.81 0.016
106 0.770 2.97 2.19 0.506 0.000990 3.95 1.67 0.333 3.81 0.016
107 0.798 1.95 1.97 0.514 0.000990 3.89 2.00 0.500 3.81 0.016
108 0.812 1.46 1.87 0.513 0.000990 3.89 2.33 0.667 3.81 0.016
109 0.824 1.16 1.79 0.519 0.000990 3.85 2.66 0.833 3.81 0.016
110 0.832 0.95 1.73 0.525 0.000990 3.80 3.00 1.000 3.81 0.016
111 0.709 6.01 2.80 0.499 0.000990 4.00 1.33 0.167 3.81 0.02
112 0.769 2.99 2.20 0.503 0.000990 3.98 1.67 0.333 3.81 0.02
113 0.797 1.96 1.97 0.512 0.000990 3.90 2.00 0.500 3.81 0.02
114 0.812 1.47 1.87 0.512 0.000990 3.91 2.33 0.667 3.81 0.02
115 0.822 1.16 1.80 0.516 0.000990 3.87 2.66 0.833 3.81 0.02
116

et 
al\ 
D

v
3.81

0.828 0.97 1.76 0.515 0.000990 3.88 3.00 1.000 3.81 0.02
117 0.638 11.38 3.85 0.264 0.000990 5.89 1.33 0.250 5.71 0.012
118 0.670 5.47 3.33 0.275 0.000990 5.80 1.67 0.500 5.71 0.012
119 0.682 3.60 3.16 0.278 0.000990 5.78 2.00 0.750 5.71 0.012
120 0.681 2.78 3.17 0.270 0.000990 5.84 2.33 1.000 5.71 0.012
121 0.670 9.12 3.33 0.329 0.000990 5.37 1.33 0.250 5.71 0.012
122 0.709 4.40 2.80 0.341 0.000990 5.27 1.67 0.500 5.71 0.012
123

B
 et al./ D

v5.71

0.726 2.89 2.61 0.347 0.000990 5.22 2.00 0.750 5.71 0.012
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124 0.731 2.18 2.56 0.344 0.000990 5.25 2.33 1.000 5.71 0.012
125 0.675 8.79 3.25 0.342 0.000990 5.27 1.33 0.250 5.71 0.016
126 0.716 4.25 2.73 0.353 0.000990 5.17 1.67 0.500 5.71 0.016
127 0.740 2.69 2.47 0.373 0.000990 5.02 2.00 0.750 5.71 0.016
128 0.743 2.06 2.43 0.364 0.000990 5.09 2.33 1.000 5.71 0.016
129 0.660 9.80 3.48 0.307 0.000990 5.55 1.33 0.250 5.71 0.02
130 0.711 4.36 2.78 0.344 0.000990 5.25 1.67 0.500 5.71 0.02
131 0.740 2.69 2.47 0.373 0.000990 5.02 2.00 0.750 5.71 0.02
132 0.754 1.96 2.33 0.383 0.000990 4.93 2.33 1.000 5.71 0.02
133 0.710 5.79 2.79 0.519 0.000990 3.85 1.33 0.250 5.71 0.016
134 0.775 2.84 2.15 0.529 0.000990 3.77 1.67 0.500 5.71 0.016
135 0.804 1.86 1.92 0.538 0.000990 3.70 2.00 0.750 5.71 0.016
136 0.821 1.39 1.81 0.539 0.000990 3.69 2.33 1.000 5.71 0.016
137 0.710 5.76 2.79 0.522 0.000990 3.83 1.33 0.250 5.71 0.02
138 0.776 2.79 2.14 0.537 0.000990 3.70 1.67 0.500 5.71 0.02
139 0.804 1.86 1.92 0.537 0.000990 3.70 2.00 0.750 5.71 0.02
140 0.820 1.40 1.81 0.537 0.000990 3.70 2.33 1.000 5.71 0.02

141./ 0.305 20.60 35.09 0.146 0.000880 1.90 1.33 0.167 3.81 0.041
142 0.384 10.37 17.69 0.145 0.000880 1.90 1.67 0.333 3.81 0.041
143 0.446 6.65 11.24 0.151 0.000880 1.89 2.00 0.500 3.81 0.041
144 0.500 4.76 7.98 0.158 0.000880 1.87 2.33 0.667 3.81 0.041
145 0.552 3.59 5.94 0.167 0.000880 1.85 2.66 0.833 3.81 0.041
146 0.594 2.91 4.78 0.172 0.000880 1.84 3.00 1.000 3.81 0.041
147 0.432 8.83 12.44 0.340 0.000880 1.47 1.33 0.167 3.81 0.0615
148 0.548 4.34 6.09 0.346 0.000880 1.45 1.67 0.333 3.81 0.0615
149 0.631 2.85 3.99 0.351 0.000880 1.44 2.00 0.500 3.81 0.0615
150 0.696 2.13 2.97 0.353 0.000880 1.44 2.33 0.667 3.81 0.0615
151 0.754 1.67 2.33 0.359 0.000880 1.42 2.66 0.833 3.81 0.0615
152

