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A B S T R A C T   

This paper presents a single-ended traveling-wave-based fault location (F.L.) method in a hybrid transmission 
line (HTL) with an overhead section combined with a cable section. For this, the software has been developed in 
a MATLAB programming environment. Wavelet packet transform is used to extract transient information of the 
aerial mode current and voltage signals. The normalized current and voltage wavelet entropy (features) are fed to 
the feature selection part of the software. Regarding the HTL construction, the optimal features are obtained 
using the support vector machine and particle swarm optimization. A three-layer artificial neural network is 
trained to identify the faulty section and half using the optimal features of post fault signals. The square of the 
aerial mode voltage wavelet coefficients is applied to locate the fault using Bewley’s diagram. The proposed 
approach is applied for F.L. in HTL. Transient simulations are obtained through EMTP-RV software for various 
fault scenarios, including fault types, resistances, inception angles, and locations. The post fault signals are fed to 
the developed software. The results illustrate the high accuracy of the proposed method in comparison to pre-
vious works.    
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the aerial mode voltage 
E(s): Shannon Entropy of the signals 

1. Introduction 

1.1. Background and motivation 

Since overhead transmission lines (OHL) are exposed to damage due 
to natural disasters and have an undesirable impact on the landscape, 
hybrid transmission lines (HTL), which consist of overhead and cable 
sections, are used appropriately to the location [1–2]. Although under-
ground cables (UGCs) benefit the environment and relieve public pres-
sure, the expensive investment and high life cycle cost limit their use in 
the complete replacement of OHLs. Therefore, an HTL mainly consists of 
one or more OHL sections and one or more UGC sections, providing a 
trade-off between several issues such as investment, power transfer 
continuity, and environmental issues. In the case of a short circuit on 
transmission lines, the fault location (F.L.) must be determined swiftly 
and accurately to minimize transmission-line outage time, thereupon 
increasing system stability and decreasing system energy not supplied. 
F.L. methods are classified into three classes: impedance-based, trav-
eling waves-based, and artificial intelligence-based [3]. 

The most common F.L. method is the impedance-based method, 
which calculates the fault distance by using the linear relationship be-
tween the F.L. and sequential impedance. In the case of underground 
cables (UGCs), the variation of the zero-sequence impedance regarding 
the different types of sheath grounding methods causes a non-linear 
relation between measured impedance and fault distance. As a result, 
the impedance-based method has encountered several problems for F.L. 
in UGCs and, consequently, in HTLs [2, 4]. More recently, traveling 
wave-based F.L. methods have attracted the attention of researchers 
owing to their high reliability and high speed in determining fault type 
and location. These methods need high sampling rate transformers. Due 
to advancements in power electronics and optical instrument trans-
formers’ production, high-frequency sampling for transient fault signal 
recording has been realized [5, 6, 7]. In single-ended traveling 
waves-based F.L. methods, the location of a short circuit can be calcu-
lated according to the time delay between the arrival times of the inci-
dent and reflected traveling waves of aerial mode voltage at the 
terminal. 

Using the cross-correlation between the primary wave and the 
propagated wave is the basic and one of the most utilized methods for 
detecting the incident and reflected traveling waves on a transmission 
line [8]. This method needs the exact selection of the time window 
length. At the same time, it depends on the F.L. The primary idea to solve 
this problem has been proposed in [9], which uses the discrete wavelet 
transform (DWT) for the information extraction of the transient wave. 
Different mother wavelets in various scales are utilized for arrival time 
detection, mainly dependent on test cases, noise severity, and sampling 
frequency [10, 11, 12]. In the case of an HTL, the main challenge in the 
traveling waves-based F.L. method is determining the fault section due 
to the inequality of the propagation speed on overhead and cable sec-
tions. A single-ended traveling wave-based F.L. method for HTL is pre-
sented in [13]. DWT, SVM, and Bewley diagrams are used to quickly 
extract information, faulty-section, and half identification and fault 
location. The accuracy of this method is not satisfactory in the case of 
high resistance faults or small fault inception angles due to generating 
small energies of voltage and current wavelet coefficients. 

In [14], the F.L. is determined using the installed fault locators at 
both terminals of the HTL. In this method, the faulty section is deter-
mined by comparing the time delay and the arrival time of traveling 
waves to the two terminals concerning the default values. These fault 
locators are synchronized through 2 Megapixel optical fiber channels. 
Despite the high accuracy of this procedure, its increased investment 
cost has restricted its acceptability by power system operators. In [15], 
the wavelet coefficients of the aerial mode voltage have been used to 

find the faulty-section identification and F.L. The obtained results show 
the weak accuracy of this method. In addition, the used default value to 
find the F.L. depends on the network configuration. 

The support vector machine (SVM) has been applied to determine the 
fault section on HTL [16]. In the proposed algorithm, the SVM inputs are 
the coefficients square of the aerial mode voltage in the DWT. This 
method has a low computational burden, but the method’s accuracy 
when the fault occurs on half of the cable section is inappropriate. 

