
SoftwareX 16 (2021) 100839

I

(
(
(

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication
pycity_scheduling—A Python framework for the development and
assessment of optimisation-based power scheduling algorithms for
multi-energy systems in city districts
Sebastian Schwarz ∗, Sebastian Alexander Uerlich, Antonello Monti
nstitute for Automation of Complex Power Systems, E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 10, Aachen, Germany

a r t i c l e i n f o

Article history:
Received 30 November 2020
Accepted 1 October 2021

Keywords:
Optimisation framework
Power scheduling algorithm
Multi-energy systems
Smart grid

a b s t r a c t

We introduce the open-source Python software framework pycity_scheduling for the effective de-
velopment, testing, and assessment of optimisation-based power scheduling algorithms for local
multi-energy systems in city districts. The framework primarily targets the elaboration of coordination
concepts that can efficiently solve the power dispatch problem on the city district level. Its target users
are researchers in the field of smart grid applications and the deployment of operational flexibility for
local energy systems. Illustrative code examples demonstrate the capabilities of the pycity_scheduling
framework and its use cases. The design principles established in pycity_scheduling allows users to
access, extend, and modify the Python package without any need for commercial software or licensing
concerns.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0.1
Permanent link to code/repository used for this code
version

https://github.com/ElsevierSoftwareX/SOFTX-D-20-00087

Code Ocean compute capsule https://doi.org/10.24433/CO.4147995.v1
Legal Code License MIT
Code versioning system used git
Software code languages, tools, and services used Python 3

Compilation requirements, operating environments &
dependencies

Python package pycity_scheduling can be used independently of the hardware. The Python
site-package requirements are numpy, pandas, matplotlib, pyomo, Shapely, pycity_base, and
pytest. Additionally, a mathematical programming solver, which is supported by the Pyomo
optimisation modelling library, is required. A Dockerfile that installs all dependencies together
with a Linux-based working environment is included in the repository.

If available Link to developer documentation/manual https://acs.pages.rwth-aachen.de/public/simulation/pycity_scheduling/
Support email for questions post_acs@eonerc.rwth-aachen.de

∗ Corresponding author.
E-mail addresses: sebastian.schwarz@eonerc.rwth-aachen.de

Sebastian Schwarz), sebastian.uerlich@eonerc.rwth-aachen.de
Sebastian Alexander Uerlich), post_acs@eonerc.rwth-aachen.de
Antonello Monti).
ttps://doi.org/10.1016/j.softx.2021.100839
352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100839
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100839&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00087
https://doi.org/10.24433/CO.4147995.v1
https://acs.pages.rwth-aachen.de/public/simulation/pycity_scheduling/
mailto:post_acs@eonerc.rwth-aachen.de
mailto:sebastian.schwarz@eonerc.rwth-aachen.de
mailto:sebastian.uerlich@eonerc.rwth-aachen.de
mailto:post_acs@eonerc.rwth-aachen.de
https://doi.org/10.1016/j.softx.2021.100839
http://creativecommons.org/licenses/by/4.0/

Sebastian Schwarz, Sebastian Alexander Uerlich and Antonello Monti SoftwareX 16 (2021) 100839

S

c
d
f
s
l
s
e
i
i
c
m

c
e
o
a
v
e
f
i
h
e
c
t
a
T
e

b
t
s
c
t
m
a
e
a
t
I
b
e
S
p
e
p
o

oftware metadata
Current software version v1.0.1
Permanent link to executables of this version https://git.rwth-aachen.de/acs/public/simulation/pycity_scheduling/-/releases/v1.0.1
Legal Software License MIT
Computing platforms/Operating Systems Linux, OS X, Microsoft Windows, Unix-like

Installation requirements & dependencies Python package pycity_scheduling can be used independently of the hardware. The Python
site-package requirements are numpy, pandas, matplotlib, pyomo, Shapely, pycity_base, and
pytest. Additionally, a mathematical programming solver, which is supported by the Pyomo
optimisation modelling library, is required. A Dockerfile that installs all dependencies together
with a Linux-based working environment is included in the repository.

If available, link to user manual - if formally published
include a reference to the publication in the reference
list

https://acs.pages.rwth-aachen.de/public/simulation/pycity_scheduling/

Support email for questions post_acs@eonerc.rwth-aachen.de

1. Motivation and significance

Modern city districts rely on various forms of energy, specifi-
ally electricity, natural gas, and district heating/cooling for resi-
ential, commercial, and industrial applications. In the past, these
orms of energy and their infrastructures were usually considered
eparately and typically only analysed on a local scale, e.g., for
arge energy-demanding consumers or individual power plants
olely. However, with the increasing focus on decarbonisation and
nergy efficiency aspects in city districts – including the effective
ntegration of local renewable energy sources with respect to the
dea of electrification and sector coupling – a holistic analysis
overing the interactions and interdependencies between these
ultiple forms of energy becomes imperative. [1]
Scientific literature refers to such holistic approaches, which

ombine the different energy vectors of electricity, gas, thermal
nergy, and/or mobility, as the concept of so-called energy hubs
r multi-energy systems [1,2]. A multi-energy system defines
local energy system, where multiple energy carriers are con-
erted, conditioned, and stored to match the fluctuating local en-
rgy generation and consumption [2]. One of the major challenges
or modern and innovative operators of multi-energy systems is
n facing the new expectations from society, in which citizens
ave an increasing interest in sustainable and self-sufficient en-
rgy system solutions. Those solutions frequently involve highly
ustomised energy system configurations, where the energy sys-
em operator must additionally maintain the system’s reliability
nd profitability in accordance with the current legal regulations.
his precondition, however, makes the operation of such specific
nergy system solutions to a certain extent unique and costly.
Thus, holistic multi-energy system operation approaches have

