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Abstract—This article presents a hybrid model predictive con-
troller to ensure dc microgrid stability and enhance the perfor-
mance of dc-dc boost converters interfaced with constant power
loads (CPLs) in a hybrid system. Hybrid systems are dynamic
systems with both continuous current mode and discontinuous cur-
rent mode states. The main purpose in this article is to develop an
advanced control technique for voltage regulation and stabilization
of the converters in the presence of CPLs due to serious stability
concerns, without considering the accurate modelling information
of the system. In this regard, an automatic model, considering
different modes of operation induced by semiconductor switches
in dc-dc boost converters and highly non-linear nature of CPL
is employed to design the proposed control approach. The non-
linear CPL connected directly to a dc-dc boost converter is utilized
to define an optimal tracking control problem by minimizing a
finite-prediction horizon cost function, which is known as a finite
control set MPC. The proposed controller, which is implemented
in both continuous and discontinuous current modes, accounts for
the regulation of output voltage within the predefined range. The
effectiveness of the proposed hybrid model predictive control is
verified using a comparative evaluation with discrete-time averaged
model predictive control, continuous control set MPC, and the
conventional PI control under experimental conditions. The results
authenticate an improved dynamic performance, which can be
applied to practical dc microgrids with CPLs.

Index Terms—Automatic model, constant power load, dc
microgrid, dc-dc boost converter, hybrid model predictive control,
optimal control.

I. INTRODUCTION

M ICROGRIDS (MGs) including renewable energy
sources (RESs), energy storage systems (ESSs), and

interfacing devices i.e., power electronic converters, can help
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to overcome power system capacity limitations, improve effi-
ciency, reduce emissions, and manage the variability of renew-
able sources. Nowadays, increasing attention has been drawn to
dc MGs, owing to their interesting features such as: 1) higher
efficiency, 2) reduced conversion losses, and 3) no need for
control of frequency, reactive power, and power quality, which
are all considerable challenges in ac MGs [1], [2]. The dc
MGs are proposed for power supply of applications with dc
loads like home appliances, electric vehicles (EVs), naval ships,
space crafts, submarines, telecom systems and rural areas. Multi
terminal high-voltage dc grid and low-voltage dc MGs have
been proposed for large-scale wind power transmission, and
commercial facilities (e.g., data centers [3], isolated island [4],
etc.).

A key component of a MG is the power electronic interface
between a generator or an ESS, and the load. The most common
interfaces used in dc MGs are dc-dc buck and boost converters.
When power electronic converters are tightly regulated, they
behave as constant power loads (CPLs) at the input terminals [5],
[6]. The negative incremental impedance characteristic at the
input terminals affects the system stability and complicates
the situation from a control viewpoint [7], [8]. The effect of the
CPLs becomes more significant when MG operates in islanded
mode owing to reduced damping. Different solutions have been
suggested in the literature to cope with this issue, i.e., negative
impedance instability problem such as: 1) passive resistance
damping, 2) load shedding, 3) placement of ESSs at dc bus,
and 4) linear and non-linear control strategies [9], [10].