In [17], a traveling-wave-based F.L. algorithm comprising a 
faulty-section identification and a F.L. method is presented for hybrid 
multi-terminal transmission systems. The main disadvantage of the 
proposed method is that it cannot find the fault section in some in-
stances. In [18] for thyristor-controlled series- compensated lines, a 
novel protection method is presented based on the time-time (T.T.) 
transform. In the proposed algorithm, current signals at both sides of the 
sending and receiving ends are retrieved and processed through 
time-time domain transform (TT-transform), and a TT-matrix is pro-
duced. Although obtained results show suitable performance, the pro-
posed method is not tested on HTL. 

Most recently, a hybrid SVM-TT transform-based method for F.L. in 
HTL is presented [19]. Although the simulation results give satisfactory 
accuracy for a faulty section and half identification, this method suffers 
from high error in F.L., especially for the faults near the middle point of 
the overhead and cable sections. For example, in a reported case, the 
cable F.L. error is about 1.48% of total HTL length or 8.91% of the UGC 
length, equal to 2.85 km. 

In [20], a two aspects procedure based on wide-area traveling-wave 
has been proposed for F.L. in regional power grids. The proposed 
method is double-ended and is applied only to OHL. In [21], the F.L. 
technique is presented for three-terminal hybrid OHLs with one 
off-service line branch. The average obtained error is 1.65%, but the 
method is not tested on HTL. 

1.2. Contributions 

The delay between the arrival time of the initial traveling waves in 
the ground and aerial modes has been used previously for faulty-section 
and half identification on HTL. The accuracy of the results depends on 
fault type, fault inception angle, fault resistances, and fault location, 
while the F.L. error is high. Using a classifier leads to improved accuracy 
in the detection of the faulty section and half. In addition, the type of 
features used as inputs of the classifier for faulty-section and half iden-
tification have a high impact on distinguishing sections from each other. 
Available published F.L. methods use a trial and error approach to find 
the features which are not immune from the risk of the calculation 
errors. 

F.L. methods based on DWT, T.T., and S transform show that the 
misclassification zone around the middle point of the overhead and 
cable sections is more than 1.48% of total HTL length (2.5 Km) for high- 
resistance faults or faults occurring at small inception angles. These 
errors for F.L., especially in the cable section, are so high. 

In this paper, a single-ended method based on traveling waves has 
been proposed to compute the F.L. on HTL. This method uses WPT to 
extract the high-frequency data of the aerial mode current and voltage 
signals. Artificial Neural Network based pattern recognition (ANNBPR) 
classifiers are used for faulty-section and half identification. In the 
proposed algorithm to decrease the computational burden and the error 
of the ANNBPR classifiers, raised by trial and error, the optimal features 
of ANNBPR classifiers are calculated by a particle swarm optimization 
(PSO)-based feature selection procedure with SVM as the fitness func-
tion. Furthermore, the K-Fold validation method is used in the proposed 
feature selection method to avoid the dependence of SVMs on the 
training data. After identifying the faulty section and half by the neural 
network, Bewley’s diagram of aerial mode voltage signal is used to 
determine the location of the fault. The WPT square coefficients of the 
aerial mode voltage are employed to extract the high-frequency data of 
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the aerial mode voltage signal for F.L. 

1.3. Paper organization 

The remainder of this paper is organized as follows. WPT and the 
mathematical formulation of the suggested model are presented in 
Section 2. In Section 3, the feature selection method based on PSO-SVM 
is presented. In Section 4, the proposed F.L. method is introduced in 
detail. Section 5 includes the simulation results, and finally, Section 6 
concludes the paper. 

2. Proposed structure of WPT decomposition 

Wavelet Transform (W.T.) has several applications in the topic of 
signal processing in power systems, such as transient states analysis 
[22], power quality analysis [23], and harmonics analysis [24]. This 
transform uses the fast and slow changes of the waveform that corre-
spond to the high frequency and low-frequency components of the 
signal, respectively. W.T. overcomes the limitations of the Fourier 
transform method, such as being a single-domain transform (i.e., only 
works in frequency domain) and its ability to eliminate sub and 
inter-harmonics. 

In DWT, the input signal decomposes into approximated and detailed 
components using low and high pass filters. Afterward, only the 
approximated component is decomposed to extract the desired features 
of the signal. In WPT, the extended discrete form of the conventional W. 
T., both detailed and approximated components are decomposed 
simultaneously. As a result, WPT gives more information about the 
signal, has a better frequency resolution, and offers a more compre-
hensive view of the signal [25]. 

In this paper, the first cycle of the post fault of aerial mode current 
and voltage are decomposed to the third level, as shown in Fig. 1. 

Furthermore, the entropy criterion is the most common way to find 
the optimal decomposition in signal decomposition applications [26]. 