een widely investigated in the recent literature. Because of the
echnical complexity that comes with advanced multi-energy
ystem solutions, data-driven methods based on mathemati-
al optimisation are considered a promising approach to effec-
ively schedule/dispatch, coordinate, and control the assets inside
ulti-energy systems. For example, Martínez Ceseña et al. [3] use
mixed-integer linear programming co-optimisation approach

mbedded into a techno-economic framework to model and
ssess business cases for different energy services provided by
he intelligent operation of local multi-energy microgrid systems.
n contrast, Parisio et al. [4] propose a discrete-time linear ro-
ust optimisation model to operate heterogeneous assets inside
nergy hubs at minimal energy expenses under uncertainties.
imilarly, Blaud et al. [5] develop an optimisation-based multi-
rosumer economic model predictive control model for multi-
nergy systems, which accounts for load, weather, renewable
ower and energy grid cost predictions to minimise the overall
peration costs.

Despite their valuable contributions to multi-energy system
analysis and operation in general, nevertheless, these exemplary
references have in common that the presented optimisation-
based applications require data, analyses, algorithms and/or work-
flows, which are hardly to produce or to realise. Although many
open-source as well as commercial simulation and optimisation
tools for the design, sizing, and operation of multi-energy systems
are already available today, compare the comprehensive review
studies in [6–8], we can still identify a set of limitations when it
comes to the usage of the existing tools. This comprises at least
one of the following aspects:

• Adequate methodologies and routines to process input data
(e.g., time series data required for the calculation of multi-
energy system component load and generation profiles) are
not or only partly available.

• The user cannot easily modify, extend or adapt the different
optimisation models and scenarios.

• The user can neither influence nor investigate in the asset
coordination principles for multi-energy system optimisa-
tion (e.g., such as centralised vs. distributed optimisation
approaches). This also involves the definition of the multi-
energy system’s hierarchy and architecture, which the user
cannot properly analyse or assess.

• The roles and responsibilities of the energy system operator
and other market players and actors are usually not well
integrated into the optimisation-based software application.

• The underlying optimisation-based approach and/or multi-
energy system scenario setup is not highly scalable.

In the light of these gaps, this paper presents a novel, object-
oriented, and open-source Python software framework named
pycity_scheduling, which processes data related to the intelligent
operation and sophisticated asset coordination of multi-energy
systems with a strong focus on the development, testing, and
assessment of optimisation-based power scheduling algorithms.
The framework tackles the aforementioned drawbacks and al-
lows its users to implement and assess optimisation-based power
scheduling applications in a straightforward way. In doing so,
it primarily addresses the research in the field of smart grid
applications and the deployment of operational flexibility for
multi-energy systems. The overall motivation behind the pyc-
ity_scheduling framework is therefore to support scientists and
engineering professionals in their research activities on the devel-
opment of effective and scalable power scheduling applications.
Modern energy system operators necessitate such power schedul-
ing applications to determine the optimal operation set-points
for the system-level control of assets inside a multi-energy sys-
tem, compare the work in [3–5]. In this context, the proposed
framework facilitates that its users can implement and analyse

different power scheduling algorithms and methods easily and

2

https://git.rwth-aachen.de/acs/public/simulation/pycity_scheduling/-/releases/v1.0.1
https://acs.pages.rwth-aachen.de/public/simulation/pycity_scheduling/
mailto:post_acs@eonerc.rwth-aachen.de

Sebastian Schwarz, Sebastian Alexander Uerlich and Antonello Monti SoftwareX 16 (2021) 100839

f
d
o
s
a
p
i
a
i
s
t

2

m
s
m
i
c
p
I
g
i
u
f
p
m
o
t
s
n
e
a
p
d
i
d

i
d
o
m
s
i
w
f

Fig. 1. Power dispatch coordination approach adapted from [9].

lexibly. Thus, we see in the framework a solid basis for a stan-
ardised Python programming environment for the development
f such power scheduling algorithms applied to multi-energy
ystem power scheduling applications, where several useful pre-
nd post-processing functionalities support the user with its im-
lementations. One major advantage in using our framework is
n its ease of the access and in the extensibility, modifiability,
nd adaptability of the framework components as well as in
ts ‘‘out-of-the-box’’ application without long training efforts for
oftware developers and scientists that are already familiar with
he Python programming language.

. Software description

Software package pycity_scheduling constitutes a program-
ing framework for the effective development, testing, and as-
essment of optimisation-based power scheduling algorithms for
ulti-energy system applications on the city district level. It

s implemented in the Python 3 programming language and li-
ensed under the MIT license. The framework builds on the
ycity_base package [10] and is available from the Python Project
ndex (PyPI), see [11]. We chose the Python programming lan-
uage for the framework, because it is open-source, platform-
ndependent, widely used in academia, and allows scientists to
se and contribute to it easily. Use of the pycity_scheduling
ramework requires git, Python 3, several free Python 3 site-
ackages such as numpy [12] and pandas [13], and a mathe-
atical programming solver, which is supported by the Pyomo
ptimisation modelling library [14]. It is important to emphasise
hat the usability of the pycity_scheduling framework grounds on
imple Python instructions and, hence, Python scripts or Jupyter
otebooks have proven an easy and flexible way to codify the
ntire workflow. The pycity_scheduling package already includes
set of sample scripts, examples, and unit tests. Moreover, the
ycity_scheduling framework package comes with a web-based
ocumentation hosted at [15], which describes its components
n detail as well as with a continuous integration (CI) GitLab
evelopment environment at [16].
The main contribution of the pycity_scheduling framework

s in its provision of useful tools and functionalities that ad-
ress recent challenges and requirements on the application of
ptimisation-based power scheduling algorithms for city district
ulti-energy systems. Derived from the overall goal to support
cientists and engineering professionals in their research activ-
ties on the development of such power scheduling algorithms,
e can identify, in particular, three key contributions of our

• The framework provides a set of routines and functional-
ities, which focus on the definition and solution towards
the optimisation-based power dispatch problem for user-
defined multi-energy system setups.

