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a b s t r a c t 

Physicians and healthcare providers need to better understand the thought processes and 

methods used in clinical decision-making. This allows physicians to diagnose and detect 

diseases early, especially heart disease that causes death. The diversity and availability of 

healthcare data encourage clinicians to use healthcare applications in the diagnosis pro- 

cess. Most of these applications use machine learning techniques to make accurate and 

fast decisions. On the other hand, Explainability in healthcare applications increase the 

level of clinician confidence and reduces the risk of making wrong decisions, thus expands 

the scope and efficiency of healthcare applications. In this paper, we propose a novel data- 

driven method based on fuzzy clustering and linguistic modifiers to design a fuzzy rule- 

based classification system for heart disease diagnosis. The proposed system provides an 

interpretable knowledge base to explain the decision-making process. Regarding the ex- 

periment, we have used Cleveland, Hungarian and Va long beach heart disease datasets 

to compare the proposed method with five known machine learning methods for predict- 

ing heart disease: Artificial neural network, Support Vector Machine, K-Nearest Neighbor, 

Naïve Bayes, and Random Forest. The findings show that the proposed model is superior 

in terms of balancing interpretability and precision. 

© 2021 The Author(s). Published by Elsevier B.V. on behalf of African Institute of 

Mathematical Sciences / Next Einstein Initiative. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

Introduction 

New technologies have led to the development of many fields such as medicine, industry, agriculture and commerce. 

Especially in the medical field, these technologies are used in the healthcare sector to provide better services at reason- 

able cost, and to develop hospital information systems by integrating tools ensuring comprehensive monitoring of patient 

health and clinical decision support [1] . The main purpose of clinical decision support tools is to aid healthcare by enabling

analysis of patient data and using that information to help in formulating a diagnosis. Some of the benefits of clinical de-

cision support tools are to help in clinical decision making, reduce misdiagnosis, reduce the risk of medication errors, and 

reduce the mortality rates [2] . The main objective of physicians around the world is to reduce mortality, but to achieve

this goal, researchers and scientists must face many challenges. One of the biggest challenges is to treat diseases that in-
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crease mortality rates. In the literature, cardiovascular diseases are considered one of the deadliest diseases in the world, 

such as heart disease, cerebrovascular diseases and vascular diseases [3] . In 2016, the World Health Organization confirmed 

that 17.9 million people worldwide died from cardiovascular disease, accounting for 31% of all global deaths. 85% of these 

deaths are due to a heart attack and stroke [4] . The increase in mortality is due to risk factors that increase the probabil-

ity of developing cardiovascular disease, such as age, family history of cardiovascular disease, gender, high cholesterol, high 

blood pressure, diabetes, smoking and obesity [5] . Avoiding risk factors decreases the probability of premature heart attacks 

and strokes, through healthier diets, regular physical activities, and not using tobacco products. It is also very important 

to check and control risk factors for heart disease and stroke such as high blood pressure, high cholesterol and high blood

sugar and diabetes. Clinically, the early diagnosis of heart disease is essential to improve prevention and take more preven- 

tive measures to reduce the mortality of high-risk groups [6] . An accurate diagnosis analyzes the symptoms that differ from

person to person based on age, weight, gender, and many other variables. The diversity and multiplicity of these variables 

require clinicians to spend a lot of time and energy studying them in order to make effective decisions. These reasons have

prompted researchers to develop clinical decision support systems based on previous treatments, clinical records, statistics 

and information in the database [7] . Clinical decision support systems provide physicians and other health professionals 

with clinical decision support, that is, assistance with clinical decision-making tasks when it comes to their patients. In this 

context, machine learning and data mining technology effectively help heart disease data analysis and knowledge extraction 

[8] . Machine learning techniques (such as clustering, regression, and classification) have been widely used to predict heart 

disease; it is very important to make reliable predictions of heart disease to carry out appropriate treatments. Therefore, 

the ability to explain clinical decision-making has become the priority of a physician over accuracy, speed, and effectiveness 

[9] . Indeed, explaining why someone is classified as sick or for other reasons will increase the level of confidence of the

physician and decrease the risk of making wrong decisions [10] . 

In order to achieve these goals, machine learning models often face the challenge of balancing interpretability (explain- 

ability) and accuracy. Currently, Explainable Artificial Intelligence (XAI) techniques are used to explain machine learning 

models, or in other words, to produce explainable models [11] .The objective of XAI is the end user who depends on the

decisions or recommendations of AI systems, or the actions they take. Therefore, stakeholders must understand the logic 

of the systems they use. Fig. 1 illustrates the concept of XAI, which is to provide users with explanations allowing them

to understand the general strengths and weaknesses of the system, to understand how it will behave in the future or in

different situations, and to allow users to correct system errors [12] . One of the most transparent technologies in XAI is

the rule-based model, in particular the fuzzy rule-based model, which allows the extracted knowledge to be reviewed for 

a dual purpose. On the one hand, to obtain a clear explanation of the inference process carried out by the system [13] .