The statistical feature of the Shannon entropy is used for optimal 
decomposition. The feature matrix contains 30 features (one entropy 
statistical feature for fifteen coefficients of the WPT, each one for two 
signal types, 1 × 15 × 2 = 30). Entropy (E) is defined as an incremental 
cost function that E (0) = 0. Shannon entropy is as follows [27]: 

E(s) = −
∑

i
s2

i log
(
s2

i

)
(1) 

Some parameters can affect the amplitude of voltage and current 
signals and consequently the entropy values. This affection may lead to 
misclassification of features and subsequently introduce error in F.L. 
calculation. To make the proposed F.L. approach immune against this 
error, the normalized entropy values are used. The following formula is 
used for normalization. 

yi =
(ymax − ymin)

(emax − emin)
× (ei − emin) + ymin (2) 

Where ei, emax and emin are the ith, maximum and minimum values of 
the entropy vector of each feature, respectively. ymax and ymin are the 
upper and lower limits of normalization interval, respectively. In this 

paper ymax = +1 and ymin = − 1. 

3. Proposed feature selection method 

Large-scale data raises the computational burden, despite creating 
opportunities in the study process. On the other hand, in most cases, all 
features of signals are not essential to make an appropriate classifica-
tion. Furthermore, using all features decreases the efficiency of the 
learning algorithm [28, 29]. The feature selection method is an effective 
way to reduce the computational burden. Feature selection methods are 
categorized based on the generation and fitness functions. 

The applied generation and fitness functions of the proposed method 
are introduced as follows: 

3.1. Generation function 

The generation function creates the candidate subsets among the 
features set. The number of possible subsets will be equal to 2N features 
for a set of N data which is known here as the solution space. This 
number would be too high even for a small value of N. For this reason, 
using the optimization algorithms to search the solution space and find 
the near to optimum solution would be very efficient. According to [30, 
31], the PSO has advantages over feature selection over other classical 
optimization algorithms. Therefore, in this research, the PSO algorithm 
is used as the generating function to select an optimal subset of the 
available features. 

3.2. Fitness function 

The fitness function of a single particle evaluates how close the 
particle is to the optimal point [32]. Hence, in this paper, errors of the 
SVM classifiers are used as a fitness function in feature selection. In the 
proposed method, three SVM classifiers are used to determine the 
optimal features for faulty-section and half identification. If a fault oc-
curs on the overhead section, the output of SVM1 will be {+1}, but if it 
appears on the cable section, the outcome will be equal to {− 1}. 
Furthermore, SVM2 and SVM3 are used to determine the faulty half of 
the overhead and cable sections, respectively. The output of SVM is 
{+1}, if the fault occurs on the first half of the overhead and cable 
section, and will be {− 1} if the fault occurs on the second half of 
overhead or cable sections. The SVM classifier is briefly introduced as 
below. 

Suppose that the data set is {(xi, yi)}
l
i=1 ∈ Rn × {− 1,+1} where xi is 

the input data and yi is the label of each xi. The procedure is looking for a 
hyper plan in SVM that separates data with minimum error and 
maximum safety margin [33]. Whereas the used data in this paper is not 
linearly separable, this hyper plan can be achieved by solving the 
following optimization problem: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

maxM(α) = −
1
2
∑l

i=1

∑l

i=1
αiαjyiyjk

(
xi, xj

)
+
∑l

i=1
αi

subject to :
∑l

i=1
αiyi = 0, 0 ≤ αi ≤ C, i = 1, 2,…, l

(3) 

Where αi is the Lagrangian coefficients of the Lagrange function, M 
(α), for each xi, C is a parameter that relates to the penalty coefficient. 
The Kernel function k(xi, xj) is used for mapping the data to a higher 
dimensional feature space where data is linearly separable in the new 
space. The decision-making function in the SVM is according to Eq. (4): 

d(x) = sgn

[
∑

sv
yiαik

(
xi, xj

)
+ b

]

(4) 

Among defined Kernel functions for SVM, the radial basis function 
(RBF) separates the data more accurately; therefore, this paper uses the Fig. 1. Structure of WPT decomposition.  
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radial basis function. This function is defined as follows [33]: 

K
(
xi + yj

)
= exp

(

−
‖ xi + yj‖

2

γ

)

(5) 

In SVM, C determines the safety margin, and its lower values provide 
wider safety margins, and its higher values provide narrower safety 
margins. Furthermore, low values of γ cause that classifier to follow 
faster changes and the Gaussian function to become sharp and have a 
better local function. Also, high values of γ cause the classifier to follow 
slower changes. Therefore, in this paper, two parameters of C and γ that 
will affect the accuracy and operation of SVM are determined using the 
PSO optimization algorithm. 

