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a b s t r a c t

This article studies consensus of linear multi-agent systems (MASs) on undirected graphs. An adaptive
event-triggering protocol is constructed for consensus control by using relative information between
agents. Sufficient conditions are established for consensus of linear MASs without and with external
disturbances, respectively. Zeno behavior is proved to be excluded. Moreover, a self-triggered real-
ization based on sampled information is formulated for the protocol. Since the proposed protocol
incorporates both adaptive control and event-triggered control, it can be implemented in a fully
distributed way and only makes use of the sampled relative information between neighboring agents.
Two numerical examples are finally provided for demonstrating the effectiveness and advantages of
the theoretical results.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Coordination of multi-agent systems (MASs) is definitely one
of the research hotspots in systems and control over the last
decade (Knorn, Chen, & Middleton, 2016; Qin, Ma, Yu, & Wang,
2018; Tang, Gao, Zhang, & Kurths, 2015; Wen, Yang, Luo, Wang, &
Pan, 2019; Zhang, Xu, Karimi, Wang, & Yu, 2018). Consensus, as a
fundamental control problem of MASs, is to design a distributed
control protocol such that a group of autonomous agents reach
an agreement in some sense, which can find many potential
applications in, for instance, distributed optimization, spacecraft
coordination, opinion dynamics and robot formation (Meng, Di-
marogonas, & Johansson, 2017; Xia, Cao, & Johansson, 2016; Yang
et al., 2019). In recent years, a great number of results have been
reported on consensus control of various MASs (Knorn et al.,
2016; Wen et al., 2019). One of the basic paradigms for designing
distributed protocols for MASs is first to find some gain matrices
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related to local agent dynamics and then to determine some
parameter(s) related to the communication graph. Such a design
process can be applied not only to state-feedback protocols (Tuna,
2008), but also to kinds of output-feedback protocols (Li, Duan,
Chen, & Huang, 2010; Li, Soh, & Xie, 2017, 2019a; Li, Soh, Xie, &
Lewis, 2019b).

To design a protocol, the most important graph-related param-
eter might be the smallest nonzero eigenvalue of the Laplacian
of the communication graph (Li et al., 2010, 2017, 2019a; Tuna,
2008). However, when the network scale is large, it may be quite
tough to obtain such global information. In other words, the
designed protocols are not scalable. For this reason, one of the
recent trends in studying MASs is to devise adaptive mechanisms
for tuning the coupling gains with no need of knowing and deal-
ing with the precise Laplacian (DeLellis, diBernardo, & Garofalo,
2009; Li, Ren, Liu, & Xie, 2013; Mei, Ren, & Chen, 2016). In Li
et al. (2013), adaptive consensus protocols are proposed for linear
MASs on undirected graphs; in Mei et al. (2016), adaptive con-
sensus of second-order MASs with unknown inertias is studied
and several adaptive protocols with absolute or relative velocity
feedback are proposed.

In many applications of MASs, each agent is usually equipped
with limited energy storage and communication resources. Thus,
how to reduce the occupation of network resources is of practical
significance. Note that the aforementioned results are based on
continuous connection between neighboring agents. Thus, a nat-
ural idea to reduce the consumption of communication resources
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is to design protocols which make use of the sampled, rather
than continuous-time, knowledge between neighboring agents.
In particular, many efforts recently have been made to apply the
advanced event-triggered sampling techniques to consensus con-
trol of MASs (Cheng & Ugrinovskii, 2016; Dimarogonas, Frazzoli, &
Johansson, 2012; Fan, Feng, Wang, & Song, 2013; Hu, Liu, & Feng,
2016; Li, Liao, Huang, & Zhu, 2015; Liu, Cao, Persis, & Hendrick,
2017; Yang, Ren, Liu, & Chen, 2016; Zhang, Tang, Liu, & Kurths,
2017; Zhu & Jiang, 2015). In event-triggered control, the violation
of some state- and/or time-dependent conditions will trigger a
sampling event and then the controller will update the feedback
signal with the newly sampled information (Heemels, Johansson,
& Tabuada, 2012). According to the sampled information, two
types of event-triggering conditions can be recognized for the re-
sults on MASs. The first type depends on the absolute information
about neighboring agents (see Dimarogonas et al., 2012; Liu et al.,
2017; Yang et al., 2016), while the other one on the relative in-
formation between neighboring agents (see Cheng & Ugrinovskii,
2016; Fan et al., 2013; Hu et al., 2016; Li et al., 2015; Zhu & Jiang,
2015). However, note that, in some applications (e.g., deep-space
exploration Smith & Hadaegh, 2005), the absolute information
about agents cannot be precisely measured, while the relative
information between agents can. In such a case, the results of the
former type cannot be applied, while those of the latter type still
can.