On the other hand, the ability to have confidence in the description of the rules and their relation to the problem to be

solved. Fuzzy rule-based systems (FRBS) and fuzzy rule-based classification systems (FRBC) combine the ability to represent 

knowledge in a natural way for human understanding (with fuzzy rules), the power of fuzzy reasoning and the ability to

probe complex problems. In this context, we raise the challenge to obtain a fuzzy rule-based classification system that can 

achieve a good compromise between interpretability and accuracy in predicting heart disease. 

In this paper, we propose a fuzzy rule-based classification system for predicting heart disease through expanding the 

fuzzy linguistic rules learning method (based on subtractive clustering and linguistic modifiers) proposed in [14] . The novel 

method called " Fuzzy classification Rules Learning through Clustering " (FCRLC) learns fuzzy classification linguistic rules 

from data. The next section presents the related work. Section 3 explains the proposed methodology by presenting the 

dataset used in this study and the techniques for performance evaluation. Section 4 contains a prelaminar of fuzzy rule- 

based classification system and the proposed method to learn linguistic fuzzy classification rules. In section 5, the results 

and the discussion are given. 
Fig. 1. The XAI concept. 
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Related work 

Several studies have been used machine learning models, such as K-Nearest Neighbor (K-NN) [15] , Naïve Bayes (NB) 

[16] , Decision Trees (DT), Support Vector Machines (SVM) [17] , and Artificial Neural Networks (ANN) [18] , to identify heart

disease. The available UCI Cleveland heart disease dataset [19] , containing 76 attributes and 4 datasets, has been used in

most studies. Studies using all features have used feature selection to improve the relevance of machine learning models, 

such as manual feature selection in [20] ; Fast Correlation based Feature selection (FCBF) in [21] , Least Absolute Shrinkage

and Selection Operator (LASSO) in [22] and particle swarm optimization (PSO) in [23] . Most studies preprocess the data to

remove missing values and use the features most relevant to heart disease (14 features). These studies aim to determine the

most effective machine learning model for predicting heart disease, through improving of one or more machine learning 

algorithms, a hybridization of several algorithms, a comparative analysis of classification algorithms or using XAI techniques 

to explain machine learning models: 

1 Enhancing the machine learning model . In [24] , the author proposed a heart disease prediction system using the Mul-

tilayer Perceptron Neural Network (MLP) with backward propagation as a training algorithm, the model has a high ac- 

curacy of 93.39% for five neurons in the hidden layer. In [25] , the author used logistic regression (LR) to predict heart

disease. The LR algorithm is compared to four machine learning algorithms: NB, SVM, DT and K-NN. The LR algorithm 

achieves the best performance with an accuracy of 86.89%. In [20] , the researcher proposed a prediction model based

on Random Forest algorithm (RF) [26] , the authors used manual feature selection (9 features) and 25% of database for

testing. The RF algorithm achieves an accuracy of 97.56%. 

2 Hybrid algorithms . In [27] , the author combined several machine learning algorithms to propose a hybrid model for 

heart disease prediction. The algorithms involved are NB, SVM, K-NN, ANN, J48, and RF, and genetic algorithms (AG). The 

results showed that 89.2% accuracy was achieved by NB and SVM algorithm. In [28] , the author proposed a hybrid model

that combines naive Bayes algorithm and genetic algorithm, and compares the obtained model with weighted fuzzy rules 

and logistic regression models; the model achieves the best performance with an accuracy of 97.14%. 

3 Comparative analysis of classification algorithms . In [29] , A comparative study was carried out of the NB, DT, RF, SVM

and LR algorithms in which the authors used a 10-fold cross-validation. The results demonstrated that DT and SVM are 

the two perfect algorithms with an accuracy of 93.19% and 92.30%, respectively. In [30] , four machine learning algorithms

are studied: RIPPER, DT, NN and SVM. To compare the performance of selected algorithms, the author identified three 

algorithms (K-NN, NB and MLP). The SVM algorithm achieves an accuracy of 90.00%. In [31] ,in order to propose a cloud-

based system of heart disease prediction, the author combined two data sets: Cleveland and Va long beach. SVM, MLP, 

LR, NB and RF are the five algorithms involved in the comparative study. The best classifier is SVM, with an accuracy of

97.53%. 

4 XAI techniques to explain machine learning models. Many studies in recent years have focused on explainable models 

in healthcare [9] , particularly for heart disease prediction. In [32] , The author used the Cleveland heart disease dataset to

test feature-based and example-based XAI techniques. The author is interested in feature-based techniques such as Local 

Interpretable Model-agnostic Explanations (LIME) and Shapley Additive Explanations (SHAP), as well as example-based 

techniques like Anchors and Counterfactuals. The results show that Anchors, which are based on If-then rules, are more 

generalizable than LIME and SHAP. In [33] , the author proposed an interpretable model based on Genetic Algorithms 

(GA) and Adaptive Neural Fuzzy Inference System (ANFIS) for predicting heart disease. 9-fold cross-validation was used in 

evaluation process. In addition, the author proposed an Importance Evaluation Function (IEF) to examine the importance 

of various features in predicting heart disease. The proposed model achieves an accuracy of 82.5%. 

Few studies have also used a single dataset with limited features of heart disease using other data sources, such as

[34–36] . 