There are various control strategies for the voltage and
current control, and stabilization in dc-dc converters such as
proportional-integral (PI), fuzzy logic, sliding mode control
(SMC), model predictive control (MPC), state-dependent Ric-
cati equation (SDRE) control, and etc., [11], [12]. Linear con-
trollers are the simplest control systems to achieve a regulated dc
voltage in MGs [5]. Linear control methods consider the system
stability only around an equilibrium point. These methods have
already been proposed in [9], [10], [13] to stabilize dc systems
with CPLs. In [14], a linear algorithm region of attraction (ROA)
based on a semi-definite optimization is expressed to simplify the
analysis of stability in dc MGs. A series of modern linear control
methods is presented in [15] to manage the negative incremental
impedance of the load and time delay while delivering the load
power. A dc-dc boost converter allows boosting the input voltage
to a higher level using high-frequency switching. This converter
has a major role as a power electronic interface in dc MGs e.g.,
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for solar PV systems, ESSs and EVs [16], [17]. With the dc-dc
converters being inherently non-linear, an integrated CPL further
increases the degree of non-linearity of dc MGs. Therefore,
classical linear control methods are challenged and faced with
some stability limitations. To guarantee stability, a non-linear
PI stabilizing controller has been proposed in [18]. Variable
switching frequency is the main problem of this method because
of a negative impact on the converter efficiency and the design
of the output filters [19]. Furthermore, PI tuning is frequently
necessary for each perturbation due to the high variability and
stochastic nature of solar energy in MGs which leads to the
increased complexity of the system. In addition to the major
problem associated with the PI controller, it is the fact that PI
is a linear controller while all power electronics systems are
mostly nonlinear and also the CPLs imposes a destabilizing
nonlinear impact on the dc power electronic converters by an
inverse voltage which results in remarkable fluctuations in the
voltage term of the main bus. Therefore, tuning this type of
linear controllers are being complicated. The authors in [8]
present a non-linear sliding-mode control to develop a control
law guaranteeing an enlarged region of local stability along with
improved large-signal stability. The main disadvantage of SMC
is that it is difficult to impose constraints or to regulate abstract
quantities.

Recently, MPC methods are employed for direct control mod-
ulation of converters by optimizing a user-defined performance
index due to its significant advantages over conventional control
methods, such as fast dynamic response, simple handling of
multi-variable systems, and taking account nonlinearity dy-
namic, uncertainty, and constraints [20]–[23]. In power elec-
tronics, the MPC can be divided into continuous control set
MPC (CCS-MPC) and finite control set MPC (FCS-MPC). The
CCS-MPC uses the pulse-width modulation (PWM) or space
vector modulation (SVM) modulators to separate the switching
frequency from the controller sampling time, thus converters
operate in constant switching frequency which is more usable
in industrial applications. On the other hand, the FCS-MPC
does not need a modulator and has a variable switching fre-
quency, and usually yields a good transient performance than
CCS-MPC. Most especially, in power electronics more utilize
FCS-MPC with a complete enumeration method to get predic-
tion and optimization due to the nature of power converters that
are combination of finite switching states [24]. A FCS-MPC
algorithm to solve the unstable dynamic interactions between
a CPL and a dc microgrid is given in [21]. Furthermore, a
CCS-MPC is proposed to improve the inner current loop control
performance in [22]. A constrained direct voltage FCS-MPC
method, consisting of bounded currents and voltages of system
for control of buck-boost converters is provided in [23].

In this paper, the above mentioned non-linear behavior of
the system is taken into account using averaged and automatic
models. The objective is to provide a formidable control strat-
egy for dc-dc boost converters considering the CPL. Thus, an
optimal controller based on hybrid model predictive controller
(HMPC) technique is studied and compared with discrete-time
averaged model predictive control (DTA-MPC) [25], and PI
controller. The HMPC approach provides a systematic design

procedure to guarantee good performance within the constraints.
This proposed method utilizes a discrete automatic model in
the prediction and design procedure, taking into account all
switching modes to guarantees the system stability and noise-
resilient. On the other hand, it overcomes the aforementioned
drawbacks among different linear dynamics, logical transitions
between continuous current mode (CCM) and discontinuous
current mode (DCM) states, and other complex logical con-
straints, which needs to be considered in the system’s variables.
Finally, to further emphasize the good performance of the pro-
posed controller, the results of this controller are compared with
the CCS-MPC against a load change. The contribution of the
present work and the novelty of the proposed controller can be
summarized as follows:
� An HMPC control is proposed to provide an optimal

switching of dc-dc converters at each step-time. The aim
of the proposed control method is to guarantee the stability
and sensitivity as well as produce accurate voltage and
current under existing disturbances, such as faults and
highly variable power generation and load demand. The
unknown disturbances is considered as Additive White
Gaussian Noise (AWGN), which the proposed solution can
easily address inherent those fluctuations and uncertainties
in the system.

� An augmented model is introduced by considering all
operation modes of controlled switch and inductor current.
This model is provided to obtain integral modes, which
causes eliminate of disturbances and achieves tracking of
signals error in both transient and steady-state stages, as
well as ensuring the stability improvement and noise-free.