• The framework predefines adequate optimisation models
for different physical assets and devices inside a multi-
energy system in a holistic way including all required inputs,
optimisation variables, constraints, and objective functions.

• The framework specifies a sophisticated hierarchy and data
model for complex multi-energy system setups comprising
the variety and heterogeneity of the physical assets and
devices present under varying characteristics, inputs, and
operational constraints.

To satisfy and consolidate these three crucial capabilities
within the pycity_scheduling framework, our implementations
adapt the distributed power dispatch coordination approach in-
cluding its mathematical formulation from the seminal work in
[9] and map it to the field of multi-energy system applications
with the support of base package pycity_base [10]. Fig. 1 il-
lustrates this adaptation. In this context, the pycity_scheduling
framework implements the principles established in [9], which
one can summarise as the intelligent subdivision of the power
demand on the city district level into local asset demands through
the application of an user-defined power dispatch coordination
strategy. The fundamental idea behind this power dispatch strat-
egy is in the short-term power scheduling, i.e., the day-ahead or
intraday operation of all local flexible assets and devices inside
the city district’s multi-energy system by a district operator,
which eventually ensures a global power demand and supply
balance on the system level. However, the pycity_scheduling
framework is not meant to perform detailed physical power
system simulations close to the real-time domain, but instead
targets the day-ahead time frame with a time discretisation in
the range of minutes up to hours. Therefore, the interactions
between the different pycity_scheduling framework components,
similarly to the work in [9], ground on a simplified copperplate
model, which nevertheless fully complies with the assumed time
resolution characteristics of the intended target use cases.

2.1. Software architecture and functionalities

Fig. 2 shows the software architecture of the pycity_scheduling
framework. In general, the framework architecture can be divided
into three core components according to the overall software
ramework as follows: workflow as visualised in Fig. 2.

3

Sebastian Schwarz, Sebastian Alexander Uerlich and Antonello Monti SoftwareX 16 (2021) 100839

e
n
o
l
i
g
s
e
r
v
r
w
w
j
u
b
p
i
t

o
s
c
h
m
t
v
o
p
t

Fig. 2. Overview on the core components of package pycity_scheduling.

The scenario setup component provides the user with mod-
lling functionalities to setup a specific multi-energy system sce-
ario or application. In this initial step, the user specifies a set
f input data, which describes the general parameters of the
ocal multi-energy system under investigation. For example, the
nput data include information about the multi-energy system’s
eographical location, the local weather data and the considered
imulation horizon (e.g., 24 h day-ahead). Moreover, the user also
nters information about the number and types of consumers (or
elated stakeholders) as well as the number of physical assets/de-
ices present in the scenario. For this purpose, every consumer is
epresented by a Building object in the pycity_scheduling frame-
ork, which may contain a finite number of (flexible) devices,
hich in turn are represented through corresponding device ob-

ects. In doing so, the pycity_scheduling framework provides the
ser with a set of hierarchical classes characterising the physical
ehaviours of the most common energy system devices and com-
onents one could find in modern residential, commercial, and
ndustrial multi-energy system setups. This includes the following
ypes of assets:

• inflexible/non-steerable loads
• curtailable loads
• deferrable loads
• gas boilers
• electrical heaters
• combined heat and power units
• heat pumps
• chillers
• thermal energy storage units
• electric vehicles
• battery storage units
• photovoltaic units
• wind turbine generators

Every device’s class already comes with a basic mathematical
ptimisation model, which inherits a set of mathematical con-
traints and objective functions describing the generic operating
onditions of the specific device over the predefined simulation
orizon. For example, in the case of an electric vehicle, the opti-
isation model defines the charging power rate over time subject

o the vehicle’s battery capacity, its charging efficiency, and the
ehicle owner’s driving patterns. For a more detailed overview
n the modelling approach and optimisation problem formulation
er device, we directly refer the reader to the documentation of

device modelling, the pycity_base package is used by the pyc-
ity_scheduling framework to obtain standard load time series for
the majority of the electrical and thermal loads. It is important to
mention that by design all mathematical models can be adapted
and expanded easily by the user in order to reflect a more specific
physical device behaviour, for instance, based on vendor-specific
operational constraints. Furthermore, the framework provides the
user with several modelling options on the different predefined
optimisation models. For example, the user can select between a
modelling approach based on convex or non-convex optimisation
constraints. In a next step, the user must instantiate a so-called
CityDistrict object that encapsulates all the local level devices
in one single object according to the required hierarchy for the
power dispatch coordination approach as defined in [17]. Fig. 3 vi-
sualises this hierarchy by means of the schematic class hierarchy
diagram of package pycity_scheduling. Based on this schematic, it
becomes evident that all framework objects inherit from the base
class OptimizationEntity, which includes common attributes such
as unique identifiers or optimisation model instances required by
all framework objects. Further, the different types of assets stated
above derive from the classes ElectricalEntity and/or ThermalEntity
that define basic physical characteristics, i.e., whether an asset
represents an electrical, thermal or electro-thermal device. Class
EntityContainer finally groups and maintains a set of these assets,
which the user can then assign to a Building object or another
subobject such as an Apartment inside a Building .