We note that the fluctuating efficiency of machine learning algorithms in predicting heart disease, due to the different 

classification accuracies, cannot be generalized which reduces the confidence of physicians. To deal with these problems, 

explainable machine learning models improve transparency by indicating the reasoning behind a specific decision on the one 

hand, and knowledge of the relevant factors that influence the prediction of results on the other. Therefore, we propose an

explainable model based on linguistic IF-THEN rules which provides textual explanations thus allows for informed decision- 

making. 

Methodology 

As shown in Fig. 2 , we propose an explainable prediction system in three steps in order to prevent the presence of heart

disease: The first step is preprocessing of dataset. The second step is the design of a fuzzy rule-based classification system

using fuzzy clustering and linguistic modifiers. The final step is the design explanation interface. 

Description and preprocessing of dataset 

This paper uses three heart disease dataset extracted from the UCI machine learning repository [19] Cleveland, Hungarian 

and Va long beach. Cleveland dataset contains information about individuals who come to the hospital and have been 
3 
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Fig. 2. Explainable prediction model of heart disease. 

 

 

 

 

 

 

 

 

 

 

screened for heart disease. The dataset consists of 303 records and 14 attributes, six of which are numerical attributes, four

of which are binary attributes and four of which are nominal attributes. The "One-Hot" method is used to encode nominal

variables [38] , since subtractive clustering algorithm requires that all input and output variables must be numeric. Due to 

the missing values, the size of the dataset is reduced to 297, where 137 have heart disease. A complete description of the

used dataset is shown in the appendix (A) of this paper. 

Due to the large number of missing values in the last three variables "Slope", "CA", and "THAL" in the Hungarian and

Va long beach datasets, we decided to drop them from the prediction model. In order to have more instances we have

combined Hungarian and Va long beach datasets into a single CombinedHunVa dataset with 358 records and 11 attributes. 

Performance evaluation methods 

In order to assess the validity of the predictive model, various measurements can be calculated such as sensitivity, speci- 

ficity, accuracy and Receiver Operating Characteristics curve: 

Specificity measures the proportion of negatives data that are correctly identified using Eq. (1) . 

Speci f icity = 

T N 

T N + F P 
(1) 

Where True Negative (TN) means the number of negative data correctly labeled by the classifier and False Positive (FP) 

means the number of negative data that has been incorrectly labeled as positive. 

Sensitivity measures the percentage of actual positives data that are correctly identified in Eq. (2) [39] : 

Sensit i v it y = 

T P 

T P + F N 

(2) 

Where True Positive (TP) and False Negative (FN) mean the number of positive data correctly labeled by the classifier, and

the number of positive data that have been mislabeled as negative. 

Accuracy measures the percentage of data points that are correctly identified in Eq. (3) : 

Accuracy = 

T N + T P 

T P + F P + T N + F N 

(3) 

Receiver Operating Characteristics (ROC) curve is used to assess the predictive ability of different models. They are 

made by plotting the true positive rate against the false positive rate at different thresholds. Area Under the Curve (AUC)

characterizes the ROC curve, the higher AUC value, the more efficient the classification performance. 

Explainable model 

Fuzzy rule-based classification system 

This section contains a formal representation of linguistic classification rules learning. There are two main components of 

the FRBC knowledge base: The Database(DB) and the Rulebase (RB). The RB is a set of fuzzy IF-THEN rules. The DB defines

the number of linguistic labels and their membership functions (MF) parameters for each linguistic variable. 

Database of FRBC 

Formally, linguistic fuzzy rule-based classifier has M attributes a j ( a j ε D ), j = 1,…, M and one output y ( y ε Y ); D j and

Y are the data domains of a j and y respectively. Let A j = { A j 
k /k = 1 ,…,S j } a set of fuzzy sets defined in D j . Each fuzzy set A j 

k 

is associated with a linguistic label and is represented with its membership function μ
A k 

j 
( a j ) : D j → [ 0 , 1 ] . The output is

associated with a collection of fuzzy singletons A o = { A o 
k /k = 1,…, L o } defined on the domain Y = { C k /k = 1,…, L o } where C k 

is a class label associated with A o 
k . The membership function of A o 

k is of the form: 

μA k o 
= 

{
1 , y = C k 

0 , y � = C k 

4 
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Rulebase of FRBC 

Assume S RB = { RF i /i = 1,…, L } is the set of fuzzy classification rules that make up the rule base, and each fuzzy rule is

written as follows: 

RuleR F i : IF ( x p 1 is A i 
1 ) and ...and ( x p M 

is A i 
M ) T HEN Class C i With R W i 

where RF i is the label of the i th fuzzy rule, X p = (x p 1 , x 
p 

2 ,…,x p M 

) is an M-dimensional input data vector, A j 
k ε A j for k = 1,…, M;

C i ε Y and RW i is the rule weight ( RW i ε [0,1]). The weight of each fuzzy base RF i has a significant effect on the performance

of fuzzy rule-based classification system [40] . Various specifications of the rule weight have been proposed and discussed 

in the literature [41] (such as heuristic methods), where the most common definition is the fuzzy confidence value or the

certainty factor (CF) [42] : 

R W i = C F i = 

∑ 

X p ∈ Class C i 
μR i ( X p ) ∑ N 

p μR i ( X p ) 
(4) 

where μR i 
( X p ) is the correspondence degree of the vector X p calculated using the antecedent part of the fuzzy rule RF i in

Eq. (6) . 