� The proposed controller takes the duty of inner loops such
as current/voltage of dc MGs using a single optimal con-
troller loop, with taken into account two-term to penalize
deviation from the desired trajectory of both inner loops in
the objective function.

The rest of this paper is organized as follows. In Section II,
averaged and automatic models for dc-dc boost converters inte-
grated with the CPL are discussed in detail. The implementation
of proposed control strategy is introduced in Section III. The
verification of the stability and sensitivity analysis in presence
of HMPC is presented in IV. In Section V, experimental studies
are provided, and finally, Section VI concludes the paper.

II. MODELLING AND ANALYSIS

The schematic diagram of a dc-dc boost converter with a
CPL is shown in Fig. 1. In the equivalent circuit, distributed
generation (DG) is represented by a constant voltage source
with input voltage Vin. The output voltage over the CPL is
considered as well as voltage VCo

across the output capacitor
filter Co. RL is internal resistance of input inductor L and Co,
P is load power, S and D are two power switches; where S is
controllable (MOSFET or IGBT), whereas D is uncontrollable.
The converter operates in CCM, where the inductor current
is always greater than zero in the averaged model, while it is
greater than or equal to zero in the automatic model. Details of
the continuous-time model of the proposed system in averaged
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Fig. 1. Schematic diagram of a dc-dc boost converter with a CPL: (a) real
circuit of system, (b) equivalent circuit of the system.

and automatic models presented in [26], the summary of these
models are provided in the following subsections.

A. Averaged Continuous Time Model

There are two different dynamics corresponding to the switch
positions in dc-dc boost converter for an averaged model [25].

Taking into account the switching modes, the following non-
linear state-space representation describes the dynamics of the
system based on an averaged model that can be given by:

ẋ(t) =

{
A1x(t) +Bu(t) S = 1
A2x(t) +Bu(t) S = 0

y(t) = Cx(t) (1)

B. Automatic Continuous Time Model

Similar to the averaged model explained in Section II-A, the
switching modes have been also considered for an automatic
model. The only difference is that the inductor current discharge
condition is considered in each sampling time. This difference
creates a system with CCM and DCM states (i.e., the hybrid
system). Three different dynamics are associated with the switch
positions for the boost converter in the automatic model [26].

The automatic model can be calculated as follows:

ẋ(t) =

⎧⎨
⎩

A1x(t) +Bu(t) S = 1 & iL(t) > 0
A2x(t) +Bu(t) S = 0 & iL(t) > 0
A3x(t) S = 0 & iL(t) = 0

y(t) = Cx(t) (2)

where, x(t) = [iL(t) VCo
(t)]T is defined as the state vector

including inductor current iL(t) and capacitor voltage VCo
(t),

u(t) = Vin(t) is input voltage, y(t) is the output of the system
which is the output voltage, and matrices A1, A2, A3, B, and C
are calculated as follows:

A1 =

[ −RL

L 0
0 −P

CoV 2
Co

]
, A2 =

[ −RL

L
−1
L

1
Co

−P
CoV 2

Co

]
,

A3 =

[
0 0
0 −P

CoV 2
Co

]
, B =

[
1
L 0

]T
, C = [0 1] (3)

Fig. 2. Schematic of the closed-loop system with the proposed HMPC
controller.

III. PROPOSED CONTROL STRATEGY

Different modes of operation and several constraints (on the
duty cycle and the inductor current) are applied on the power
semiconductor switches. The dc-dc converters pose challenging
hybrid control problems. To deal with above-mentioned chal-
lenges, this paper proposes an HMPC control strategy. The main
objective of the proposed control scheme is to derive an optimal
switching strategy such that the output voltage can be regulated
along its reference trajectory. Fig. 2 shows a general scheme
of the proposed HMPC controller applied to the system. The
overall design steps of this control framework are:

1) Obtaining the discrete-time model of the system
2) Defining the cost function
3) Optimization problem
In order to implement the proposed HMPC, the following

steps are carried out:
1) The optimal control action u∗(k) is considered at k − 1

instant and is applied to the dc-dc boost converter, (for
every switching period k, the duty cycle u∗(k) ∈ {0, 1} is
chosen by the controller).