In the proposed method to identify the faulty section and its corre-
sponding half, optimal feature inputs of each ANNBPR are determined 
by the PSO-based feature selection method and the error of the SVM, as 
discussed earlier. In the proposed feature selection method, the error of 
SVM classifiers should have the minimum amount for the optimal 
feature subset which PSO obtains. Furthermore, to avoid the depen-
dence of the SVMs model on the training data, the K-Fold validation 
method is used according to Fig. 2, which divides the data set into 
training and test sets. In other words, if Fi is a subset of entropy values of 
voltage and current, which are extracted from the WPT, then the per-
formance function (C.F.) can be defined according to Eq. (6): 

CF(Fi) =
1
k

∑K

j=1
Ej(Fi) (6) 

Where Ej is the error related to each KFold, K is the number of Folds. 
To achieve a reliable performance of the classifiers, the authors tested 
different values of K, and it is found that for k = 5, a more accurate 
classification output is obtained. 

In Eq. (6), Ej for each one of three SVM functions is defined as 
follows: 

Ej(Fi) =
number of sample that have been incorrectly classified

total number of sample tests
(7) 

The arrangement of each particle in the process of optimal feature 
selection is shown in Fig. 3. Each particle is composed of three parts 
where the first two parts are related to SVM C and γ parameters, and the 
third part is made of a 1 × 30 dimension vector and contains random 
numbers between zero and one (0< fi < 1) as random features. If the 
value of each fi(i ∈ {1, 2, ..., 30}) is less than 0.5, then its corresponding 
feature will not be selected, and If the value of each fi is more than 0.5, 
then its corresponding feature will be selected and applied to the deci-
sion function. 

The schematic diagram of the proposed feature selection method is 
shown in Fig. 4. The feature selection method is only performed one time 
for each ANNBPR. The method relies on the feature selection based on 
SVM-PSO to extract the best features, as opposed to the available 

published F.L. methods that use a trial and error approach to find the 
best features. 

4. Proposed FL algorithm 

In this paper, the measured values of the aerial mode voltage at one 
terminal are used to determine the F.L. in HTL. The Schematic diagram 
of the proposed F.L. method is shown in Fig. 5. 

The WPT is used to extract the information of the time-frequency 
domain of the aerial mode voltage signals obtained by EMTP_RV soft-
ware. Optimal features as inputs of the classifier are determined by the 
feature selection method based on PSO-SVM. Therefore, the proposed 
algorithm consists of two steps as follows:  

• Identification of faulty-section and its corresponding half by 
ANNBPR  

• Determination of F.L. using Bewley’s diagram. 

These two steps are explained in sequence. 

4.1. Identification of the faulty section and half 

Using a time delay between ground and aerial mode voltages is the 
standard method to determine faulty-section of the OHL or UGC and its 
related half in previous works. In this paper, the ANNBPR classifiers are Fig. 2. KFold cross-validation.  

Fig. 3. The structure of the SVM classifier particle.  

Fig. 4. Schematic of the proposed feature selection.  
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used for this purpose. ANNBPR is a powerful tool in pattern recognition 
and data classification. Pattern recognition networks are feed-forward 
networks that classify the inputs according to the specified target clas-
ses. Such ANNBPR often have one or more sigmoid hidden layers and 
one softmax output layer. The hidden layer has fifty neurons in this 
work, and the output layer has two neurons (two classes). 

After fault occurrence, one cycle of the post fault three-phase volt-
ages and currents at one bus is measured. The aerial mode voltage and 
current are computed using the Clarke transform and fed to the WPT. 
The outputs of WPT are the values of optimal features in the form of a 
matrix (i.e., feature matrix). The feature matrix is the input of all three 
ANNBPRs. If a fault occurs on the OHL, the output of ANNBPR1 will be 
{FS = +1}, but if it appears on the UGC, the output will be equal to {FS 
= − 1}. Furthermore, ANNBPR2 and ANNBPR3 are used to determine 
the half faulty section of the OHL and UGC, respectively. When faults 
occur on the first half of OHL and UGC, outputs of ANNBPR2 and 
ANNBPR3 is +1 {FH=+1}, and for the second half of them equals − 1 
{FH = − 1}. 

The structure of this network is shown in Fig. 6. The number of 
neurons is achieved by trial and error such that the error of the ANNBPR 
classifiers gets the least possible value. The Cross entropy function is 
used in these networks for analyzing the performance of the networks. 
The performance of the networks will be better with the lower output of 

the cross-entropy. This function can be defined for a two-class classifier 
as: 

e = − t × log(y) − (1 − t) × log(1 − y) (8) 

Fig. 5. Schematic diagram of the proposed fault location method.  

Fig. 6. Structure of ANNBPR.  
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The accuracy of each ANNBPR classifier can be calculated as: 

Accuracy % = (1 − e) ∗ 100 (9)  

4.2. F.L. estimation 

After identifying the faulty section and related half, it is possible to 
determine the exact location of the fault. At first, the square of DA2 
coefficients of the aerial mode voltage ( i.e., WTC2

DA2) are determined. 
Then the primary and secondary arrival times of the peak aerial mode 
voltage at the measuring device are calculated by WTC2

DA2. Through 
calculated values, the behavior of the traveling wave has been investi-
gated by Bewley’s diagram. Finally, the location of the fault is calculated 
according to Table 1. 