It is worth pointing out that the design conditions in the
above results on event-triggered consensus still need to know
the precise Laplacian. This drawback makes it difficult to apply
these results on event-triggered consensus to MASs composed of
a large number of agents. Thus, designing fully distributed event-
triggering protocols with no need to deal with the Laplacian is
important for keeping the protocol scalability. Accordingly, an
emerging topic about MASs is to integrate both adaptive control
and event-triggered control to achieve scalable and sampled-data
feedback control (Cheng & Li, 2019; Qian, Liu, & Feng, 2019;
Wang, Zhou, & Zhu, 2018; Yang, Zhang, Feng, & Yan, 2018; Zhu,
Zhou, & Wang, 2018). In Qian et al. (2019) and Yang et al.
(2018), adaptive event-triggered protocols are constructed for
cooperative output regulation of heterogeneous linear MASs on
undirected and directed graphs, respectively. Consensus of homo-
geneous linear MASs is studied in Cheng and Li (2019) and Wang
et al. (2018) under state-feedback adaptive event-triggered pro-
tocols. However, it should be emphasized that all the results
in Cheng and Li (2019), Qian et al. (2019), Wang et al. (2018)
and Yang et al. (2018) are based on absolute information sens-
ing, which, as aforementioned, are inapplicable when absolute
information is difficult to measure in some applications. An ex-
ception is Zhu et al. (2018), which investigates consensus of
linear MASs under an adaptive event-triggered protocol with
relative information sensing. Nevertheless, it should be pointed
out that the results in Zhu et al. (2018) are still rather restric-
tive. Roughly speaking, the feasibility of the additional inequality
in Zhu et al. (2018, Theorem 1) has no general guarantee. Conse-
quently, consensus of linear MASs has not been well investigated
under adaptive event-triggered protocols with relative informa-
tion sensing, which motivates this work. It should be further
pointed out that the existence of event-triggered protocols based
on absolute information sensing generally do not imply that
based on relative information sensing, and vise versa. Thus, one
usually cannot directly establish the relative information based
counterpart from the existing results based on absolute informa-
tion (e.g., Cheng & Li, 2019). Please refer to Remark 2 for more
detailed explanations.

In this paper, we study the consensus problem of homoge-
neous linear MASs on undirected graphs. An adaptive event-
triggered state-feedback protocol is proposed for consensus

control without need to know and deal with the Laplacian of
the communication graph. Sufficient conditions are established
for consensus of linear MASs in the absence and presence of
external disturbances, respectively. We also prove that Zeno
behavior is excluded in the triggering process, and further provide
a formulation of the relative states based on sampled information
such that the proposed protocol can be realized in the self-
triggered manner. Finally we present two numerical simulations
for illustrating the effectiveness of the proposed theoretic results.

Compared with the relevant results in the literature, the main
contributions of this article are threefold:

(1) A new adaptive event-triggered protocol is proposed for
consensus of linear MASs. Compared with the existing event-
triggered results in Cheng and Ugrinovskii (2016), Dimarogonas
et al. (2012), Fan et al. (2013), Hu et al. (2016), Li et al. (2015),
Liu et al. (2017), Yang et al. (2016), Zhang et al. (2017) and Zhu
and Jiang (2015), global information in terms of the Laplacian is
not needed in the design conditions. Thus, the protocol can be
implemented in a fully distributed way.

(2) Different from the results in Cheng and Li (2019), Qian et al.
(2019), Wang et al. (2018) and Yang et al. (2018) that need to
know absolute information about agents, the proposed protocol
is completely based on relative information between neighbor-
ing agents. Thus, it is applicable for the case where relative
information is available while absolute information is not.

(3) The consensus conditions in the article are feasible under
the common stabilizability assumption for agents, while that
in Zhu et al. (2018, Theorem 1) does not have this guarantee.
Thus, our results are applicable for more general linear MASs.

Notation. Rm×n denotes the set of all m × n real matrices. 1n
represents the n-dimensional column vector with all the entries
being one and In is the n × n identity matrix (the subscript is
omitted if the context is clear) and N is the set of all nonnegative
integers. The symbol ⊗ stands for Kronecker product of two
matrices. For a symmetric matrix A, λM (A) and λm (A) denote its
maximum and minimum eigenvalues, respectively. ∥(·)∥ means
the 2-norm of a vector (·). diag{· · ·} means a (block) diagonal
matrix with “· · ·” on the diagonal.

Denote by G (V , E ) an undirected graph of N nodes, where
V = {1, . . . ,N} is the node set and E ⊆ V × V is the edge set.
Node j is said to be a neighbor of node i, if (j, i) ∈ E (thus, i is
also a neighbor of j, since the graph is undirected). Denote by Ni
the set of neighboring nodes of node i. Each edge of a graph is
assigned with a weight aij such that aij > 0 if (j, i) ∈ E and aij = 0
otherwise. Then the adjacency matrix and Laplacian associated
with the graph are denoted, respectively, by A = [aij]N×N and
L =

[
lij
]
N×N with lii =

∑
k∈Ni

aik and lij = −aij for (j, i) ∈ E . A
path of a graph is an ordered sequence of edges connecting two
nodes. An undirected graph is said to be connected if every node
can be reached from every other node through any path.

Lemma 1 (Fiedler, 1975). For an undirected, connected graph G ,
λ1 = 0 is the simple zero eigenvalue of the Laplacian and λ2 =

min1Tx=0, x̸=0
xTL x
xTx

> 0 is the smallest nonzero eigenvalue of the
Laplacian.

2. Problem statement

Consider N (N ≥ 2) linear time-invariant agents as

ẋi(t) = Axi(t) + Buui(t), i = 1, . . . ,N, (1)

where xi ∈ Rnx and ui ∈ Rnu are the state and control input
of agent i, respectively, and A ∈ Rnx×nx and Bu ∈ Rnx×nu with
(A, Bu) stabilizable are known system matrices. The consensus



X. Li, Y. Tang and H.R. Karimi / Automatica 116 (2020) 108898 3

problem is to design a feedback protocol such that the resulting
closed-loop system satisfies limt→∞

xi(t) − xj(t)
 = 0, i, j =

1, . . . ,N .
Given an undirected communication graph G (V , E ), the rela-

tive state that can be accessed by agent i is given by

x̃i(t) ≜
∑
j∈Ni

aij
(
xi(t) − xj(t)

)
, i ∈ V .