2) The current ik and the capacitor voltage VCo
are measured

at k instant, and the references current iL_ref and voltage
Vo_ref are defined.

3) The prediction model of the system for the same instant is
derived to predict the current and voltage values ipL(k + 1)
and V p

Co
(k + 1).

4) A cost function is evaluated using the reference current
and voltage, as well as the prediction inductor current and
capacitor voltage.

The proposed control objective is to achieve accurate output
power by ensuring tight regulation of output voltage and current.
Moreover, constraints can be imposed on the state variables
and/or the manipulated variables, i.e., the control inputs. The
underlying optimization problem is solved in real-time at each
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time step to determine the plan of control actions over a fi-
nite prediction horizon. The sequence of control inputs that
minimize the objective function leads to an optimal solution.
In this sequence, only the first input is applied to the system.
In the next time step, the planning process is repeated with
updated measurements or estimation, while the time horizon
is shifted one step forward. To do this, dc-dc boost converters
have been described using a hybrid dynamical model where
both continuous and discontinuous components are considered.
Considering such dynamics, the HMPC could be an appropriate
control strategy to guarantee the above-mentioned objectives.

A. Implementation of the Proposed Control Strategy

Due to the usage of intensive power electronics interfaces
in dc MGs, the stability of such systems when connected to
CPLs is a challenge. Hence, an HMPC approach is proposed to
solve the instability problem and to regulate the output voltage
of dc-dc boost converters with CPL. The control objective is to
determine optimal switching of the system in a hybrid optimal
control methodology, such that the output voltage is regulated
according to its reference trajectory under different scenarios.
Details are described in the following three steps:

Step 1: Determining of discrete-time model.
The continuous-time equations of both two models as given

in (1) and (2) are discretized using the Euler approximation
approach as:

dx(t)

dt
=

x(k + 1)− x(k)

Ts
(4)

Accordingly, the averaged and automatic discrete-time models
of the studied system with one unit and the CPL can be written
in (5), (6) and (7), respectively.

x(k + 1) = (S) (E1x(k) + Fu) + (1− S) (E2x(k) + Fu)

y(k + 1) = Hx(k) (5)

x(k + 1) =

⎧⎨
⎩

G1x(k) + FVin(k) S = 1
G2x(k) + FVin(k) S = 0 & iL(k + 1) > 0
G3x(k) S = 0 & iL(k + 1) = 0

y(k + 1) = Hx(k) (6)

where E1 = I +A1Ts, E2 = I +A2Ts, G1 = I +A1Ts,
G2 = I +A2Ts, and G3 = I +A3Ts. Furthermore, I is the
identity matrix, F = BTs, H = C, and Ts is the sampling time.
After discretization, the automatic model can operate in four
different modes.

Fig. 3 illustrates different modes of duty cycle and the inductor
current where the red line represents switched OFF and ON
stages of the controllable switch, and the dashed line represents
the inductor current changes. Taking into account the status
of inductor current and the switch, there will be four different
modes after discretization.

Mode 1: When the inductor current is positive and the switch
is ON for the whole sampling interval, i.e., S = 1, iL(k) > 0,
and iL(k + 1) > 0.

Fig. 3. Operation modes of the boost converter after discretization.

Mode 2: When the inductor current is positive and the switch
is OFF for the whole sampling interval, i.e., S = 0, iL(k) > 0,
and iL(k + 1) > 0.

Mode 3: When the inductor current reaches zero during the
sampling interval, while the switch is OFF, i.e., S = 0, iLi(k) >
0, and iLi(k + 1) = 0.

Mode 4: When the inductor current is zero and the switch is
OFF for the whole sampling interval i.e., S = 0, and iL(k) =
iL(k + 1) = 0.