Y
 et al /D

v3.81

0.806 1.37 1.91 0.364 0.000880 1.41 3.00 1.000 3.81 0.0615
153 0.372 11.41 19.43 0.146 0.000880 1.90 1.60 0.100 11.31 0.041
154 0.450 6.51 10.97 0.154 0.000880 1.88 2.00 0.167 11.31 0.041
155 0.534 3.92 6.56 0.159 0.000880 1.87 2.60 0.267 11.31 0.041
156 0.576 3.14 5.25 0.159 0.000880 1.87 3.00 0.333 11.31 0.041
157 0.526 4.89 6.87 0.341 0.000880 1.46 1.60 0.100 11.31 0.0615
158 0.630 2.85 4.00 0.351 0.000880 1.44 2.00 0.167 11.31 0.0615
159 0.741 1.76 2.46 0.355 0.000880 1.43 2.60 0.267 11.31 0.0615
160

Y
 et al/ D

v 11.31

0.801 1.39 1.94 0.359 0.000880 1.42 3.00 0.333 11.31 0.0615
161 0.584 8.02 5.01 0.156 0.001100 4.22 1.80 0.000 -5 0.037
162 0.547 10.37 6.09 0.126 0.001100 4.37 1.77 0.044 -5 0.037
163 0.527 21.08 6.85 0.118 0.001100 4.41 1.40 0.500 -5 0.037
164 0.678 4.76 3.21 0.262 0.001100 3.69 1.80 0.000 -5 0.04
165

N
K

/ C
v 5

0.640 6.10 3.81 0.214 0.001100 3.93 1.77 0.044 -5 0.04
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166 0.617 11.72 4.26 0.213 0.001100 3.94 1.40 0.500 -5 0.04
167 0.701 4.18 2.90 0.299 0.001100 3.51 1.80 0.000 -5 0.043
168 0.682 4.83 3.15 0.271 0.001100 3.65 1.77 0.044 -5 0.043
169 0.646 9.60 3.71 0.260 0.001100 3.70 1.40 0.500 -5 0.043
170 0.716 3.85 2.73 0.325 0.001100 3.37 1.80 0.000 -5 0.045
171 0.697 4.43 2.95 0.295 0.001100 3.52 1.77 0.044 -5 0.045
172 0.660 8.67 3.48 0.288 0.001100 3.56 1.40 0.500 -5 0.045
173 0.593 7.65 4.80 0.163 0.001100 4.18 1.80 0.000 -9 0.032
174 0.588 8.48 4.92 0.160 0.001100 4.20 1.74 0.079 -9 0.032
175 0.573 15.59 5.31 0.160 0.001100 4.20 1.40 0.500 -9 0.032
176 0.659 5.30 3.50 0.236 0.001100 3.82 1.80 0.000 -9 0.035
177 0.655 5.79 3.55 0.234 0.001100 3.83 1.74 0.079 -9 0.035
178 0.614 11.95 4.32 0.209 0.001100 3.96 1.40 0.500 -9 0.035
179 0.683 4.65 3.15 0.269 0.001100 3.66 1.80 0.000 -9 0.038
180 0.677 5.12 3.22 0.265 0.001100 3.67 1.74 0.079 -9 0.038
181 0.639 10.11 3.84 0.247 0.001100 3.77 1.40 0.500 -9 0.038
182 0.712 3.94 2.77 0.317 0.001100 3.41 1.80 0.000 -9 0.041
183 0.709 4.25 2.81 0.319 0.001100 3.40 1.74 0.079 -9 0.041
184

N
K

/ C
v 9

0.667 8.18 3.37 0.305 0.001100 3.48 1.40 0.500 -9 0.041
185 0.601 7.32 4.62 0.171 0.001100 4.15 1.80 0.000 -13.38 0.031
186 0.575 9.52 5.27 0.149 0.001100 4.25 1.70 0.119 -13.38 0.031
187 0.516 22.59 7.26 0.111 0.001100 4.45 1.40 0.595 -13.38 0.031
188 0.630 6.23 4.01 0.201 0.001100 4.00 1.80 0.000 -13.38 0.034
189 0.622 7.26 4.16 0.195 0.001100 4.02 1.70 0.119 -13.38 0.034
190 0.591 13.87 4.84 0.180 0.001100 4.10 1.40 0.595 -13.38 0.034
191 0.679 4.73 3.19 0.264 0.001100 3.68 1.80 0.000 -13.38 0.037
192 0.665 5.68 3.40 0.250 0.001100 3.75 1.70 0.119 -13.38 0.037
193 0.638 10.12 3.84 0.247 0.001100 3.77 1.40 0.595 -13.38 0.037
194 0.715 3.86 2.73 0.324 0.001100 3.38 1.80 0.000 -13.38 0.04
195 0.707 4.45 2.83 0.319 0.001100 3.40 1.70 0.119 -13.38 0.04
196

N
K

/ C
v 13.38

0.669 8.04 3.34 0.311 0.001100 3.45 1.40 0.595 -13.38 0.04
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