Fuzzy reasoning method 

The FRBC uses the RF i rules from the knowledge base to determine the class of X p . The vector X p is attributed to the

consequent class C w 

of the rule R w 

according to the formula (5). R w 

is determined according to the correspondence degree

μR w ( X p ) and its weight RW w 

. The correspondence degree μR i 
( X p ) , defined by formula (6), of each rule RF i is calculated

using the conjunction operator (Product T-norms). 

μR w ( X p ) . R W w 

= max { μR i ( X p ) .R W i / R F i ∈ S RB } (5) 

μR i ( X p ) = μA 1 
i 

(
x p 

1 

)
. . . μA M 

i 

(
x P M 

)
(6) 

Fuzzy classification rules learning through clustering (FCRLC) 

The purpose of this contribution is to build a FRBC for predicting heart disease with good trade-off between accuracy 

and interpretability. FCRLC method is an automated generation of a linguistic FRBC system based on data that integrates 

an embedded database learning wrapping Rulebase learning. Fig. 3 shows the architecture of FCRLC model, that contains 

three components: Database learning, Rulebase learning and Evaluation module. The Database learning is based on Multi- 

granularity fuzzy discretization algorithm to obtain uniform fuzzy partitions with Gaussian membership functions. In order 

to respect the complexity and the semantic constraints of interpretability in [ 43 , 44 ], the number of membership functions

in each fuzzy partition must be between 2 and 9; and the maximum number of rules to be processed must be less than a

threshold ( NB_Max_Rules ) determined by experimentation. Iteratively, the algorithm looks for the optimal Database. In which 

each iteration provides an intermediate Database. Each intermediate Database triggers Rulebase learning, that contains three 

components: Radius module, Subtractive clustering, and Rule module. Radius module calculates the radius r a (a vector of 

scalars) using the parameters of Gaussian membership function (Mean and standard deviation). In order to extract fuzzy 

clusters, the Rulebase learning algorithm separates training data into groups according to their respective classes ( Data_C i 
( i = 1,…, L )) and applies the subtractive clustering algorithm (using r a ) on each Data_C i . The Rules module is based on these

clusters ( Clusters_Ci is a set of clusters obtained from Data_C i ) to learn linguistic fuzzy classification rules in two steps: 

i Linguistic approximation of the fuzzy classification rules 

ii Improvement of accuracy in linguistic fuzzy classification rules with linguistic modifiers (applied to numerical attributes). 

The third component is the Evaluation module in which the knowledge base is evaluated in a fuzzy rule-based clas- 

sification system. The classification precision (accuracy) and the number of rules are calculated by Evaluation module; if 

the accuracy is increased and the number of rules is less than the threshold NB_Max_Rules , then the knowledge base is

accepted; otherwise, it is rejected. The Database learning process stops when the optimal knowledge base is obtained. 

The following sections detail the tasks of the Database learning unit and Rulebase learning unit. 

Database learning 

DB learning is based on Multi-granularity fuzzy discretization algorithm, in which the authors suppose that the fuzzy 

partitions are uniform and the Gaussian membership functions (MFs) define the meanings of each linguistic label. In order 

to select the optimal database, two issues to take into account: the error produced when applying the model to the train-

ing data and its complexity. In our case, classification precision (accuracy)and the complexity ( NBRules Numbers of fuzzy 

classification rules). The aim of multi-granularity fuzzy discretization algorithm is to precise the number of linguistic la- 

bels for each linguistic variable. Formally, consider a collection of N data points { x 1 ,x 2 ,…,x N } in an M -dimensional space. Let

V = {v 1 ,v 2 ,…, v M 

} a set of linguistic variables, min (v i ) and max (v i ) are, respectively, the minimum and maximum values of

universe of discourse of v , NbMax (equal to 9) and NbMin (equal to 2) are, respectively, the maximum and the minimum
i 

5 
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Fig. 3. FCRLC architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

numbers of linguistic labels per linguistic variable, and Lb = {(l 1 ,l 2 ,…,l M 

) /l i ε{2,…, NbMax} and i = 1,…,M} the set of M–tuples

where l i is the number of linguistic labels of v i (l i ≤ NbMax). Lb define the search space and has a cardinality of ( NbMax-1) M .

To deals with the complexity of Lb , the researchers determine an initial DB by searching in { (n,....,n) / n = NbMin… NbMax }

the optimal M–tuples ( OIDB = ( n opt 
1 ,....,n opt 

M )). Afterwards, the algorithm searches iteratively the final DB using OIDB : For ex-

ample, in j th dimension, the algorithm searches iteratively the optimum number ( OPTJ ) of linguistic labels (from NbMin to

NbMax ) by fixing the other dimensions and replaces n opt 
j with OPTJ . The algorithm deals with the other dimensions in the

same manner. The obtained DB is an intermediate DB (IDB). This process is repeated for each IDB until the final DB has

been obtained. The Database learning algorithm is described in [14] . 