It should be noted that an additional operational mode (mode
3) is added to the continuous automatic model in discrete time
domain. Thus, the following equation can be added to the
discrete-time equations of the automated model.

x(k + 1) = G2,3x(k) +
τ1
Ts

FVin(k) (7)

where G2,3 = (1/Ts)(τ1G2 + τ2G3), Ts = τ1 + τ2 and τ1 de-
notes the time instant within the sampling interval, when the
inductor current reaches zero, i.e., iL(k + τ1

Ts
) = 0. Fig. 4 in [26]

illustrates mode transitions for both CCM and DCM modes
when switch position and the inductor current change in au-
tomatic model. The discrete-time automatic model is utilized
in the proposed controller in order to achieve an improved
performance.

Step 2: Defining the cost function.
The cost function is formulated based on the control objective.

Since the main objective of the proposed control design is to
ensure output power of load, so that the output voltage and
the output current track the reference values. In this regard,
the error between the predicted value of the variables and the
desired variables values as well as the variation of control
signals over the prediction horizon is taken into consideration
for performance index of the HMPC, i.e.,

J(k) =
1

Np

⎧⎨
⎩

Np∑
k=1

|Po_ref − P p
o (k + 1)|+ λ |Δu(k)|

⎫⎬
⎭ (8)

where Np is the prediction horizon, Po_ref and
P p
o (k + 1) are output power reference and predic-

tion, which are equal to Po_ref = io_ref ∗ Vo_ref and
P p
o (k + 1) = ipo(k + 1) ∗ vpCo

(k + 1) respectively. Moreover,
Vo_ref is equal to V ∗

dc, V p
Co

is capacitor voltage prediction and
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Fig. 4. Flowchart of the HMPC controller.

io can be achieved by applying kirchoff’s current law (KCL) as:

io = iL − iC

⇒
{
io_ref (k + 1) = iL_ref (k + 1)− iC_ref (k + 1)
ipo(k + 1) = ipL(k + 1)− ipC(k + 1)

(9)

where iC = C dVCo

dt , consequencely iC_ref and ipC based on the
Euler approximation approach can be calculated as:

iC_ref (k + 1) = C
Vdc(k + 1)− Vdc(k)

Ts

ipC(k + 1) = C
V p
Co

(k + 1)− V p
Co

(k)

Ts
(10)

It is worth notifying that Vdc(k) is a probability value of the dc
bus voltage that may be higher or lower than the rated dc voltage
V ∗
dc, and Vdc(k) will reach to V ∗

dc inNp steps taking into account
the next instant (k + 1). The dc bus voltage can be obtained as
follows [27]:

Vdc(k + 1) = Vdc(k) +
1

Np
(V ∗

dc − Vdc(k)) (11)

Further, ipL and iL_ref are inductor current prediction and
references, where iL_ref can be achieved using the power
balance equation Pin = Pout and the desired current can be
calculated as:

Pin = ViniL, Pout = PLoad ⇒ iL_des =
PLoad

Vin
(12)

where Pin, Pout and PLoad are input power, output power, and
load power respectively. To improve the transient response of
the output voltage, a term proportional to the voltage error, i.e.,
Vo_ref − Vo is added to the above equation, i.e.

iL_ref = iL_des + h (Vo_ref − Vo) (13)

where h ∈ R+ is the small-ripple approximation for regulation
of output voltage in steady-state.

Further,Δu(k) is an error between two consecutive switching
states u(k)− u(k − 1) calculated by the proposed HMPC con-
troller, and λ > 0 is the weighting factor which sets the trade-off
between the inductor current/output voltage error and the switch-
ing frequency. Some guidelines for tuning the weighting factor
are provided in [28].

Step 3: Formulation of optimization problem.
At each time sample, state variables are measured or estimated

to minimize the given cost function using the below optimization
problem:

U ∗(k) = argmin J(k)

subject to (6) − (7) (14)

Minimizing the above-mentioned cost function results in a se-
quence in the formU ∗, whereU ∗(k) = {u∗(k), u∗(k + 1), . . .}.
There exist 2Np switching sequences and only its first element
i.e., u∗(k) is applied in each sampling time and is shifted the
prediction horizon one step forward. The details of the proposed
controller implementation is provided in Fig. 4.