To avoid continuously consuming resources for obtaining x̃i(t), in
this paper, we are interested in event-triggered protocols of the
following form:

ui(t) = ci(t)Kzi(t), (2)

where zi(t) ≜ x̃i(t ik) for t ∈ [t ik, t
i
k+1). In the above equation,

K ∈ Rnu×nx is a constant gain matrix; t ik with t i0 = 0, i ∈ V ,
k ∈ N, is the kth sampling instant of x̃i(t); and ci(t) > 0, i ∈ V , are
adaptive scalar gains. All K , t ik and ci are protocol parameters to
be designed. Particularly, the sampling instants t ik are determined
by some event-triggering conditions that will be clear later. For
convenience, define

kit ≜ arg
l

min
l∈N;t≥t il

{
t − t il

}
,

which denotes the last event of agent i at the time t .

Remark 1. The event-triggering protocols in Cheng and Li (2019),
Dimarogonas et al. (2012), Liu et al. (2017), Qian et al. (2019),
Wang et al. (2018), Yang et al. (2016, 2018) and Zhang et al.
(2017) need absolute information (for instance, xi(t ik) and xj(t

j

kjt
),

j ∈ Ni) for agent i, which are infeasible in some applications.
Contrarily the protocol in (2) only needs relative state information
and thus does not have this restriction. Although event-triggering
protocols with relative information sensing have been widely
studied in Cheng and Ugrinovskii (2016), Fan et al. (2013), Hu
et al. (2016), Li et al. (2015) and Zhu and Jiang (2015), all these
results need to precisely know the Laplacian of the graph for
determining the protocol gains and/or triggering conditions. In
this paper, we will propose a method for adaptively tuning the
gains ci(t) based on sampled relative information, circumventing
the use of global information in term of the Laplacian.

In the sequel, if no confusion is caused, we will omit the
explicit dependence of symbols on t . Define

ei ≜ zi − x̃i, C ≜ diag{c1, . . . , cN},

ϵ = col{ϵ1, . . . , ϵN} ≜ (Lϵ ⊗ I) x,
x̃ ≜ col

{
x̃1, . . . , x̃N

}
, z ≜ col {z1, . . . , zN} , e ≜ col {e1, . . . , eN} ,

where Lϵ ≜ I −
1
N 11

T. The signal ϵi is the error between the
state of each agent and the average state of all agents. When the
graph is undirected, the average state of all agents is usually the
consensus state to be reached (Tuna, 2008). Thus, if ϵ is treated as
the consensus error, that consensus is reached physically means
that the state of all agents will approach to the average of them.

Note that

col {u1, . . . , uN} = col {c1Kz1, . . . , cNKzN} = (C ⊗ K ) z
= (C ⊗ K )

(
x̃ + e

)
.

Thus the corresponding closed-loop system is given by

ẋ = (I ⊗ A) x + (C ⊗ BuK )
(
x̃ + e

)
. (3)

Furthermore, the signal ϵ evolves according to

ϵ̇ = (I ⊗ A) ϵ + (LϵC ⊗ BuK )
(
x̃ + e

)
. (4)

Since 0 is a simple eigenvalue of Lϵ with 1 as the eigenvector,
according to the definition of ϵ, it can be proved that xi(t) −

xj(t) → 0 as t → ∞ if and only if ϵ(t) → 0 as t → ∞. Thus, as
an intermediate result, it is seen that consensus is reached if and
only if ϵ(t) in (4) is convergent. In view of this fact, ϵ is called the
consensus error in this article (one may use other definitions, but
the objective is the same).

3. Consensus without external disturbances

In this section, in the absence of external disturbances, we
study the consensus problem under the fully distributed event-
triggered protocol (2). Moreover, a self-triggered realization of
the protocol will be presented.

3.1. Consensus condition

Let P ∈ Rnx×nx be the positive definite matrix satisfying

ATP + PA − PBuBT
uP + Q = 0 (5)

for a given positive definite matrix Q ∈ Rnx×nx . Furthermore,
consider the following law of adaption,1

ċi(t) = α
Kx̃i(t ik)2

, t ∈ [t ik, t
i
k+1), i ∈ V , (6)

where the initial conditions ci(0) and α are any positive con-
stants. We further propose the following triggering condition for
determining the sampling instants:

t ik+1 = inf
t>t ik

{t|fi(ei(t), x̃i(t), t) = 0}, i ∈ V , k ∈ N, (7)

where

fi = ∥Kei(t)∥2
− ω

Kx̃i(t)2
−

θ

ci(t)
e−δt (8)

with ω, θ and δ being positive constants to be specified.
Before proceeding further, it should be pointed out that (8)

requires the knowledge of the continuous-time relative state x̃i(t)
for obtaining ei(t). Thus, if agent i obtains x̃i(t) by direct measure-
ment, then it will be required to continuously monitor the state
of neighboring agents, which does not obey our objective that
only the sampled information about neighboring agents is used.
In Section 3.2, we will provide sampled-data based formulations
of xi(t), so that continuously monitoring neighboring agents is
circumvented.

Now we present the following theorem. It not only provides
a sufficient condition for the existence of the protocol (2) under
(6)–(8), but also shows that Zeno behavior is excluded.

Theorem 1. Consider the MAS (1) and the protocol (2), (6)–(8) on
an undirected, connected graph G . Let the gain K be given by K =

−BT
uP with P satisfying (5). Then the closed-loop system (3) reaches

consensus and ci(t), i ∈ V , converge to some positive constants, if
ω, θ and δ are any constants such that

ω ∈ (0, 1) , θ > 0, δ > 0. (9)

Moreover, the system (3) does not exhibit Zeno behavior.