Rulebase learning 

The Rulebase learning is based on subtractive clustering and linguistic modifiers. To extract fuzzy clusters from training 

data, Database learning algorithm separates training data into groups according to their respective classes C f and applies the 

subtractive clustering algorithm on each Data_C f [45] . The subtractive clustering algorithm calculates the potential of data 

point x i ( x i ∈ Data_C f ) with Eq. (7) . 

P i = 

| Data _ C f | ∑ 

j=1 

e −α‖ x i −x j ‖ 2 (7) 

where | Data_C f | denotes the number of data points of Data_C f , α= 4/r a 
2 and r a is the cluster radius , it is an M-dimensional

vector of positive scalars which specifies the value of the radius in each dimension . The subtractive clustering algorithm uses

a set of initial parameters: The cluster radius r a , the accept ratio ( ́ε = 0.5), the reject ratio ( ε= 0.15) and the neighborhood of

cluster ( r b = 1.25 ∗r a. ). As showing in Fig. 3 , the radius module uses the MFs parameters to calculate the radius r a . In order to

illustrate task radius module in j th dimension, let {MFun j 
k / k = 1… l j } the set of Gaussian membership functions obtained

by uniform fuzzy discretization of v j , the MFun j 
k parameters are: C j 

k the mean and σ j 
k the standard deviation. The module

calculates the j th value r a 
j of r a. with Eq. (8) [46] . 

r j a = 

σ j k 

√ 

8 (
max 

(
v j 

)
− min 

(
v j 

)) (8) 
6 
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Experimentally, the default values of r b , έ and ε affect the number of extracted clusters. Indeed, the constant values 

of initial parameters can produce excessive or insufficient number of clusters. It is necessary to adapt the values of initial

parameters to the density of data points. Therefore, Database learning algorithm searches the adaptive value of r b in Sr b =
{r a 

∗(1 + f/10) / f = 1…5} ( Sr b is used to determine the good neighborhood of extracted clusters). Concerning ε value is calcu-

lated with the help of maximal and minimal potential ( P max and P min ): ε= P min / P max . Experimentally, έ = 0.5 is a reasonable

ratio to accept clusters [14] . 

In order to interpret the clusters centers X 

c of each class C f in fuzzy classification rules, Rule module projects X 

c in all

dimensions : 

RuleR F X 
c 
: IF ( x 1 is A f 

1 ) and ...and ( x M 

is A f 
M ) T HEN Class C f 

where A f 
j is the fuzzy set defined by X 

c on v j (the j th linguistic variables). The membership function of A f 
j is given by Eq. (9) .

μ
A j 

f 

( x ) = e 

−( x −x c 
j ) 

2 

2 σ2 
j (9) 

where σ j and x j 
c are respectively the influence range and the j th value of X 

c . 

Afterwards, the Rule module uses Euclidean distance to linguistically approximate the fuzzy rules and increases preci- 

sion with linguistic modifiers (particularly, powered modifiers: PM = { Very (P = 2), Plus (P = 1.25), Minus (P = 0.75), More

or less (P = 0.5), slightly (P = 1.7) , and A little (P = 1.3)} ) using Hamming distance [47] . Eq. (10) illustrates the linguistic

approximation of the cluster X 

c : 

T j 
C ← argmin 

(∣∣ x j 
C − C j 

k 
∣∣)

k = 1 , . . . , l j 
(10) 

With x j 
C is the j th value of X 

c and C j 
k the mean of MFun j 

k and T j 
C is the linguistic label returned by Eq. (10) . The

generated fuzzy rules require an improvement of accuracy with linguistic modifiers due to the uniform fuzzy partition. 

Eq. (11) calculates the Hamming distance between μ
A 

j 
f 

, the MF of cluster X 

c in j th dimension, and ( MFun j 
C ) p : 

H D P = 

max ( v j ) 
∫ 

min ( v j ) 

∣∣∣μA j 
f 

( x ) −
(
MF un 

C 
j 

)p 
( x ) 

∣∣∣dx (11) 

where MFun j 
C is the MF associated to the linguistic label T j 

C and P is the power value of the linguistic modifier. 

The Rule module replaces the linguistic label T j 
C by the expression " modifier j 

C T j 
C ". modifier j 

C is obtained using Eq. (12) 

P min ← argmin ( H D P ) 
p ∈ P M 

(12) 

where PM denotes the set of linguistic modifiers parameters and P min is the value power of modifier j 
C . 

Each linguistic fuzzy rule, in obtained Rulebase, includes M conditions. To simplify the Rulebase and take into account the 

improvement of accuracy simultaneously, we have reduced the number of conditions with don’t care condition.The Rulebase 

learning algorithm is described in [14] . 

Results and discussion 

This section involved discussion on FCRLC classification model compared to the most used machine learning models 

in the prediction of heart disease: Naive Bayes, K-Nearer Neighbor, Support Vector Machine, Random Forest and Artificial 

neural network. First, we describe the tools used to perform the experiments. In the second, we tested the performance of

various machine learning algorithms on the Cleveland and CombinedHunVa heart disease datasets using various parameter 

values for each model. Table 1 lists the tuned parameters, with their meanings. In the third, we used the FCRLC knowledge

base to create a clinician explanation interface. 