The power scheduling component is considered the key ele-
ment of the pycity_scheduling framework as highlighted by the
red box in Fig. 2. Given the multi-energy system scenario setup in
the form of a CityDistrict object from the previous step, the user
can apply an arbitrary power scheduling algorithm to this specific
scenario in order to solve the power dispatch problem. The power
scheduling component of the pycity_scheduling framework al-
ready includes a few reference power scheduling algorithms,
whereby the user has the freedom to use them as a starting
point for its own implementations. It is important to mention
that all new algorithm implementations and modifications must
rely on the mathematical programming language Pyomo, com-
pare [14]. Pyomo extends the modelling approach supported by
modern algebraic modelling language tools and allows software
engineers for a simplified implementation of mathematical ex-
pressions in a human-readable way [14]. In other words, Pyomo
is an open-source Python library for formulating optimisation
problems independently of the used optimisation solver, so that
the user can use the pycity_scheduling framework with a third-
party optimisation solver of its own choice. Examples for such
optimisation solvers are the commercial tools Gurobi [18] and
CPLEX [19] as well as the free ones SCIP [20] and BONMIN [21].

Finally, the post-processing component of the pycity_
scheduling framework offers the user several functions, routines,
and utilities for an effective evaluation and assessment of the
previously performed power dispatch optimisation. This com-
prises the ability to evaluate technical metrics, to plot schedules
(e.g., via the matplotlib package [22]) as well as to export data
(e.g., to the .csv or .json file format) that is of particular interest to
the user. Thus, the main idea of the post-processing component
is in the versatile comparison of the characteristics and perfor-
mance of the user’s power scheduling algorithm implementation.
More precisely, by providing meaningful output data, the post-
processing component should assist the user to evaluate and
assess its power scheduling algorithm implementations with
he pycity_scheduling package at [15]. Moreover, for an adequate minimum efforts.

4

Sebastian Schwarz, Sebastian Alexander Uerlich and Antonello Monti SoftwareX 16 (2021) 100839

3

s
i
t
o
i
i
c
m
a
t
b
p

3

f
c
m
p
l
j
m
w
w
r
t
m
1
w
o
t
o
t
d

d
e
c
e
t
f
s
a
p
s
r

Fig. 3. Schematic hierarchy diagram of the main classes of package pycity_scheduling using Unified Modeling Language (UML) notation.

. Illustrative examples

To complement the previous overview on the pycity_
cheduling package’s architecture and functionalities, the follow-
ng subsections demonstrate basic capabilities and features of
he framework. To this aim, we separate the core workflow of
ur software into three illustrative code examples which are
n line with the different framework components as described
n Section 2.1. In this context, the following three illustrative
ode examples define a simple optimisation-based energy cost
inimisation use case for the day-ahead planning of assets inside
multi-energy system. Based on this, more complex applica-

ions and use cases that take advantage of the framework can
e found in the additional example scripts provided by the
ycity_scheduling source package.

.1. Scenario setup code example

The Python code in Listing 1 illustrates the typical workflow
or the initial scenario setup step of the intended use case. Ac-
ording to Listing 1, the user must always import all required
odules from the pycity_scheduling framework and other third-
arty modules first, compare lines 1–3. Next and according to
ines 5–8, the user must define an (pycity_base) Environment ob-
ect to be used by the subsequent multi-energy system setup and
odelling steps. The Environment object maintains general data,
hich is valid for all framework objects and which contains time,
eather, and/or energy market price data information. For this
eason, all objects in pycity_base/pycity_scheduling usually point
o an Environment . In this example, we define our Timer object to
aintain historical time data for one particular day, which is the
5th March of 2018, and hence we choose a time horizon of 24 h
ith a hourly time discretisation, i.e., 3600 s. For the location of
ur multi-energy system, we instantiate the Weather object with
he given coordinates for the city of Aachen, Germany. The Price
bject is instantiated without optional arguments, which makes
he pycity_scheduling framework to automatically load historical
ay-ahead market price data for Germany.
In lines 10–12, now the user can instantiate and define the

ifferent assets and load components that are part of the multi-
nergy system under investigation. For the sake of exemplifi-
ation, we define a FixedLoad object with an annual electrical
nergy demand of 3000 kWh/a. The parameter profile_type is set
o ‘‘H0’’, which refers the fixed load (i.e., the inflexible load) to
ollow the standard load profile characteristics of a residential
ingle-family house. Further, we instantiate a Photovoltaic object
s well as a Battery object in this example, which represent a
hotovoltaic unit of peak power 6 kWp and a battery storage
ystem of capacity 8.4 kWh with a charging/discharging power

loads present in the considered multi-energy system setup could
be instantiated and added by the programmer.

For demonstration purposes, we visualise some of the time
series data obtained by the instantiated objects for the 15th
March of 2018 in lines 14–25. The corresponding plots are shown
in Fig. 4. As it can be seen, we can easily access these time
series data by using predefined attributes of the different objects,
such as p.da_prices representing the energy spot market day-
ahead prices, fi.p_el_schedule representing the fixed load’s power
demand, and pv.p_el_supply representing the photovoltaic unit’s
power generation over time.