5. The system under study and simulation results 

The performance of the proposed F.L. method is evaluated on a 50 
Hz, 230 kV HTL using EMPT-RV software. A single-line diagram of the 
HTL is depicted in Fig. 7. The lengths of the overhead section (LL) and 
the cable section (LC) are 100 miles and 20 miles, respectively. The 
measuring device is installed in location M at the beginning of the 
overhead section. 

The sampling frequency has been selected 1 MHz to increase the 
accuracy and resolution of the WPT. Also, db4 mother wavelet has been 
used to extract the transient information of the voltage and current 
signals. Moreover, the data of the overhead and the cable sections are 
taken from references [34] and [35], respectively, which have been 
shown in Appendix I. Frequency-dependent models are used to simulate 
the HTL sections. The aerial mode propagation speed of the traveling 
waves on the overhead and the cable sections have been calculated by 
EMTP-RV and are equal to 1.85 × 105 miles per second and 0.99 × 105 

miles per second, respectively. 
To evaluate the performance of the proposed method, we simulated 

1350 different cases in the HTL, including different fault inception an-
gles, fault locations, fault resistances, and fault types. The following 
values are used for this study:  

1) Fault inception angles: 10◦, 125◦, and 260◦ (i.e. 3 inception angles for 
all fault types, fault locations and fault resistances).  

2) Fault resistance: 0.1Ω, 20Ω, and 100Ω (i.e. 3 resistances for 7 ground 
faults).  

3) Fault locations: 10%, 20%, …, 80%, and 90% of the overhead and 
cable sections (i.e. 18 locations in combined line length).  

4) Fault types: A.G., B.G., C.G., ABG, ACG, BCG, AB, A.C., BC, ABC, and 
ABCG (i.e. 11 types including 7 ground faults). 

Therefore, 3 × 18 × (3 × 7 + 4) = 1350 scenarios are simulated. 

5.1. Optimum features for identification of the faulty section and half 

To show the importance of selecting optimal features for the SVM 

classifier compared with selecting all features, the authors calculated the 
accuracy of the faulty-section and its corresponding half identification 
for all 1350 generated cases. The obtained results are presented in 
Table 2. PSO determines the optimal values of SVM parameters and 
optimum features (as input of ANNBPR classifier). 

As explained in Section 2, the feature matrix contains 30 features 
that 15 of which are related to aerial mode voltage, and the other 15 are 
about aerial mode current. Some of these features are selected by the 

Table 1 
The used Formula for calculating F.L. in various sections of HTL.  

Faulty- 
section 

Faulty half (corresponding outputs of 
classifier) 

Related formula 

Overhead First half (FS = +1 & FH = +1) 
x =

Vline × Δt
2  

Second half (FS = +1 & FH = − 1) 
x = LL −

Vline × Δt
2  

Cable First half (FS = − 1 & FH = +1) 
x = LL +

Vcable × Δt
2  

Second half (FS = − 1 & FH = − 1) 
x = LL + LC −

Vcable × Δt
2   

Fig. 7. HTL under consideration.  

Table 2 
Optimal selected features, parameters, and calculated accuracy of SVM 
classifiers.  

Type of 
classifier 

With / 
Without 
feature 
selection 

Calculated SVM 
parameters 

Inputs for SVM Accuracy 
of 
classifier 
(%) 

C γ 

SVM1 Without 
feature 
selection 

2.8480 
× 103 

1 Total features (30 
features) 

92 

With 
feature 
selection 

7.5012 
× 103 

0.7883 Voltage V1, AA2, 
DA2, 
AAA3, 
DAA3, 
DDA3, 
AAD3, 
ADD3, 
DDD3 

99.33 

Current D1, AD2, 
AAA3, 
DAD3 

SVM2 Without 
feature 
selection 

4.6210 
× 103 

0.9613 Total features (30 
features) 

92.15 

With 
feature 
selection 

7.3824 
× 103 

0.8590 Voltage V1, AA2, 
DA2, 
DD2, 
DAA3, 
AAD3, 
DAD3, 
ADD3, 
DDD3 

96.8 

Current I1, A1, 
AA2, 
AD2, 
AAA3, 
AAD3, 
DAD3 

SVM3 Without 
feature 
selection 

7.1145 
× 103 

0.9944 Total features (30 
features) 

92.15 

With 
feature 
selection 

6.2456 
× 103 

0.7433 Voltage V1, AA2, 
AD2, 
DD2, 
AAA3, 
DAA3, 
ADA3, 
AAD3, 
ADD3, 
DDD3 

96.9 

Current A1, AD2, 
AA3  
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feature selection method (using SVM + PSO) as optimal features. Based 
on this, 13 features (9 features of aerial mode voltage and 4 features of 
aerial mode current), 16 features (9 features of aerial mode voltage and 
7 features of aerial mode current), and 13 features (10 features of aerial 
mode voltage and 3 features of aerial mode current) are selected by 
SVM1, SVM2 and SVM3, respectively, as optimal features. 