Tools 

The tools used to perform the experiments were Python libraries. We used Scikit-fuzzy, a fuzzy logic toolbox for SciPy, 

to build the FCRLC model [37] . Learning and optimization algorithms are implemented with Python. For SVM, ANN, NB, RF,

and K-NN models are performed with Scikit-learn library. The hyperparameters of each model (SVM, ANN, K-NN and RF) are 

optimized with GridSearchCV method of Scikit-learn. 

Results of 10-Fold cross-validation for classifiers performance 

The experiment applies 10-fold cross validation methods to check the performance of six machine learning algorithms. 

In 10-fold cross validation approach, each dataset is randomly divided into two subsets: 90% of data for the training and

10% of data for testing. Moreover, different parameters values were tested for each classifier. 
7 
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Table 1 

Comparison algorithms and their tuned parameters. 

Algorithms Parameters 

SVM C ∈ {0.5, 1, 10, 100} 

Gamma ∈ {1,0.1,0.01,0.001, 0.0001} 

Kernel ∈ {’ rbf ’,’ poly ’} 

RF n_estimators ∈ { 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 } 

K-NN K ∈ {1,2, …,30} 

Weights ∈ { ’uniform’,’distance’ } 

ANN hidden_layer_sizes ∈ { 8,12,16 } 

activation ∈ { ’logistic’,’tanh’,’relu’ } 

solver ∈ { ’lbfgs’,’sgd’,’adam’ } 

alpha ∈ { 0,0.0005,0.0001,0.0005,0.001 } 

’ rbf ’: Radial Basis Function; ’ poly’: Polynomial ; ’ linear ’: Linear; ’uniform’: Uniform 

weights ; ’distance’: Inverse Distance Weighting; ’logistic’ : Logistic sigmoid function; 

’ tanh’: Hyperbolic Tan function; ’relu’: Rectified Linear Unit function; ’lbfgs’ : Broyden 

Fletcher Goldfarb Shanno method; ’sgd’: Stochastic Gradient Descent method; ’adam’: 

Stochastic Gradient-based Optimization method . 

Table 2 

Comparison of developed models for Cleveland dataset. 

Algorithms Accuracy Specificity Sensitivity AUC 

NB 84.51% 84.84% 80.94% 90.14% 

SVM ( kernel = ’linear’, C = 0.5, Gamma = 1 ) 84.19% 84.12% 78.80% 91.11% 

ANN (activation = ’tanh’, alpha = 0.0005, 

hidden_layer_sizes = 12, solver = ’adam’) 

83.87% 84.32% 78.85% 89.78% 

FCRLC ( NB_Max_Rules = 30) 83.17% 83.17% 83.96% 85.48% 

K-NN ( k = 29) 82.15% 82.55% 77.31% 89.22% 

RF (100 iterations) 82.17% 83.41% 79.51% 88.76% 

Table 3 

Comparison of developed models for CombinedHunVa dataset. 

Algorithms Accuracy Specificity Sensitivity AUC 

SVM (kernel = ’ rbf ’, C = 100, Gamma = 0.1 ) 82.67% 84.32% 79.74% 88.69% 

NB 82.33% 86.72% 83.70% 90.74% 

K-NN ( k = 30) 82.10% 83.46% 79.16% 88.55% 

FCRLC ( NB_Max_Rules = 30) 80.46% 82.42% 79.82% 88.50% 

ANN (activation = ’relu’, alpha = 0.0005, 

hidden_layer_sizes = 8, solver = ’adam’) 

80.40% 83.29% 78.53% 87.64% 

RF (90 iterations) 75.34% 79.31% 76.84% 86.37% 

 

 

 

 

 

 

 

Results for Cleveland dataset 

In Table 2 , NB classifier shows good performance that has 84.51% classification accuracy, 84.84% specificity and 80.94 

sensitivity. SVM classifier with kernel = ’linear’ , C = 0.5 and Gamma = 1 shows excellent performance which has accuracy

84.19%, specificity 84.12% and sensitivity 78.80%. Artificial neural network was trained with one hidden layer and differ- 

ent numbers of hidden neurons { 8,12,16 }. With 13 inputs and 12 neurons in hidden layer, ANN classifier achieved 83.87%

accuracy,84.32% specificity, and 78.85% sensitivity. For FCRL classifier, we performed experiments with different values of 

NB_Max_Rules = 20, 30, 40, 50 and 100. However, at NB_Max_Rules = 30, the performance of FCRLC was excellent. FCRLC

has accuracy 83.17%, specificity 83.17% and sensitivity 83.96%. For K-NN classifier, we performed experiments with different 

values of k ∈ {1,2, …,30}. However, at k = 29, the performance of K-NN was excellent. K-NN has accuracy 82.15%, speci-

ficity 82.55% and sensitivity 77.31%. Random forest classifier trained with 100 iterations has classification accuracy 82.17%, 

specificity 83.41%, and sensitivity 79.51%. 