1 The term “adaptive” in this paper is to indicate that the scalars ci are real-
time adjusted without using global information. In this sense, the proposed
protocol can handle unknown connection weights. However, ci are not of
the meaning of parameter estimation, and K is designed on the basis of
precisely known agent dynamics. Thus, the meaning of adaption for the proposed
protocol does not completely comply with traditional adaptive control laws
that aim to handle unknown system parameters through parameter estima-
tion/identification. In this paper, we still call the proposed protocol as an
adaptive one in order to emphasize the real-time tuning feature of ci , and also
to follow the convention of the existing results on fully distributed control of
MASs (see, e.g., DeLellis et al., 2009; Li et al., 2013; Mei et al., 2016).
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Proof. We first prove the achievement of consensus. Consider a
candidate Lyapunov function as

V (t) = ϵT(t) (L ⊗ P) ϵ(t) +

∑
i∈V

(1 − ω)
4α(1 + ω)

(ci(t) − c̄)2 , (10)

where c̄ is any positive constant satisfying c̄ ≥
2(1+ω)(1+γ )

λ2γ (1−ω)(1−ω−ωγ )

(γ is any constant belonging to
(
0, 1

ω
− 1

)
). The derivative of V

along the solution of ϵ in (4) with K = −BT
uP is given by

V̇ = 2ϵT (L ⊗ P) ϵ̇ +

∑
i∈V

1 − ω

2α(1 + ω)
(ci − c̄) ċi

= 2ϵT (L ⊗ PA) ϵ − 2x̃T
(
C ⊗ K TK

)
x̃ − 2x̃T

(
C ⊗ K TK

)
e

+

∑
i∈V

1 − ω

2(1 + ω)
(ci − c̄)

Kx̃i(t ikit )2
,

where we have used the fact L L ϵ = L . It is easy to verify that

−2x̃T
(
C ⊗ K TK

)
e ≤ x̃T

(
C ⊗ K TK

)
x̃ + eT

(
C ⊗ K TK

)
e.

Moreover,∑
i∈V

1 − ω

2(1 + ω)
ci

Kx̃i(t ikit )2

=

∑
i∈V

1 − ω

2(1 + ω)
ci

Kx̃i + Kei
2

≤

∑
i∈V

1 − ω

2(1 + ω)
ci

(
2
Kx̃i2

+ 2 ∥Kei∥2
)

=
1 − ω

1 + ω
x̃T

(
C ⊗ K TK

)
x̃ +

1 − ω

1 + ω
eT

(
C ⊗ K TK

)
e.

Note that (8) implies ∥Kei∥2
≤ ω

Kx̃i2
+

θ
ci
e−δt , which further

implies eT
(
C ⊗ K TK

)
e ≤ ωx̃T

(
C ⊗ K TK

)
x̃ + Nθe−δt . Thus, it

follows that

V̇ ≤ 2ϵT (L ⊗ PA) ϵ +
2

1 + ω
eT

(
C ⊗ K TK

)
e −

2ω
1 + ω

x̃T
(
C ⊗ K TK

)
x̃

−

∑
i∈V

c̄ (1 − ω)

2(1 + ω)

Kx̃i(t ikit )2

≤ 2ϵT (L ⊗ PA) ϵ −

∑
i∈V

c̄ (1 − ω)

2(1 + ω)

Kx̃i(t ikit )2
+

2Nθ

1 + ω
e−δt .

It can be verified thatKx̃i2
=

Kx̃i(t ik) − Kei
2

=
Kx̃i(t ik)2

+ ∥Kei∥2
− 2x̃Ti (t

i
k)K

TKei

≤
Kx̃i(t ik)2

+ ∥Kei∥2
+

1
γ

Kx̃i(t ik)2
+ γ ∥Kei∥2 ,

which, combined with ∥Kei∥2
≤ ω

Kx̃i2
+

θ
ci
e−δt , implies

−
Kx̃i(t ik)2

≤ γ ∥Kei∥2
−

γ

1 + γ

Kx̃i2

= γ

(
∥Kei∥2

− ω
Kx̃i2

)
−

(
γ

1 + γ
− γω

)Kx̃i2

≤
γ θ

ci
e−δt

−
γ (1 − ω − ωγ )

1 + γ

Kx̃i2
.

Thus, it further follows that

V̇ ≤ 2ϵT (L ⊗ PA) ϵ −
c̄ (1 − ω) γ (1 − ω − ωγ )

2(1 + ω) (1 + γ )

∑
i∈V

Kx̃i2

+

∑
i∈V

c̄ (1 − ω) γ θ

2(1 + ω)ci
e−δt

+
2Nθ

1 + ω
e−δt

≤ 2ϵT (L ⊗ PA) ϵ − c̄ρϵT (
L 2

⊗ K TK
)
ϵ + υe−δt , (11)

where ρ =
(1−ω)γ (1−ω−ωγ )

2(1+ω)(1+γ )
, υ =

Nc̄(1−ω)γ θ

2(1+ω)mini∈V ci(0)
+

2Nθ
1+ω

and the
fact ci(t) ≥ ci(0) was used. Since 0 < γ < 1

ω
− 1 and ω < 1, we

have ρ > 0.
Let ε = col{ε1, . . . , εN} ≜ [ N−1/21 U ]