IV. STABILITY ANALYSIS

As mentioned earlier, when the CPLs are integrated into the dc
bus of the dc MG, the stability improvement becomes important
issue since the negative impedance characteristic of the CPL may
cause the system instability and complicate the solution from
control point of view. Therefore, performance of the system in
the presence of the proposed controller should be satisfied and
sustainable with small overshoot, fewer oscillations, and smooth
transient performance.

A. Stability Analysis for the Open-Loop System

The stability assessment for the open-loop system in (2),
which is the completed model of the system due to consid-
ering all switching modes and inductor current conditions, is
presented by the equilibrium points: α = (0.023, 12 030), β =
(1.5199.98), and γ = (0,∞). These points are obtained using
ẋ(t) = 0 in equation (2). Since α and γ are always unstable, and
the system is a second-order, to investigate the stability analysis
around β, the phase plane method can be used. Fig. 5 demon-
strates the phase plane stability analysis of the system around
this point. As shown in Fig. 5, β is an unstable equilibrium due
to all trajectories in the vicinity of the limit cycle diverge from
it as t → ∞. Hence, the open-loop system is unstable.

B. Stability Analysis of the Closed-Loop System

The stability analysis of the closed-loop system can be defined
by examining Lyapunov theory taking account the accurate
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Fig. 5. The phase plane analysis of the opened-loop system.

nonlinear dynamic model and all switching modes of the dc-dc
boost converter. The complete state-space model used for the
HMPC system design is described in (6) and (7). To confirm the
stability enhancement of the proposed HMPC control, a detailed
stability analysis is presented. In this regard, the augmented au-
tomatic discrete-time model of the system taking into account all
switching modes and the inductor current situations is provided
as follows [26]:

X(k + 1) =

⎧⎪⎪⎨
⎪⎪⎩

G1X(k) + FΔvsi(k),
G2X(k) + FΔvsi(k),
G3X(k),
G4X(k) + τ1

Ts
FΔvsi(k)

Y (k) = HX(k) (15)

where Δx, and Δvsi(k) are differences of the states, and the
input vectors respectively, and matrices X(k), Gm, F, and H
and Y are calculated as follows:

X(k) =
[
Δx(k) y(k)

]T
,Gm =

[
Gm OT

HGm Iq×q

]

F =
[
F HF

]T
,H =

[
0 Iq×q

]
In matrix Gm, m = 1, . . ., 4 which represents different modes
andOT is zero vector with appropriate dimension (q × n) thatn
is the dimension of the state variable vector, and q is the number
of outputs, that q integrators are embedded in the augmented
model.

Y =
[
y (ki + 1|ki) · · · y (ki +Npki)

]T
= ΓX (ki) + ΦΔU

where, Γ = [HGm HGm
2 · · · HGm

Np ]T , and

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

HF 0 . . . 0
HGF HF . . . 0

HG
2
F HGmF . . . 0

...

HG
Np−1

F HG
Np−2

F . . . HG
Np−Nc

F

⎤
⎥⎥⎥⎥⎥⎥⎦

ΔU(k), through minimizing the given objective function is
obtained as:

ΔU =
(
ΦTΦ+R

)−1
ΦT (Rs − ΓX (ki)) (16)

where, R = (rw)INc×Nc
is a diagonal matrix in which rw ≥ 0

and is used as a tuning parameter, Nc is the control horizon such
that its value is selected to be less than or equal to prediction

horizon (Np), RT
s =

Np︷ ︸︸ ︷
[1 1 . . . 1] r(ki), and r(ki) is set-point

signal. Due to the receding principle of horizon control, only
the first element of the control signal is applied in each sample
time as the control signal, thus

Δu (ki) =

Nc︷ ︸︸ ︷
[1 0 · · · 0] (ΦTΦ+R

)−1
(ΦTRsr (ki)

− ΦTΓX (ki))

= Kyr (ki)−KmpcX (ki) (17)

where, Ky and Kmpc are state feedback control gain related to
y and feedback control gain using MPC respectively. Finally, by
substituting (17) in (15), the closed-loop state-space equation of
the system can be written as:

X(k + 1) = GmX(k)− FKmpcX(k) + FKyr(k)