According to Table 2, using optimum features compared to all 30 
features increases the accuracy of the faulty-section discrimination by 
7.33%, faulty half in the overhead section by 4.65%, and faulty half in 

the cable section 4.75%. 
It is worth noting that since the parameters C and γ have a significant 

influence on the accuracy of the SVM classifier, PSO also determines 
them for the case where all features are applied. 

In the ANNBPR under study, 70 percent of the simulation results (i.e., 
1350 different cases) are used as training data, 15 percent as test data, 
and the remaining 15 percent as validation data. To avoid dependency 
of ANNBPR output to training data, we performed data separation 
randomly and repeated it 200 times. The average of the errors calculated 
by Eq. (8) is considered the error of Pattern recognition. 

Compression between the accuracy of the proposed approach 
(ANNBPR) and several other classifiers is presented in Table 3. Some 
other approaches, such as KNN [36] and SVM, are implemented in this 
paper. Also, the results of the proposed approaches in [13] and [19] are 
presented in Table 3 too. It should be mentioned that the same optimal 
features are considered for ANNBPR, SVM, and KNN to achieve a fair 
comparison. 

Analysis of Table 3 shows that the accuracy of the proposed ANNBPR 
classifier in determining the faulty section and half is more than those 
obtained via SVM, KNN, and the proposed approach of [13]. Although 
the accuracy of [19] in detecting the faulty section is a bit better than the 
accuracy of this paper, investigation of the F.L. errors, presented in 

Table 3 
Comparison of different fault classifiers used in detecting the faulty section and 
half.  

Reference 
number 

Feature 
selection 

Fault 
classifier 

Detection accuracy (%) 
Faulty- 
section 

Half section 
on overhead 
section 

Half 
section on 
cable 
section 

This paper SVM+PSO ANNBPR 99.58 98.61 97.08 
SVM 99.33 96.80 96.90 
KNN 96.96 90.37 81.33 

[13] Not used SVM 98.8 98.2 95.60 
[19] Not used SVM+PSO 99.8 98.9 97.50  

Fig. 9. the aerial mode voltage and WTC2 signals for A.G. fault scenario.  

Fig. 8. Pre-fault and post-fault three phase voltages for A.G. fault.  
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Section 5.2., will illustrate the advantage of the method of this paper 
compared to [19]. 

5.2. Simulation result 

In this section, the performance of the proposed approach is inves-
tigated by simulating faults in different sections and halves. 

For the sake of clarification, a sample F.L. and error calculation are 
presented. For this purpose, phase A to ground fault (A.G.) has been 
simulated in the first half of the overhead section, 12 miles from the bus 
S. The fault resistance and inception angle are 100 ohms and 1◦, 
respectively. The three-phase voltages before and after fault occurrence 
are depicted in Fig. 8. 

Fig. 9 exhibits the WTC2
DA2

and the aerial mode voltage profiles. As 
shown in Fig. 9, the time difference between the primary and secondary 
peaks of the traveling wave is 127 microseconds. 

If fault occurs on the overhead section, FS = +1, and FH = +1, using 
the equation of the first row of Table 1, F.L. can be calculated as follows: 

x =
1.85 × 105 × 127 × 10− 6

2
= 11.89mile 

Based on the following equation, the F.L. error is - 0.11%. 

%E =
dcalculated − dactual

L
× 100 (10) 

Where L is the length of the overhead/cable section. 
A.G. faults with 0.5 Ω fault resistance in different distances have 

been studied. The results are presented in Table 4. The simulation results 
show that the calculation error is restricted to 0.41% and 1.2% in 
overhead and cable sections, respectively. 

To compare the accuracy of the proposed method with recently 
published research [13, 19], we depicted the F.L. absolute error versus 
per unit fault distance for overhead and cable sections in Figs. 10 and 11, 
respectively. 

According to Fig. 10, the error of the proposed method in the entire 
overhead section is less than in previous works. Also, Fig. 11 implies that 
the error of the proposed method is less than other works in the entire 
cable section. 

The distribution of the obtained F.L. absolute errors in OHL and UGC 
sections is depicted in Fig. 12 in the form of box-plot form. Box-plot 
displays five statistical data: minimum, first quartile (Q1), median, 
third quartile (Q3), and maximum values of the corresponding data. The 
line that divides the box-plot into two parts is called median, in which 
half of the values are greater than or equal to this point, and the other 
half are less. 25 percent of the data fall below the Q1, and 25 percent are 
above the Q3. 