3.2. Power scheduling code example

To illustrate the power scheduling workflow step, we extend
the scenario setup code example from the previous section as
shown in Listing 2. For this purpose, at first we define the hi-
erarchy of our multi-energy setup according to the code stated in
lines 27–35. This can be done in a straightforward way, in which
we start with the instantiation of a Building object to which one
we assign two different EntityContainer subobjects, namely an
Apartment object and a BuildingEnergySystem object. The Apart-
ment object takes and maintains energy devices that residents
may own and operate on the individual apartment level such as
the electrical load and the battery unit in our case, whereas the
BuildingEnergySystem object takes and maintains energy devices
that are usually installed on the global building level such as the
photovoltaic unit. In the following step, we instantiate a CityDis-
trict object that can bundle a set of different buildings, but which
is only one building in this code example for the sake of exempli-
fication (compare lines 34–35). We further define the CityDistrict
object to possess a price-driven optimisation objective, as we
want to perform an energy cost minimisation in this example.
However, we could also define the CityDistrict object (and if de-
sired the Building object, too) to aim for an optimisation objective
other than energy cost minimisation instead, such as a peak-
shaving or a low CO2 emission objective. In the following step,
the actual day-ahead power dispatch is performed in lines 37–39.
In this step, we pass our CityDistrict object to the pre-available
CentralOptimization optimisation algorithm in line 37 and then
call the Pyomo’s underlying third-party optimisation solver in
line 38. As it can be seen, the mode parameter is set to ‘‘integer’’
in line 37, which makes the pycity_scheduling framework to
use a modelling approach based on mixed-integer programming.
Lastly, we can (temporally) store the optimal power schedules
obtained by the optimisation solver by calling the CityDistrict ’s
copy_schedule function in line 39. As it can be seen, we tag those
ate of 3.6 kW, respectively. In the same way, other assets and power schedules with the identifier ‘‘optim_schedule’’ here.

5

Sebastian Schwarz, Sebastian Alexander Uerlich and Antonello Monti SoftwareX 16 (2021) 100839

3

t
f
p
u
s
t
p
f
‘
s
B
w
e
t
p
d
l
t

1 import matplotlib.pyplot as plt
2 from pycity_scheduling.classes import *
3 from pycity_scheduling.algorithms import *
4
5 t = Timer(op_horizon=24, step_size=3600, initial_date=(2018, 3, 15), initial_time=(0, 0, 0))
6 w = Weather(timer=t, location=(50.76, 6.07))
7 p = Prices(timer=t)
8 e = Environment(timer=t, weather=w, prices=p)
9

10 fi = FixedLoad(environment=e, method=1, annual_demand=3000.0, profile_type= " H0 ")
11 pv = Photovoltaic(environment=e, method=1, peak_power=6.0)
12 ba = Battery(environment=e, e_el_max=8.4, p_el_max_charge=3.6, p_el_max_discharge=3.6)
13
14 plot_time = list(range(t.timesteps_used_horizon))
15 fig, axs = plt.subplots(1, 3)
16 axs[0].plot(plot_time , p.da_prices , color= " black ")
17 axs[0].set_title(" Day-ahead energy market prices [ct/kWh] ")
18 axs[1].plot(plot_time , fi.p_el_schedule , color= " black ")
19 axs[1].set_title(" Single-family house electrical load demand [kW] ")
20 axs[2].plot(plot_time , pv.p_el_supply , color= " black ")
21 axs[2].set_title(" Residential photovoltaics generation [kW] ")
22 for ax in axs.flat:
23 ax.set(xlabel= " Time [h] " , xlim=[0, t.timesteps_used_horizon -1])
24 plt.grid()
25 plt.show()

Listing 1: Illustrative code example on the scenario setup component.

27 bd = Building(environment=e, objective= " none ")
28 bes = BuildingEnergySystem(environment=e)
29 ap = Apartment(environment=e)
30 bd.addMultipleEntities(entities=[bes, ap])
31 bes.addDevice(objectInstance=pv)
32 ap.addMultipleEntities(entities=[fi, ba])
33
34 cd = CityDistrict(environment=e, objective= " price ")
35 cd.addEntity(bd, position=(0, 0))
36
37 opt = CentralOptimization(city_district=cd, mode= " integer ")
38 res = opt.solve()
39 cd.copy_schedule(dst= " optim_schedule ")

Listing 2: Illustrative code example (continued) on the power scheduling component.

Fig. 4. Time series data plots according to the code in Listing 1.

.3. Post-processing code example

The code in Listing 3 finalises the overall workflow of this illus-
rative code example by demonstrating different post-processing
unctionalities of the pycity_scheduling framework. For this pur-
ose, in a first step we import the framework’s post-processing
tilities ‘‘metric’’, ‘‘plot_schedules’’, and ‘‘write_schedules’’ as
hown in lines 41–43 in Listing 3. In a second step, we call
he CityDistrict ’s load_schedule function in line 45 to load the
reviously stored power schedules as tagged with the identi-
ier ‘‘optim_schedule’’. In a third step, we use the framework’s
‘plot_entity’’ functionality to plot the schedules of all optimi-
ation variables for the two objects of instance CityDistrict and
attery. These plots are shown in Fig. 5, where the schedules
ith the suffix ‘‘p_el’’ denote electrical power and ‘‘e_el’’ denote
lectrical energy, respectively. From Fig. 5, it becomes evident
hat the flexible battery device is scheduled in a way such that
ower is primarily imported from the energy spot market by the
istrict operator during cheap spot market periods, compare the
eft plot in Fig. 4. This means that the battery unit is incentivised
o charge itself during these periods based on the given energy

cost minimisation objective. Because of this behaviour, low-cost
electrical energy is temporarily stored inside the battery unit.
Vice versa, the battery unit is incentivised to discharge itself
during expensive energy spot market tariff periods to supply the
non-flexible building’s electrical load locally during these periods.
Moreover, one can see that the battery unit is also charged
during time slots of high power penetration by the photovoltaic
unit, compare the right plot in Fig. 4. This is because the locally
generated photovoltaic energy is assumed to have zero energy
costs, i.e., it can be perceived as free. The building’s power self-
consumption rate metric of approximately 67%, as evaluated
in line 50, confirms this circumstance. The remaining 23% of
photovoltaic power generation, however, cannot be consumed
locally by the building, since the battery unit already operates
at its physical charging power limit of 3.6 kW. Finally and for
further studies, we export the obtained schedules of the different
multi-energy system assets into a file named ‘‘cost_otpim.json’’

according to line 52.