Tϵ, where
[ N−1/21 U ] is a unitary matrix such that Λ ≜ diag{0, λ2, . . . ,

λN} = [ N−1/21 U ]
TL [ N−1/21 U ]. It follows from (5),

(11) and the fact c̄ ≥
1

(1−ω)λ2
that

V̇ ≤ 2εT (Λ ⊗ PA) ε − c̄ρεT (
Λ2

⊗ K TK
)
ε + υe−δt

=

N∑
i=2

λiε
T
i

[
ATP + PA − c̄ρλiPBBTP

]
εi + υe−δt

≤

N∑
i=2

λiε
T
i

(
ATP + PA − PBBTP

)
εi + υe−δt

= −

N∑
i=2

λiε
T
i Q εi + υe−δt . (12)

Thus,

0 ≤ V (t) =

∫ t

0
V̇ (τ )dτ + V (0) ≤

∫ t

0
υe−δτdτ + V (0)

≤
υ

δ

(
1 − e−δt)

+ V (0) ≤
υ

δ
+ V (0), t ≥ 0, (13)

which implies that V (t) is bounded. It is seen from the definition
of V (t) that the boundedness of V (t) implies that of ci(t). Since
ci(t) are monotonically increasing, ci(t) converge to some positive
constants. The boundedness of V (t) implies that of ϵ(t), which
further implies the boundedness of x̃(t) and e(t) (since x̃ = (L ⊗

I)x = (L L ϵ ⊗ I)x = (L ⊗ I)ϵ). Note that ϵTϵ is differentiable
with respect to t; moreover, its derivative can be written as
2ϵT

[(I ⊗ A)ϵ + (LϵC ⊗ BuK )(x̃ + e)]. Thus, the derivative of ϵTϵ is
bounded, which implies that ϵTϵ is uniformly continuous (Slotine
& Li, 1991, Page 123). Moreover, it follows from (12) and (13) that

lim
t→∞

∫ t

0
ϵT(τ )ϵ(τ )dτ = lim

t→∞

∫ t

0
εT(τ )ε(τ )dτ

≤
1

λm(Q )λ2
lim
t→∞

∫ t

0

N∑
i=2

λiε
T
i (τ )Q εi(τ )dτ

≤
1

λm(Q )λ2

(υ

δ
+ V (0) − V (∞)

)
< ∞,

where the fact ε1 ≡ 0 was used. By Khalil (2002, Lemma 8.2), it
follows that ϵT(t)ϵ(t) → 0 as t → ∞, or equivalently ϵ(t) → 0
as t → ∞, that is, consensus is reached.

Next, we show that Zeno behavior is excluded. Note that
ei(t) = x̃i(t ik) − x̃i(t) for t ∈ [t ik, t

i
k+1). Thus,

d∥Kei∥2

dt = 2eTi K
TKėi =

−2eTi K
TK ˙̃xi = −2eTi K

TK
∑

j∈Ni
aij(Axi + Buui − Axj − Buuj) ≤⏐⏐⏐2eTi K TK (Ax̃i +

∑N
j=1 lijBuuj)

⏐⏐⏐ for t ∈ [t ik, t
i
k+1). Since x̃(t) and ci(t),

i ∈ V , have been proved to be bounded, ui(t), i ∈ V , are
bounded. Moreover, ei(t), i ∈ V , are bounded. Thus, with χi ≜

supt≥0

⏐⏐⏐2eTi (t)K TK (Ax̃i(t) +
∑N

j=1 lijBuuj(t))
⏐⏐⏐, we have χi < ∞.
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Using
Kei(t ik)2

= 0 and d∥Kei(t)∥2

dt ≤ χi, we have

∥Kei(t)∥2
≤ χi(t − t ik), t ∈ [t ik, t

i
k+1). (14)

The triggering condition (8) implies that, at t = t ik+1, there holdsKei(t ik+1)
2

= ω
Kx̃i(t ik+1)

2
+ θc−1

i e−δt ik+1 , which together with
(14) shows

θc−1
i e−δt ik+1 ≤

Kei(t ik+1)
2

≤ χiT i
k, with T i

k ≜ t ik+1 − t ik. (15)

The above inequality implies that T i
k > 0 for any finite horizon.

Moreover, we can show t ik → ∞ as k → ∞. If this is not
true, by denoting t i

∞
= limk→∞ t ik, then t i

∞
< ∞, and moreover

limk→∞ T i
k = 0. Thus, it is known from (15) that, for k → ∞, 0 <

θc−1
i e−δt i∞ ≤ χi0 = 0, which is a contradiction. Consequently, no

Zeno behavior is exhibited. ■

Remark 2. Some comments about Theorem 1 and its compar-
isons with the existing results are provided as follows.

1. As aforementioned, results about event-triggered consen-
sus of MASs can be categorized into two classes that are
based on absolute information sensing and relative infor-
mation sensing, respectively. To the best of the authors’
knowledge, except Zhu et al. (2018), most of the existing
results about fully distributed event-triggered consensus
fall into the former class (Cheng & Li, 2019; Qian et al.,
2019; Wang et al., 2018; Yang et al., 2018). The proposed
protocol (2) is of the latter class.