=
(
G− FKmpc

)
X(k) + FKyr(k) (18)

The closed-loop system under the MPC scheme is asymptot-
ically stable if there exists [29]:

1) V (x) ≥ 0 for all x and V (0) = 0,
2) ΔV (x) = V (f(x))− V (x) for all x.
The Lyapunov function candidate to investigate the stability

improvement of the closed-loop system due to the nonlinear
dynamics of the augmented automatic model is introduced as
follows:

V (X(k)) = X2(k) (19)

ΔV (X(k)) = (AcloseX(K) +Bcloser(k))
2 −X2(k)

� −(I −A2
close)X

2(k) + (Bclose)
2(r(k))2 ≤ 0

(20)

where Aclose = (GmX(k)− FKmpci), Bclose = FKyr(k).
Given that the (I −A2

close) is positive definite and invertible
then,

ΔV (X(k)) ≤ −(I −A2
close)X

2(k) + (Bclose)
2(r(k))2

(21)

Thus,

ΔV (X(k)) ≤ 0, ∀X2(k) � (I −A2
close)

−1(Bclose)
2(r(k))2

(22)

by substituting the value of Aclose and Bclose, (22) means that
the closed-loop system (18) is stable with respect to constant
and positive r(k).

In addition, a comparison of the sensitivity and stability
improvement of the closed-loop system in the presence of dif-
ferent controllers to confirm the improvement in performance
and guarantee the robustness of the closed-loop system in the
presence of the proposed controller for various values of Co and
P are shown in Figs. 6 and 7, respectively. In order to evaluate
and compare the performance of sustainability, a conventional
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Fig. 6. The trajectory of the system’s eigenvalues against various values of
Co and P .

Fig. 7. Sensitivity analysis of the designed controllers for ±10% change in
capacitance and power load: (a) HMPC, (b) DTA-MPC, and (c) PI.

technique for stability improvement like root locus is used. Fig. 6
shows the trajectory of the closed-loop system’s eigenvalues
against the change in parameters. It can be seen from Fig. 6,
that the trajectory of the roots of the closed-loop system through
the proposed controller for the entire range of the parametric
changes lies well within the left half of the S-plane resulting a
stable control loop, while for the PI controller, the eigenvalues
of the closed-loop system with the variation of parameters move
toward the right side of the S-plane which leading to unstable
regions.

Also, a comprehensive sensitivity analysis of the closed-loop
system with various controllers under parametric uncertainties
is illustrates in Fig. 7. The effectiveness and the performance ro-
bustness of the proposed controller rather than other controllers
are verified under ±10% variation in output capacitor filter (Co)
and power load (P ). In other words, the lack of significant dif-
ference in the settling time ensures that the proposed algorithm
is robust to parameter uncertainties.

Fig. 8. Experimental dc setup.

TABLE I
ELECTRICAL AND CONTROL PARAMETERS

V. EXPERIMENTAL RESULTS

A complete model of dc-dc boost converter based on switch-
ing operation modes and inductor current (see Fig. 4 in [26]) is
considered. The performance of the proposed HMPC is evalu-
ated for one distributed generation unit (DGU) of an islanded
dc MG system as shown in Fig. 2, including a programmable
dc source for supporting a CPL interfaced with a dc-dc boost
converter. The experimental prototype DC setup is shown in
Fig. 8. The dc-dc boost converter is supplied by a dc power
supply. The current and the voltage are measured with a LEM
sensor box. The dSPACE MicroLabBox DS1202 is used to
implement the control framework on the prototyped system. The
electrical and control parameters of the test system are listed in
Table I. In order to validate the proposed control framework,
the provided results of the controller using automatic model are
compared with the DTA-MPC, the CCS-MPC, and PI controller
considering the following scenarios.