6

Sebastian Schwarz, Sebastian Alexander Uerlich and Antonello Monti SoftwareX 16 (2021) 100839

p
p
g
g
t
U
a
t
k
m
i

s
c
t
a
f
l
p
i
d
m
a
c
c
M
t
t
d
T
c
f
a
i

f

41 from pycity_scheduling.util.metric import self_consumption
42 from pycity_scheduling.util.plot_schedules import plot_entity
43 from pycity_scheduling.util.write_schedules import schedule_to_json
44
45 cd.load_schedule(schedule= " optim_schedule ")
46
47 plot_entity(entity=cd, schedule=[" optim_schedule "], title= " City district - Cost-optimal schedules ")
48 plot_entity(entity=ba, schedule=[" optim_schedule "], title= " Battery unit - Cost-optimal schedules ")
49
50 print(self_consumption(entity=bd))
51
52 schedule_to_json(input_list=[fi, pv, ba], file_name= " cost_optim.json " , schedule=[" optim_schedule "])

Listing 3: Illustrative code example (continued) on the post-processing component.

Fig. 5. Plots on the optimal schedules obtained for the city district (left) and the battery unit (right) according to the code in Listing 3. A positive sign represents
power/energy import, whereas a negative sign represents power/energy export.

4. Impact

The development of the pycity_scheduling framework was
rimarily promoted by the energy targets formulated by the Euro-
ean Commission [17,23]. With a growing share of decentralised
enerators and renewable energy sources installed in distribution
rids and local energy systems, the idea behind the framework,
herefore, suits to the latest political intentions of the European
nion and supports the investigation in smart grids technology
nd digitalisation in energy. Given the customer-centric focus of
he framework’s implementation design, it already satisfies the
ey requirement of the future European energy policy towards a
ore sustainable European energy supply system as postulated

n [23].
Moreover, since the pycity_scheduling framework is open-

ource and as a Python package fully hardware independent, it
an serve as a reference software tool for developing, modifying,
esting, and benchmarking optimisation-based power scheduling
lgorithms for multi-energy systems and provide a common basis
or scientists working on different conceptual methods and so-
utions in this area of research. Unfortunately, many presented
ower scheduling algorithm realisations in literature are lim-
ted in their meaningfulness and reproducibility, as there is no
istinct standardisation of scenarios and mathematical program-
ing models that allow one to adequately compare different
pproaches. Instead, many solutions depend on very specific use
ase applications and, hence, are hardly to assess and repli-
ate because of the unavailability of inputs, data, and models.
any scientists in this area of research also still make use of

heir individual but prevalently non-accessible software solu-
ions, which leads to a lack of software code transparency, a
uplication of work on similar tasks, and related drawbacks.
he pycity_scheduling framework tackles this dilemma. Having a
ommon software framework basis additionally facilitates fruit-
ul discussions as well as an improved exchange of expertise
nd new ideas among researchers and potential stakeholders
nvolved.

Although the pre-available algorithms in the pycity_scheduling
ramework are implemented in a sequential way, the pycity_

scheduling framework also allows its users to perform scalabil-
ity analyses and large-scale energy system simulations. This is
important for all power dispatch applications targeting complex
multi-energy system setups that consist of hundreds of assets
and devices. We want to encourage users to implement new
power scheduling algorithms to support parallel computations on
either tightly or loosely coupled machines. This would facilitate
distributed and decentralised computations and therefore could
reduce the computation time for complex optimisation problems
significantly. In addition, this feature could also be interesting
for simulations in which companies or third-party organisations
are involved, but cannot share confidential data because of data
privacy issues, e.g., due to the safeguard of real customer data or
critical infrastructure topology data.

As a scientific tool, the pycity_scheduling framework is cur-
rently successfully applied in the European Union’s Horizon 2020
research and innovation project IELECTRIX [24] to assess the
flexibility potential for a rural local multi-energy system operated
by a German distribution system operator. This particular multi-
energy system is subject to a high share of renewable energy
production, and the objective is to quantify the techno-economic
measures in terms of flexibility provision that are of particu-
lar value for such systems in the long-term. This also includes
day-ahead power scheduling applications as a basis for a novel
demand side management concept and as already implemented
by the pycity_scheduling framework.

Besides that, several scientific publications already took ad-
vantage of the pycity_scheduling framework implementations
such as the ones in [25–27]. In addition, the pycity_scheduling
package is promoted by the non-profit FEIN Aachen association
[28] that provides permanent links to its source code and its
documentation on its website.