As shown in Fig. 4 , NB classifier outperformed the other five classifiers in terms of accuracy, with classification accuracy

more than 84.5%. The second important classifier is SVM with classification accuracy 84.19%. Other classifiers’ accuracy was 

greater than 82%, and their ROC AUC values were greater than 85% and less than 92%, indicating that classifiers are more

effective. The comparison emphasizes FCRLC’s competitiveness based on accuracy and ROC AUC results. 

Results for combinedhunva dataset 

In Table 3 , SVM with kernel ’ rbf ’, C = 100 and Gamma = 0.1 showing good performance that has 82.67% classification ac-

curacy, 84.32% specificity and 79.74% sensitivity. NB classifier has 82.33% accuracy, 86.72% specificity, and 83.70% sensitivity. 

The performance of K-NN was excellent at k = 30. K-NN has accuracy 82.10%, specificity 83.46% and sensitivity 79.16%.The 

performance of FCRLC was excellent with NB_Max_Rules = 30, indeed FCRLC has accuracy 80.46%, specificity 82.42% and 
8 
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Fig. 4. Performance of different classifiers for Cleveland dataset. 

Fig. 5. Performance of different classifiers for CombinedHunVa dataset. 

 

 

 

 

 

sensitivity 79.16%. ANN classifier (with 8 neurons in hidden layer) achieved 80.40% accuracy, 83.29% specificity and 78.53% 

sensitivity. Random forest classifier trained with 90 iterations has classification accuracy 75.34%, specificity 79.31%, and sen- 

sitivity 76.84%. 

As shown in Fig. 5 , in terms of accuracy, SVM outperformed the other five classifiers, with only minor differences be-

tween the NB and K-NN classifiers. The accuracy of the FCRLC and ANN classifiers exceeded 80%. The RF classifier had a

poor performance in terms of classification accuracy, which was less than 76%. The ROC AUC values of classifiers are greater

than 86% and less than 91%, indicating that classifiers are more effective. 

Explainability of the FCRLC model 

From the explainability point of view, NB, K-NN and FCRLC models are part of the transparent models, while the SVM,

RF and ANN models belong to the set of opaque models. It is necessary to apply XAI techniques to machine learning models

in order to discuss explainability. At this point, FCRLC outperforms the other five machine learning algorithms in terms of 

explainability by providing a simple and transparent linguistic knowledge base. Indeed, FCRLC offers a very simple database 

in which all input variables are discretized with uniform fuzzy partitions. 
9 
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Fig. 6. The fuzzy partitions of linguistic variables Sex (a), Chol (b) et CP (c). 

Fig. 7. Explanation interface of FCRLC. 

Table 4 

Database information. 

Attributs Number of 

linguistic labels 

Lists of linguistic labels 

Sex 2 {Female, Male} 

Fbs 2 {Normal, High} 

Exang 2 {Angina, No angina} 

Age 3 {Adult, Mature, Old} 

Trestbps 3 {Normal, Elevated,-High} 

Chol 3 {Normal, Elevated, High} 

Thalach 3 {Low, Medium, High} 

Oldpeak 3 {Low, Medium, High} 

RestEcg 3 {Normal, ST-T wave abnormality, left ventricular hypertrophy} 

Slope 3 {Upward slope, Flat, downward slope} 

Thal 3 {Normal, Fixed defect, Reversible defect} 

CP 4 {Typical Angina, Atypical Angina, Non-Anginal Pain, Asymptomatic Pain} 

CA 4 {No vessel, One vessel, two vessels, Three vessels} 

 

 

 

 

 

 

In the case of Cleveland dataset (for example), Table 4 shows the number of membership functions and the list of linguis-

tic labels for each linguistic variable. the variables Sex, Fbs and Exang have two linguistic labels, the variables Age, trestbps,

Chol, thalach, Oldpeak, RestEcg and Slope have three linguistic labels, and the variables CP and CA have four linguistic labels.

As shown in Fig. 6 , the variables Sex, Chol (Cholesterol level), and CP (Type of chest pain) were chosen to indicate the

fuzzy partitions with 2, 3, and 4 linguistic labels, respectively. 

Table 5 presents the FCRLC Rulebase, in which the linguistic modifiers are marked in bold and omitted conditions of a

rule was described by "—" dashes. FCRLC Rulebase is composed of seven rules, three of which affirm the heart disease of a
10 
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Table 5 

The FCRLC rule base. 

Variables 

Linguistic rules 

R1 R2 R3 R4 R5 R6 R7 

Antecedents Age More or less Old — Mature Mature Mature Mature Mature 

Sexe Female Male Female Male Male Male Male 

CP Asymptomatic — Asymptomatic Non-Anginal Pain Asymptomatic Asymptomatic —

Trestbps More or less Normal Elevated Elevated — Elevated Elevated Normal 

Chol More or less Normal Normal Normal Normal Elevated Elevated Elevated 

Fbs Normal Normal Normal Normal Normal Normal Normal 

Restecg Normal left ventricular hypertrophy Normal Normal left ventricular hypertrophy Normal Normal 

Thalach More or less Medium High Medium Medium Medium Medium Medium 

Exang No angina No angina No angina No angina Angina Angina Angina 

Slope Flat Flat Upward slope Upward slope Flat Flat Flat 

CA No vessel No vessel No vessel No vessel One vessel No vessel No vessel 

Oldpeak More or less Medium Low Low Low Low Low Medium 

Thal Normal Normal Normal — Fixed defect Normal Reversible defect 

Consequent HD Negative Negative Negative Negative Positive Positive Positive 

11
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Table 6 

Example of a request for individual prediction. 