2. Protocol (2) and Theorem 1 cannot be obtained by simply
extending the existing results based on absolute informa-
tion sensing to the consensus problem based on relative
information as considered in this paper. Take Cheng and
Li (2019) for instance. Firstly, because different information
is employed in the two cases, the protocols in Cheng and
Li (2019) do not imply the existence of distributed event-
triggered protocols based on relative information, even if
t ik = t jk, j ∈ Ni, is further enforced for agents i and j.2 This
obstacle makes the protocols for the two cases essentially
different from each other, which necessitates to design
different event-triggered protocols for the two cases, re-
spectively. Moreover, the adaptive gains cij(t) in Cheng and
Li (2019) are the weight of the relative information of each
edge (e.g., x̃i− x̃j in (3) therein), while ci(t) in this paper are
that of the collective relative information at each node. To
our understanding, cij(t) therein cannot be simply merged
into a single weight, like ci(t) in this paper, of the collective
relative information at each node. Secondly, we provide an
event-triggering condition which, in terms of the coeffi-
cient of the state-dependent term, are different from the
one in Cheng and Li (2019). This coefficient (i.e., ω in (8)
in this paper and 1

4(1+δcij)
in Cheng & Li, 2019) cannot be

arbitrarily large but should be properly constrained to en-
sure consensus. As a matter of fact, properly characterizing
the bound for this coefficient is one of the main techni-
cal challenges in designing event-triggered protocols (see,
e.g., Cheng & Ugrinovskii, 2016; Fan et al., 2013; Hu et al.,
2016; Li et al., 2015; Zhu & Jiang, 2015). Particularly, note
that the Lyapunov function in this paper is different from
the one in Cheng and Li (2019), and we need to techni-
cally construct the key term

∑
i∈V

(1−ω)
4α(1+ω) (ci(t) − c̄)2 and

2 Intuitively, it appears that an event-triggered protocol based on absolute
information can be written in the form of relative information by letting t ik = t jk .
However, such an enforcement does not result in the desired result. Since
the graph is undirected and connected, enforcing t ik = t jk actually implies
t1k = · · · = tNk , that is, the resulting event-triggering mechanism works in a
centralized manner.

properly choose the constant c̄. From this aspect, the event-
triggering condition proposed in this paper is technically
different from those in Cheng and Li (2019). Thirdly, the
adaptive gains cij(t) in Cheng and Li (2019) are required
to satisfy cij(t) = cji(t) for all t ≥ 0. However, this
symmetry is difficult to be maintained all the time, for
instance, when cij(0) and cji(0) are not precisely equal or the
transmitted states are corrupted by communication noises.
The adaptive gains ci(t) in this paper are not required to
have this symmetry.

3. In Zhu et al. (2018), fully distributed event-triggered con-
sensus of MASs based on relative information sensing was
studied very recently, and a different adaption law and a
different event-triggering condition have been presented
therein. However, the consensus condition therein needs
the feasibility of σλm(P−1) ≥ λM(BuBT

uP), where P is a
positive definite matrix solving (5) with Q = σ I. Although
this inequality is related to local agent dynamics only, there
is no guarantee of its feasibility in general. Take a simple
MAS for instance, where A = 1 and Bu = 1. Eq. (5)
reduces to 2P − P2

+ σ = 0, which gives P =
2+

√
4+4σ
2 =

1 +
√
1 + σ . Then σλm(P−1) =

σ

1+
√
1+σ

and λM(BuBT
uP) =

P = 1 +
√
1 + σ . The regarded inequality thus reduces to

σ

1+
√
1+σ

≥ 1 +
√
1 + σ , or equivalently 0 ≥ 2 + 2

√
1 + σ ,

which cannot be true for any σ ≥ 0. Thus, the consensus
condition in Zhu et al. (2018) is quite restrictive (we find
that it is also infeasible for Example 1). Theorem 1 in this
article does not have this restriction.

3.2. Self-triggered realization

Note that the triggering condition (7) needs the continuous-
time knowledge of x̃i(t) to compute ei(t). Directly measuring
such relative information requires agents to continuously monitor
neighbors. To circumvent this drawback, inspired by Cheng and
Ugrinovskii (2016), we further provide a self-triggered realization
for the protocol. Specifically, x̃i(t) for t ∈ [t ik, t

i
k+1) can be directly

computed as

x̃i(t) =

[
eA(t−t ik) + lii

∫ t

t ik

ci(τ )eA(t−τ )BuKdτ

]
x̃i(t ik)  

≜x1i (t
i
k,t)

−

∫ t

t ik

eA(t−τ )BuK
∑
j∈Ni

cj(τ )aijx̃j(t
j

kjτ
)dτ

  
≜x2i (t

i
k,t)

. (16)

The formulation of x̃i(t) as above only requires the sampled
relative information between agents. Note that the two terms x1i
and x2i , from the perspective of agent i, rely on different types of
relative information:

1. x1i on the sampled relative information measured by agent
i itself;

2. x2i on the sampled relative information measured by the
neighbors of agent i.

In addition, note that, although cj(t), j ∈ Ni, are continuous-
time signals not directly related to agent i (they are the adaptive
gains of neighboring agents), it is unnecessary for agent i to obtain
them from neighbors in a continuous-time way. In fact, as long
as x̃j(t

j
k) and cj(0), j ∈ Ni, have been transmitted to agent i, it can

compute cj(t), j ∈ Ni, in an iterative way as

cj(t) = cj(t
j
k) + α

Kx̃j(t jk)2
(t − t jk), t ∈ [t jk, t

j
k+1).
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Thus, with x̃i(t) given as in (16), the proposed protocol (2) with
(6)–(8) does not need to continuously monitor neighboring
agents. In fact, based on (16), the protocol under the triggering
condition (7) reduces to a self-triggered one.