5. Conclusions

We introduce the pycity_scheduling object-oriented and plat-
form independent Python software package for the effective de-
velopment, testing, and assessment of optimisation-based day-
ahead power scheduling applications for local multi-energy sys-
tems. The framework consists of three core components, which
7

Sebastian Schwarz, Sebastian Alexander Uerlich and Antonello Monti SoftwareX 16 (2021) 100839

a
s

t
I
p
i
T
a

o
e
l
P
p
a
i
c
a

o
n

D

c
t

A

E
g

R

llow the user to code, optimise and evaluate such multi-energy
ystem setups in a straightforward way.
The current package and its future releases are licensed under

he MIT license and are publicly available via the Python Project
ndex (PyPI). The pycity_scheduling package comes with a com-
lete online class documentation and several example scripts that
llustrate the main capabilities and features of the framework.
his also includes the illustrative code examples discussed in this
rticle.
The framework’s novelty and main contribution is in its focus

n the elaboration of holistic coordination concepts that can
fficiently solve the power dispatch problem on the city district
evel. It is meant to constitute a solid basis for a standardised
ython programming environment for the development of such
ower scheduling concepts/algorithms, where several useful pre-
nd post-processing functionalities can support the user with its
mplementations. This includes the provision of a set of hierarchi-
al classes which physically and mathematically model different
ssets inside multi-energy systems.
Since Python package pycity_scheduling is open-source, devel-

pers are highly encouraged to extend and/or modify its compo-
ents, models, and features.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgements

This work has been undertaken within the framework of the
uropean Union’s Horizon 2020 research and innovation pro-
ramme under IELECTRIX project grant agreement No. 824392.

eferences

[1] Dall’Anese E, Mancarella P, Monti A. Unlocking flexibility: Integrated
optimization and control of multienergy systems. IEEE Power Energy
Magaz 2017;15(1):43–52. http://dx.doi.org/10.1109/MPE.2016.2625218.

[2] Geidl M, Koeppel G, Favre-Perrod P, Klockl B, Andersson G, Frohlich K.
Energy hubs for the future. IEEE Power Energy Magaz 2007;5(1):24–30.
http://dx.doi.org/10.1109/MPAE.2007.264850.

[3] Martínez Ceseña EA, Good N, Syrri AL, Mancarella P. Techno-economic and
business case assessment of multi-energy microgrids with co-optimization
of energy, reserve and reliability services. Appl Energy 2018;210:896–913.
http://dx.doi.org/10.1016/j.apenergy.2017.08.131.

[4] Parisio A, Del Vecchio C, Vaccaro A. A robust optimization approach to en-
ergy hub management. Int J Electr Power Energy Syst 2012;42(1):98–104.
http://dx.doi.org/10.1016/j.ijepes.2012.03.015.

[5] Blaud PC, Haurant P, Claveau F, Lacarrière B, Chevrel P, Mouraud A.
Modelling and control of multi-energy systems through multi-prosumer
node and economic model predictive control. Int J Electr Power Energy
Syst 2020;118:105778. http://dx.doi.org/10.1016/j.ijepes.2019.105778.

[6] Connolly D, Lund H, Mathiesen B, Leahy M. A review of computer
tools for analysing the integration of renewable energy into various
energy systems. Appl Energy 2010;87(4):1059–82. http://dx.doi.org/10.
1016/j.apenergy.2009.09.026.

[7] Allegrini J, Orehounig K, Mavromatidis G, Ruesch F, Dorer V, Evins R. A
review of modelling approaches and tools for the simulation of district-
scale energy systems. Renew Sustain Energy Rev 2015;52:1391–404. http:
//dx.doi.org/10.1016/j.rser.2015.07.123.

[8] Sola A, Corchero C, Salom J, Sanmarti M. Simulation tools to build urban-
scale energy models: A review. Energies 2018;11(12):3269. http://dx.doi.
org/10.3390/en11123269.

[9] Juelsgaard M. Utilizing distributed resources in smart grids: A coordination
approach. (Ph.D. thesis), Aalborg: Automation & Control, Department of
Electronic Systems, Aalborg University; 2014.

[10] Schiefelbein J, Rudnick J, Scholl A, Remmen P, Fuchs M, Müller D. Au-
tomated urban energy system modeling and thermal building simulation
based on OpenStreetMap data sets. Build Environ 2019;149:630–9. http:
//dx.doi.org/10.1016/j.buildenv.2018.12.025.

[11] The Python Package Index. Pycity-scheduling 1.0.1. 2020, URL https://pypi.
org/project/pycity-scheduling/.

[12] Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P,
Cournapeau D, et al. Array programming with NumPy. Nature
2020;585(7825):357–62. http://dx.doi.org/10.1038/s41586-020-2649-2.

[13] Reback J, McKinney W, Jbrockmendel, van den Bossche J, Augspurger T,
Cloud P, et al. Pandas-dev/pandas: Pandas 1.1.3. 2020, http://dx.doi.org/
10.5281/zenodo.3509134.

[14] Hart WE. Pyomo - optimization modeling in Python. Springer optimization
and its applications, 2nd ed.. Vol. 67, Cham, Switzerland: Springer; 2017.

[15] Institute for Automation of Complex Power Systems, EON Energy Research
Center, RWTH Aachen University. The pycity_scheduling documenta-
tion: v1.0.1. 2020, URL https://acs.pages.rwth-aachen.de/public/simulation/
pycity_scheduling/.

[16] GitLab of the RWTH Aachen University. Repository pycity_scheduling.
2020, URL https://git.rwth-aachen.de/acs/public/simulation/pycity_
scheduling.

[17] Expert Group 3 of the Smart Grids Task Force (SGTF) of the European Com-
mission. Regulatory recommendations for the deployment of flexibility:
EG3 report. 2015, https://ec.europa.eu/energy/sites/ener/files/documents/
EG3Final-January2015.pdf.

[18] Gurobi Optimization LLC. Gurobi optimizer reference manual. 2020, URL
https://www.gurobi.com/.