Fig. 12(a) shows that the F.L. absolute errors in the OHL section is 
distributed between 0.01% and 0.41%. The first quartile, the median, 
and the third quartile of the F.L. absolute errors in OHL section are 
0.02%, 0.04%, and 0.39%, respectively. Furthermore, Fig. 12(b) illus-
trates the F.L. absolute errors in UGC spread out from 0.1% to 1.2% so 
that the first quartile, the median, and the third quartile are 0.20%, 
0.55%, and 0.65%, respectively. The average absolute F.L. error is 
0.161% and 0.522% in OHL and UGC sections, respectively. 

5.3. Sensitivity analysis 

The impact of some effective fault parameters such as fault type, 
resistance, and inception angle have been simulated, and the results are 
presented. It should be noted that the absolute F.L. errors are calculated 
based on Eq. (10). 

Table 4 
Fault location error for different case.  

Fault 
section 

Fault Distance 
from the 
beginning of the 
section (mile) 

Outputs of 
classifier 

Calculated 
fault location 
(miles) 

Calculated 
absolute error 
(%) F. 

S. 
F. 
H. 

Overhead 
section 

5 1 1 4.81 0.19 
10 1 1 9.99 0.01 
20 1 1 19.98 0.02 
30 1 1 29.97 0.03 
40 1 1 39.59 0.41 
50 1 1 50.04 0.04 
60 1 − 1 60.41 0.41 
70 1 − 1 70.13 0.13 
80 1 − 1 80.39 0.39 
90 1 − 1 90.01 0.01 

Cable 
section 

2 − 1 1 1.98 0.10 
4 − 1 1 3.96 0.20 
6 − 1 1 6.13 0.65 
8 − 1 1 8.11 0.55 
10 − 1 1 10.14 0.70 
12 − 1 − 1 11.89 0.55 
14 − 1 − 1 13.87 0.65 
16 − 1 − 1 16.24 1.2 
18 − 1 − 1 18.02 0.1  

Fig. 10. Overhead section F.L. error comparison between the proposed method and recently published research.  
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5.3.1. The effect of fault resistance on F.L. accuracy 
To evaluate the performance of the proposed method, the effect of 

various fault resistances ranging 0.01–100 Ω in several arbitrary fault 
types and inception angles are studied as presented in Table 5. The re-
sults of this Table show that the error values are not affected by the value 
of fault resistance. It should be noted that, although the variation of the 
fault resistances strongly affects the intensity of the transient waves, 
since the normalized features are used as the input of ANNBPR, the F.L. 
accuracy is independent of the fault resistance value. 

5.3.2. The effect of fault inception angle on F.L. accuracy 
The impact of the fault inception angles ranging from 0 to 359◦ is 

evaluated on the performance of the proposed method and the results 
are reported in Table 6. The study is carried out at a fixed fault type 
phase A to the ground (A.G.), random fault distances, and resistances. 

Analysis of the results indicates that the value of the inception angle 
does not significantly affect the F.L. accuracy. 

5.3.3. The effect of fault type on FL accuracy 
The effect of the fault type on the performance of the proposed 

method under various fault distances, resistances, and inception angles 
has been evaluated and presented in Table 7. As seen, fault type, like 
other fault parameters, does not considerably impact the proposed F.L. 
performance. 

6. Conclusions 

In this paper, a single-ended method based on the feature selection 
approach and WPT is presented to locate the fault in a HTL. The tran-
sient information of the current and voltage signals is extracted from the 

Fig. 11. Cable section F.L. error comparison between the proposed method and recently published research.  

Fig. 12. Box plot of the absolute F.L. errors in (a) OHL section and (b) UGC section.  

N. Rezaee Ravesh et al.                                                                                                                                                                                                                        

Downloaded from https://iranpaper.ir
https://www.tarjomano.com



Electric Power Systems Research 204 (2022) 107721

10

corresponding sampled data during the first cycle of the post fault 
period. The information is then processed to obtain the entropy of the 
signals. The SVM algorithm and PSO algorithm are used to provide the 
optimal features and by this a better classification accuracy is achieved. 
A three-layer ANNBPR classified the faulty section and half. The 
required data for training of the ANNBPR are generated under different 
simulation scenarios. So, Bewley’s diagram of the aerial mode voltage is 
used to locate the fault. 

The proposed approach is applied to a 120-mile HTL (100-mile OHL 
+ 20 mile UGC). The simulation results show the accuracy of dis-
tinguishing the faulty section is 99.58%, and the faulty half in overhead 
and cable sections is 98.61% and 97.08%, respectively. Also, the error of 
F.L. is restricted to 0.41% and 1.2% in overhead and cable sections, 
respectively. 

The impact of various fault parameters such as type, resistance, and 
inception angle on the performance of the proposed method is evalu-
ated. It is shown that the error of F.L. does not depend on these 
parameters. 

The results of this paper are compared with two works in the area 
[13] and [19]. The accuracy of faulty-section, half detection, and F.L. of 
the proposed method is better than [13]. Although faulty-section and 

Table 5 
Evaluating the impact of fault resistances on the performance of the proposed method.  