Remark 3. To obtain x2i , it is necessary for agent i to implement
certain communication medium which can transmit the events
and the sampled information from the neighbors to agent i. This is
a common case for most of the existing results on event-triggered
protocols with absolute information sensing (e.g., Cheng & Li,
2019; Dimarogonas et al., 2012; Liu et al., 2017; Yang et al., 2016)
or on self-triggered realizations of event-triggered protocols with
relative information sensing (e.g., Cheng & Ugrinovskii, 2016; Fan
et al., 2013; Hu et al., 2016; Li et al., 2015; Zhu & Jiang, 2015).
It is worth pointing out that (16) is an equivalent formulation
of x̃i, thus the value of xi(t) via computation according to (16),
theoretically, has no difference when compared with that via
direct measurement.

4. Consensus with external bounded disturbances

In this section, we extend the results in the previous section
to the consensus problem with external bounded disturbances.
Specifically, consider the following N linear agents,

ẋi(t) = Axi(t) + Buui(t) + wi(t), i ∈ V , (17)

where wi(t) ∈ Rn are external disturbances satisfying
supt≥0 ∥wi(t)∥ ≤ w̄i and other symbols have the same meaning
of those in (1). We are still interested in the adaptive event-
triggered protocol in (2), for which it is easy to see that the
consensus error ϵ satisfies

ϵ̇ = (I ⊗ A) ϵ + (LϵC ⊗ BuK ) z + (Lϵ ⊗ I) w. (18)

Because of the presence of the external disturbance w, it is in gen-
eral impossible to reach precise consensus. Instead, our objective
in this section is to find a protocol (2) such that the consensus
error ϵ is uniformly ultimately bounded, which is called bounded
consensus in this article.

Since the consensus error ϵ in (18) does not converge to
zero in general, and so do x̃i. If the law of adaption (6) is still
applied, ci(t) could increase unboundedly. Thus, to ensure the
boundedness of ci(t), the following modified law of adaption is
applied:

ċi(t) = α
Kx̃i(t ik)2

− φci(t), (i) ∈ V , t ∈ [t ik, t
i
k+1), (19)

where the initial conditions ci(0) are any nonnegative constants
and the parameters α and φ are any positive constants. Note that
ci(t) ≥ 0 for all t ≥ 0. Moreover, we still employ the triggering
condition (7) but functions fi are re-defined as

fi ≜ ∥Kei(t)∥2
− ω

Kx̃i(t)2
−

θ

β + ci(t)
e−δt (20)

with ω, θ , δ and β being positive constants. The following theo-
rem shows that the protocol (2) combined with (7), (19) and (20)
can solve the bounded consensus problem.

Theorem 2. Consider the MAS (17) and the protocol (2), (7), (19)
and (20) on an undirected, connected graph G . Then the closed-
loop system (18) reaches bounded consensus and ci(t), i ∈ V , are
uniformly ultimately bounded, if ω, θ , δ and β are any constants
such that

ω ∈ (0, 1) , θ > 0, δ > 0, β > 0. (21)

Moreover, the system (18) does not exhibit Zeno behavior.

Proof. Still consider the candidate Lyapunov function in (10).
Using similar arguments for obtaining (12), one can show that
the derivative of V along the solution of ϵ in (18) satisfies

V̇ ≤ −

N∑
i=2

λiε
T
i Q εi + νe−δt

+ 2ϵT (L ⊗ P) w

−

∑
i∈V

(1 − ω) (ci − c̄)
2α(1 + ω)

φci

= −ϵT (L ⊗ Q ) ϵ + νe−δt
+ 2ϵT (L ⊗ P) w

−

∑
i∈V

(1 − ω) (ci − c̄)
2α(1 + ω)

φci,

where ν = supt≥0

{∑
i∈V

[
c̄(1−ω)γ θ

2(1+ω)(β+ci(t))
+

2θci(t)
(1+ω)(β+ci(t))

]}
. Since

ci(t) ≥ 0, it follows that 0 < ν < ∞. Since − (ci − c̄) ci ≤

−
(ci−c̄)2

2 +
c̄2
2 and 2ϵT (L ⊗ P) w ≤ γ ϵT (L ⊗ P) ϵ + γ −1wT

(L ⊗ P) w for any constant γ > 0, we have

V̇ ≤ −ϵT (L ⊗ Q ) ϵ + γ ϵT (L ⊗ P) ϵ +
1
γ

wT (L ⊗ P) w

+ νe−δt
+

∑
i∈V

φ(1 − ω)c̄2

4α(1 + ω)
−

∑
i∈V

φ(1 − ω) (ci − c̄)2

4α(1 + ω)
.

Let η and γ be sufficiently small positive constants such that
ηP + γ P − Q is negative semi-definite and φ ≥ η. Then

V̇ ≤ −ηV + ϵT
[L ⊗ (ηP + γ P − Q )]ϵ +

1
γ

wT (L ⊗ P) w

+ νe−δt
+

∑
i∈V

φ(1 − ω)c̄2

4α(1 + ω)
−

∑
i∈V

(φ − η) (1 − ω) (ci − c̄)2

4α(1 + ω)

≤ −ηV + µ,

where µ ≜ 1
γ
λM(L ⊗ P)

∑
i∈V w̄2

i + ν +
∑

i∈V
φ(1−ω)c̄2
4α(1+ω) and the

fact ∥wi∥
2

≤ w̄2
i has been used. From the Comparison Lemma

(see Khalil, 2002, Lemma 3.4), we obtain

V (t) ≤ e−ηtV (0) +
µ

η
(1 − e−ηt ).

It is seen that V (t) is bounded for all t ≥ 0. Thus, from (10), the
boundedness of the consensus error ϵ(t) and the adaptive gains
ci(t) can be concluded as well.