[19] IBM Corp., IBM ILOG CPLEX Optimization Studio User’s Manual: Version
12 Release 7. https://www.ibm.com/support/knowledgecenter/SSSA5P_12.
7.1/ilog.odms.studio.help/pdf/usrcplex.pdf.

[20] Gamrath G, Anderson D, Bestuzheva K, Chen W-K, Eifler L, Gasse M,
et al. The SCIP Optimization Suite 7.0: Technical Report. http://www.
optimization-online.org/DB_HTML/2020/03/7705.html.

[21] Bonami P. Bonmin: Basic open-source nonlinear mixed integer program-
ming. 2020, URL https://github.com/coin-or/Bonmin.

[22] Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng
2007;9(3):90–5. http://dx.doi.org/10.1109/MCSE.2007.55.

[23] The European Commission. Clean energy for all europeans. Luxembourg:
Publications Office of the European Union; 2019, http://dx.doi.org/10.2833/
9937.

[24] The IELECTRIX Consortium. IELECTRIX: European and Indian citizen energy
communities for renewable integration and the energy transition: EU
H2020 grant agreement no. 824392. 2020, URL https://ielectrix-h2020.eu/.

[25] Molitor C. Residential city districts as flexibility resource: analysis, simula-
tion, and decentralized coordination algorithms. (Ph.D. thesis), E.ON Energy
Research Center, Vol. 32, Aachen: Institute for Automation of Complex
Power Systems, E.ON Energy Research Center, RWTH Aachen University;
2015.

[26] Diekerhof M, Monti A, Schwarz S. Demand-side management—Recent
aspects and challenges of optimization for an efficient and robust demand-
side management. In: Classical and recent aspects of power system
optimization. Elsevier; 2018, p. 331–60. http://dx.doi.org/10.1016/B978-0-
12-812441-3.00012-4.

[27] Diekerhof M, Peterssen F, Monti A. Hierarchical distributed robust
optimization for demand response services. IEEE Trans Smart Grid
2018;9(6):6018–29. http://dx.doi.org/10.1109/TSG.2017.2701821.

[28] FEIN Aachen eV. Pycity_scheduling. 2020, URL https://fein-aachen.org/en/
projects/pycity_scheduling/.
8

http://dx.doi.org/10.1109/MPE.2016.2625218
http://dx.doi.org/10.1109/MPAE.2007.264850
http://dx.doi.org/10.1016/j.apenergy.2017.08.131
http://dx.doi.org/10.1016/j.ijepes.2012.03.015
http://dx.doi.org/10.1016/j.ijepes.2019.105778
http://dx.doi.org/10.1016/j.apenergy.2009.09.026
http://dx.doi.org/10.1016/j.apenergy.2009.09.026
http://dx.doi.org/10.1016/j.apenergy.2009.09.026
http://dx.doi.org/10.1016/j.rser.2015.07.123
http://dx.doi.org/10.1016/j.rser.2015.07.123
http://dx.doi.org/10.1016/j.rser.2015.07.123
http://dx.doi.org/10.3390/en11123269
http://dx.doi.org/10.3390/en11123269
http://dx.doi.org/10.3390/en11123269
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb9
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb9
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb9
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb9
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb9
http://dx.doi.org/10.1016/j.buildenv.2018.12.025
http://dx.doi.org/10.1016/j.buildenv.2018.12.025
http://dx.doi.org/10.1016/j.buildenv.2018.12.025
https://pypi.org/project/pycity-scheduling/
https://pypi.org/project/pycity-scheduling/
https://pypi.org/project/pycity-scheduling/
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
http://dx.doi.org/10.5281/zenodo.3509134
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb14
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb14
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb14
https://acs.pages.rwth-aachen.de/public/simulation/pycity_scheduling/
https://acs.pages.rwth-aachen.de/public/simulation/pycity_scheduling/
https://acs.pages.rwth-aachen.de/public/simulation/pycity_scheduling/
https://git.rwth-aachen.de/acs/public/simulation/pycity_scheduling
https://git.rwth-aachen.de/acs/public/simulation/pycity_scheduling
https://git.rwth-aachen.de/acs/public/simulation/pycity_scheduling
https://ec.europa.eu/energy/sites/ener/files/documents/EG3Final-January2015.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/EG3Final-January2015.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/EG3Final-January2015.pdf
https://www.gurobi.com/
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.1/ilog.odms.studio.help/pdf/usrcplex.pdf
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://github.com/coin-or/Bonmin
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.2833/9937
http://dx.doi.org/10.2833/9937
http://dx.doi.org/10.2833/9937
https://ielectrix-h2020.eu/
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb25
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb25
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb25
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb25
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb25
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb25
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb25
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb25
http://refhub.elsevier.com/S2352-7110(21)00123-0/sb25
http://dx.doi.org/10.1016/B978-0-12-812441-3.00012-4
http://dx.doi.org/10.1016/B978-0-12-812441-3.00012-4
http://dx.doi.org/10.1016/B978-0-12-812441-3.00012-4
http://dx.doi.org/10.1109/TSG.2017.2701821
https://fein-aachen.org/en/projects/pycity_scheduling/
https://fein-aachen.org/en/projects/pycity_scheduling/
https://fein-aachen.org/en/projects/pycity_scheduling/

	pycity_scheduling—A Python framework for the development and assessment of optimisation-based power scheduling algorithms for multi-energy systems in city districts
	Motivation and significance
	Software description
	Software architecture and functionalities

	Illustrative examples
	Scenario setup code example
	Power scheduling code example
	Post-processing code example

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgements
	References