Fault type, location and inception angle Fault resistance (Ohms) Outputs of 
classifier 

Calculated fault location (miles) Calculated absolute error (%) 

F.S. F.H. 

AG at 5 mile of HTL, δ = 35◦ 0.01 1 1 4.81 0.19 
14 1 1 
52 1 1 
100 1 1 

ABG at 87 mile of HTL,δ = 280◦ 0.01 1 − 1 87.05 0.05 
14 1 − 1 
52 1 − 1 
100 1 − 1 

CG at 105 mile of HTL (5 mile of cable section), δ = 10◦ 0.01 − 1 1 104.85 0.75 
14 − 1 1 
52 − 1 1 
100 − 1 1 

ACG at 118 mile of HTL (18 mile of cable section), δ = 40◦ 0.01 − 1 − 1 118.02 0.1 
14 − 1 − 1 
52 − 1 − 1 
100 − 1 − 1  

Table 6 
Evaluating the impact of fault inception angle on the performance of the proposed method.  

Fault type, location and resistance Fault inception angle (degrees) Outputs of 
classifier 

Calculated fault location (miles) Calculated absolute error (%) 

F.S. F.H. 

AG at 46 mile of line, RF = 20 Ω 0 1 1 45.88 0.12 
10 1 1 
35 1 1 
80 1 1 
300 1 1 

AG at 93 mile of line, RF = 60 Ω 0 1 − 1 92.97 0.03 
10 1 − 1 
35 1 − 1 
80 1 − 1 
300 1 − 1 

AG at 102 mile of line (2 mile of cable), RF = 0.1 Ω 0 − 1 1 101.98 0.1 
10 − 1 1 
35 − 1 1 
80 − 1 1 
300 − 1 1 

AG at 115 mile of line (15 mile of cable), RF = 70 Ω 0 − 1 − 1 115.1 0.5 
10 − 1 − 1 
35 − 1 − 1 
80 − 1 − 1 
300 − 1 − 1  

Table 7 
: Evaluating the impact of fault type on the performance of the proposed method.  

Fault distances, 
resistances and 
inception angle 

Fault 
type 

Outputs of 
classifier 

Calculated 
fault location 
(miles) 

Calculated 
absolute error 
(%) F. 

S. 
F. 
H. 

at 46 mile of HTL (46 
mile of overhead 
section), RF = 20 Ω, 
δ = 40◦

AG 1 1 45.88 0.12 
BC 1 1 
ACG 1 1 
ABC 1 1 

at 99 mile of HTL (99 
mile of overhead 
section), RF = 50 Ω, 
δ = 140◦

BG 1 − 1 98.98 0.02 
AC 1 − 1 
ABG 1 − 1 
ABC 1 − 1 

at 105 mile of HTL (5 
mile of cable 
section), RF = 0.5 
Ω, δ = 80◦

CG − 1 1 104.85 0.75 
BC − 1 1 
ABG − 1 1 
ABC − 1 1 

at 111 mile of HTL (11 
mile of cable 
section), RF = 25 Ω, 
δ = 77◦

AG − 1 − 1 110.8 1 
AB − 1 − 1 
BCG − 1 − 1 
ABC − 1 − 1  
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half detection accuracy is a little lower than of [19], the F.L. error in all 
cases, especially near the middle of the overhead and cable sections, is 
lower than [19]. 
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Appendix I 

- Parameters of the system under study   

Receiving and sending end voltage source parameters [13] 
Positive sequence impedance (Z1) 1.96 + j 4.70 Ω 
Zero sequence impedance (Z0) 1.44 + j 4.39 Ω 
Frequency of the system 50 Hz  

- Configuration of overhead transmission line and cable [10] 

- EMTP_RV data for 230kv overhead transmission line [10] 
- EMTP_RV data for cable [10]   

Phase skin DC Resistance [Ω/mile] Outside Diameter [inches] Horizontal Distance [ft] Vertical Height at tower [ft] Number of bundles 

ground 0.5 6.74 0.36 45 114 0 
ground 0.5 6.74 0.36 75 114 0 
A 0.5 0.0984 1.196 60 101 2 
B 0.5 0.0984 1.196 45 80 2 
C 0.5 0.0984 1.196 75 80 2    

phase Inside radius of 
core [cm] 

Outside radius of 
core [cm] 

Inside radius of 
sheath [cm] 

Outside radius of 
sheath [cm] 

Outer insulation 
Radius [cm] 

Resistivity of core 
[Ω/m] 

Resistivity of sheath 
[Ω/m] 

A 0 2.34 3.85 4.13 4.84 0.017e-6 0.21e-6 
B 0 2.34 3.85 4.13 4.84 0.017e-6 0.21e-6 
C 0 2.34 3.85 4.13 4.84 0.017e-6 0.21e-6  
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