The exclusion of Zeno behavior follows from similar argu-
ments as those for the corresponding part of Theorem 1. So the
remaining proof is omitted for brevity. ■

Remark 4. It is seen from the proof of Theorem 2 that ϵ(t)
and ci(t) will asymptotically converge to a bounded set in terms
of V (t) as

{
V (t) : 0 < V (t) ≤

µ

η

}
, which can be viewed as an

estimation of the attraction region of ϵ(t) and ci(t). From the
definition of µ, one sees that the bound of this set increases
with w̄i increasing, which complies with the intuition that larger
disturbances result in larger consensus errors in general. Note
that, even if w̄i = 0, that is, the system is free of disturbances,
following the proof of Theorem 2, we can only show the bound-
edness of ϵ(t) under the law of adaption (19). The law of adaption
(19) cannot guarantee precise consensus in general. This is a
difference between the two laws of adaption in (6) and (19).

Remark 5. As long as ω, α, θ , δ, β and φ satisfy the specifica-
tions in the theorems, the basic consensus or bounded consensus
requirement can be ensured. However, in practice, a proper se-
lection of these constants in general should be done on a case-
by-case basis, and moreover trade-offs often need to be explored
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Fig. 1. The graph used in the examples. All edge weights are 1.

to accommodate more specifications. Intuitively speaking, large
ω, θ and small δ, β can help enlarge event intervals, but in
turn could reduce the convergence rate of the consensus error;
a small α can help reduce the growing rate of ci, but in turn
could reduce the convergence rate of the consensus error; a large
φ can help reduce the ultimate ci in the presence of external
disturbances, but in turn could result in the increasing of the
consensus error. Finally, note that it is straightforward to further
extend the proposed results to the case that the parameters ω, α,
θ , δ, β and φ vary with agents.

5. Numerical examples

In this section, two numerical examples are provided to il-
lustrate the effectiveness of the proposed results. We set the
discretization time step for all simulations to 10−4.

Example 1 (Consensus Without Disturbances). Consider the MAS
(1) with A =

[
0 1
0 0

]
and Bu =

[
0
1

]
, and the network

consists of 8 agents that communicate with each other according
to the graph in Fig. 1. Let Q = I, then the gain K obtained
by Theorem 1 is K =

[
−1 −1.7321

]
. Let α = 0.005 and

select ω = 0.5, θ = 0.1 and δ = 0.05. For simulation, let the
initial conditions x1(0) =

[
−6 4

]T, x2(0) =
[

2 −4
]T,

x3(0) =
[

−3 −3
]T, x4(0) =

[
0 3

]T, x5(0) =
[

3 −1
]T,

x6(0) =
[

1 1
]T, x7(0) =

[
4 3

]T, x8(0) =
[

5 −2
]T

and ci(0) = 0.01, i ∈ V . Fig. 2 displays the simulation results
under the designed protocol. The convergence of the consensus
errors ϵi(t) is verified, that is, consensus is reached. The second
sub-figure clearly illustrates that the protocol updates the rela-
tive information in a discrete-time manner, while the third one
demonstrates the convergence of the adaptive gains ci(t) to some
finite positive constants. The last sub-figure shows the minimum

(mink{T i
k}) and median (medk{T i

k}) of the sampling intervals of the
controllers. Particularly, it is shown that the values of mink{T i

k}

are much larger than the discretization time step 10−4 for simula-
tion, illustrating the exclusion of Zeno behavior in the closed-loop
system.

With Q = σ I, we obtain P = [pij]2×2 with p11 =

√
σ 2 + 2σ

3
2 ,

p12 = p21 =
√

σ and p22 =

√
σ + 2

√
σ . The expressions of

σλm(P−1) and λM(BuBT
uP) are omitted for brevity, but it can be

verified that no σ > 0 can ensure σλm(P−1) ≥ λM(BuBT
uP) (see

Remark 2.3). Thus, the method in Zhu et al. (2018) is infeasible
for this example.

Example 2 (Consensus with Disturbances). Let us consider the
MAS (17) with the same A and Bu as those in Example 1 and
moreover wi = Buvi, where vi = sin(3π t +

iπ
8 ), i ∈ V . We can

employ the same design results as those in Example 1 for K , α, ω,
θ and δ in the protocol (2), (7), (19) and (20). Additionally, take
φ = 0.01 and β = 0.001 for (19) and (20). Fig. 3 depicts the
simulation results under the same initial conditions as those in
Example 1. The effectiveness of the designed protocol is obvious.
Particularly, it is seen that the consensus errors ϵi(t) and the
adaptive gains ci(t) are all bounded, and the event-triggering
processes work properly and do not exhibit Zeno behavior.

6. Conclusion

This article is devoted to event-triggered consensus of linear
MASs on undirected graphs. An adaptive event-triggered pro-
tocol has been proposed for consensus control. The triggering
conditions and adaptive gains depend on the relative informa-
tion between neighboring agents. Sufficient conditions have been
derived for the existence of the proposed protocol that ensures
precise or bounded consensus, which do not need to know the
Laplacian of the communication graph so that the protocol can be
designed in a fully distributed way. It has been shown that Zeno
behavior is excluded from the triggering process. Compared with
the existing results, the proposed protocol is based on relative
information sensing between neighboring agents; moreover, its
existence is guaranteed for any linear MAS of stabilizable agents.
The effectiveness and advantages have been clearly illustrated by
numerical examples.

Fig. 2. Simulation results in Example 1.

Fig. 3. Simulation results in Example 2.
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