A. Case Study 1: Load Step Change

Fig. 9 shows performance of the proposed HMPC based on
automatic model under CPL step change to evaluat convergence
property of the applied control method. In order to validate the
proposed control framework, the load is increased (the CPL
changes by 37% from 140 W to 192 W at t = 1.5 s). The
voltage regulation is shown in Fig. 9(a). As shown in Fig. 9, in
the controller designed by the automatic model, dc voltage dips
down to a lower value upon load change and returns to its initial
value quickly, while in DTA-MPC based on the averaged model,
the voltage does not return to its initial value. Additionally, it
can be seen that the voltage regulation is well maintained using
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Fig. 9. Performance of the proposed HMPC controller under load step change:
(a) output voltage, (b) load current, and (c) duty cycle.

the proposed HMPC controller compared with DTA-MPC, and
PI controller, with very little variation instances in the desired
range.

Figs. 9(b) and 10(c) show that current and duty cycle where
dc voltage regulation convergence are achieved in HMPC, while
DTA-MPC and the PI controllers are associated with most
variation.

B. Case Study 2: Noise-Resilient Primary Voltage Control

From a practical point of view, the noise and microgrid
configuration parameters are unknown, so it is necessary to
consider the distributed dynamics, noises and uncertainties in
the model design. One of the most important unmodelled and
unknown disturbances in the primary layer of microgrids is
sudden fluctuations in renewable energy sources (e.g. PVs and
wind turbines (WTs), etc.) due to their high variability and
stochastic nature. These disturbances can be modelled as AWGN
based on the following expression:

x(k + 1) = Gix(k) + FVin(k) +W (k) (23)

where i = 1, 2, 3 and W (k) is AWGN with σ2 = 0.1. Indeed
the objective of this case study is to demonstrate the robustness
of the proposed control strategy under sudden input voltage
fluctuations due to climate changes. Given that climate changes
have an effect on the power produced by the PV arrays, it
is assumed that the input voltage varies randomly in every t
= 0.3 s (see Fig. 10). The transient behavior during frequent
changes of the input voltage is analyzed and the performance
of the HMPC method based on the automatic model comparing
the DTA-MPC and the conventional PI controllers is shown in

Fig. 10. Sudden input voltage variations.

Fig. 11. Performance of the proposed HMPC controller under sudden input
voltage variation: (a) output voltage, (b) output current, and (c) duty cycle.

Fig. 11. Although the PI control method has many advantages
like stability and decentralized architecture of primary voltage
controllers, it does not provide robustness with respect to sudden
input voltage functionality of PV for the dc MG system in the
presence of CPL. Comparison between the dynamical responses
of controllers shows that the proposed HMPC control strategy
provides a smooth and fast transient response.

C. Case Study 3:Comparing HMPC With CCS-MPC

In this scenario, the effectiveness and robustness of the pro-
posed controller is investigated under a load change in com-
parison with the CCS-MPC. It is assumed that a frequent load
change is occurred, with the nominal value p=140, step changes
in times 1, and 2, seconds. While HMPC provides a superior per-
formance rather than the other two controllers for all the above
two scenarios as shown in Figs. 9 and 12. The experimental
results in Fig. 12 show that the proposed method provides a fast
dynamic response, small ripple, and low sonic noise rather than
CCS-MPC.
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Fig. 12. Performance of the proposed HMPC controller compared under the
frequent power load change of the CPL : (a) output voltage, (b) output current,
and (c) duty cycle.

VI. CONCLUSION

This paper proposes a hybrid model predictive controller for
dc-dc boost converters interfaced with CPLs based on two differ-
ent modeling approaches: automatic and averaged. The proposed
controller maintains stability of a highly non-linear system in
the presence of CPLs while providing accurate output voltage
tracking in different scenarios. Efficacy of the proposed solution
under load change and variation of input voltage scenarios has
been studied. Experimental results validate the effectiveness
of the proposed HMPC method. The automatic model-based
HMPC shows a superior performance comparing DTA-MPC
and the conventional PI controllers. Furthermore, two strong
candidates of MPC schemes are presented for dc bus voltage
control of dc MG. Both FCS-MPC with optimal control and
CCS-MPC are successfully implemented and investigated in
order to adapt and to the frequent power load change of the
CPL. It can be seen from the experimental results that although
the two control methods exhibit good dynamic performance,
the proposed controller which is as an FCS-MPC has a faster
response with a minimum error and lower fluctuations.
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