Attribute Value Attribute Value 

Age 63 Thalach 150 

Sex Male Exang Yes 

CP Typical Angina Slope Downward slope 

Trestbps 145 CA 0 

Chol 233 Oldpeak 2.3 

Fbs Blood sugar > 120 mg/dL Thal Fixed defect 

Restecg Left ventricular hypertrophy 

 

 

 

i

 

 

 

patient. The linguistic form of rules allows experts and clinicians to analyze, criticize, accept, or reject the results provided 

by FCRLC when there is a risk of making wrong decisions. 

Besides the readability of the linguistic rules, one or more explanatory interfaces can explain the decision taken by 

FCRLC and can contain automatic explanations through an automated reading of knowledge base in which developers can 

use Natural Language Generation (NLG) modules. Indeed, Fig. 7 shows an example of an FCRLC explanation interface for a 

patient whose information is detailed in 

Table 6 . The explanation interface shows that the decision was made with a certainty of 97.21% and provides decision

details in the form of linguistic description involved the features which influenced the decision such as "Chol is normal" or

"Oldpeak is Low" and the features which did not influence the decision in this case Age and CP. 

Conclusion 

Many health sectors are opting for machine learning methods to prevent heart disease in the early stages, that helps 

clinicians to make informed decisions. In this paper, using data-driven method based on fuzzy clustering and linguistic 

modifiers called: "Fuzzy Classification Rules Learning through Clustering" (FCRLC), a fuzzy rule-based classification system 

for heart disease diagnosis is proposed. The system has been evaluated on three datasets of heart disease and compared to

five known classifiers, such as, K-NN, ANN, SVM, NB and RF. FCRLC has showing a good compromise between interpretability 

and accuracy and providing an interpretable knowledge base. FCRLC has three main advantages for providing explanations 

to stakeholders (end users, Experts and data scientists): 

i. Use the knowledge base in the explanation interface design phase to be exploited by users in the decision-making phase. 

ii. Debugging models : knowledge base can help detect issues in the data that standard model evaluation techniques would 

usually miss. 

ii. Optimizing models: In order to improve the FCRLC model, the expert or developer can easily manage the knowledge 

base by modifying the database and the Rulebase settings. 

Future work is looks forward to optimizing the accuracy of FCRLC using new subsets to improve prediction results and 

providing interactive explanations in natural language with visualization as a complementary modality. 

Appendix. A. Cleveland and Combinedhunva heart disease datasets 

Table 7 describes the used attributes, in which five values are present in the expected attribute (HD) of the original

dataset. A value of 0 means that there is no HD for the person, and a value of 1 to 4 means different HD levels. The goal of

this study is to detect the presence or absence of HD. Therefore, the attribute (HD) is reclassified as a binary value, where

1 confirms the presence of HD for the person. 
12 
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Table 7 

Dataset information. 

Attributes Descriptions Type Values 

1 Age The patient’s age Numeric [29,77] 

2 Sex The gender of the patient Binary "Female" = 0 

"Male" = 1 

3 Type of Chest Pain (CP) type of chest pain experienced by the 

individual 

Nominal "Typical Angina" = 1 

"Atypical Angina" = 2 

"Non-angina pain" = 3 

"Asymptomatic" = 4 

4 Resting blood pressure (Trestbps) resting blood pressure value in mmHg Numeric [94, 200] 

5 Serum cholesterol (Chol) , cholesterol levels in mg/dL Numeric [126, 564] 

6 Fasting blood sugar (Fbs) blood sugar levels Binary "otherwise" = 0 

"Blood sugar > 120 mg/dL" = 1 

7 Resting Ecg (Restecg) Resting electrocardiographic results Nominal "Normal" = 0 

"having ST-T wave anomaly" 

= 1 

"left ventricular hypertrophy" 

= 2 

8 Maximum heart rate (Thalach) maximum heart rate reached by the 

individual in number of samples 

Numeric [71, 202] 

9 Exercise-induced angina (Exang) provides information if exercise 

induces angina 

Binary "Yes" = 0 

"No" = 1 

10 Exercise peak ST segment (Slope) displayed slope value on the ecg 

machine 

Nominal "upward slope" = 1 

"Plat" = 2 

"downward slope" = 3 

11 Number of large colorful ships (CA) displays the number of vessels 

coloured by fluoroscopy 

Numeric [0,3] 

12 St induced depression (Oldpeak) shows the value of exercise-induced 

ST depression 

Numeric [0, 6.2] 

13 Thallium Stress Test (Thal) Stress test results Nominal "Normal" = 3 

"Fixed defect" = 6 

"Reversible defect" = 7 

14 Diagnosis of heart disease (HD) provides information on whether the 

person has heart disease 

Binary "No" = 0 

"Yes" = 1 
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