
Computer Organization Lab Manual

Vrije Universiteit Amsterdam

Edition 2022 - 2023

Contents

1 Introduction 4
1.1 Getting started . 4
1.2 Lab course rules and etiquette . 4
1.3 Assumed prior knowledge . 5
1.4 Assignment Overview . 7
1.5 Why assembly (still) matters . 8

2 Assignments 9
2.1 Assignment 0: a detailed example . 10
2.2 Assignment 1: your first simple program . 14
2.3 Assignment 2: subroutines and I/O . 15
2.4 Assignment 3: parameter passing and local variables 15
2.5 Assignment 4: recursion . 16
2.6 Assignment 4+: Fibonacci sequence (150-400 points) 16
2.7 Assignment 5a: (extra, excludes 5b) implement “diff” in assembly (500 points) . . 17
2.8 Assignment 5b: (extra, excludes 5a) implement a hashing function (500 points) . . 18
2.9 Assignment 6: (extra) implement a simplified printf function (500-750 points) . . . 19
2.10 Assignment 7: (extra) using assembly to hide data in a bitmap (500-750 points) . . 20
2.11 Assignment 8: (extra) Intro to HPC: implement a memory bandwidth benchmark

(500–750 points) . 23
2.12 Assignment 9: (extra) using assembly to implement a game (1,000 points) 24

3 Reference documentation 26
3.1 Building and running programs* . 26
3.2 Programming constructs* . 26

3.2.1 Conditional branching* . 27
3.2.2 If-then-else statements* . 27
3.2.3 While/do-while/for loops* . 28
3.2.4 Switch-case statements . 29
3.2.5 Lookup tables . 29

3.3 Subroutines* . 30
3.3.1 Calling subroutines* . 30
3.3.2 Writing your own subroutines* . 32
3.3.3 Cleaning up the stack* . 32
3.3.4 The foo subroutine . 33
3.3.5 Recursive subroutines* . 34

3.4 Input and output* . 35
3.4.1 Printing to the terminal* . 35
3.4.2 Reading from the terminal* . 36

3.5 x86 assembly language reference* . 36
3.5.1 About the AT&T syntax* . 36
3.5.2 Instruction set reference . 38

1

3.5.3 Assembler directive reference* . 40
3.6 Advanced topics . 41

3.6.1 Mixing assembly language with C/C++ . 42
3.6.2 Doing IO without the C library . 42

A Rules and Regulations 44
A.1 Necessary conditions for approval . 44

A.1.1 Correct specifications . 44
A.1.2 Functionally correct code . 45
A.1.3 Algorithmically correct code . 45
A.1.4 Compliance with subroutine conventions . 45
A.1.5 Properly commented source code . 45

A.2 Deadlines . 46
A.3 Anti-fraud policy . 46

Note: References (that is, documentation) required to read for completing the mandatory
assignments for Computer Organization have been marked with a *.

2

Acknowledgements

The lab course assignments were originally developed by Sidney Cadot for the PowerPC architec-
ture. The accompanying documents, two versions of the assignments and a tutorial on PowerPC
assembly, were also written by Sidney. Jonne Zutt maintained these documents over the years
after Sidney left the university. In 2004, the decision was made to change the target architecture of
the lab course from the somewhat obscure PowerPC to the ubiquitous Intel x86 platform. The lab
course environment had to change accordingly: the carefully tweaked commercial IDE/PowerPC
emulator running on Microsoft Windows was abandoned in favour of the GNU assembler and
debugger, which are available on nearly every Linux distribution. Because of these changes, the
assignments and the accompanying reference material were rewritten by Denis de Leeuw Duarte.

In 2005, a new curriculum was started, which transformed the old lab into a more elaborate
project for Software Technology students, while Media and Knowledge Technology students only
had to do a trimmed-down version. The manual was modified to match the new requirements by
Bas van der Doorn and Sander Koning.

In 2011 and 2012, the manual was further updated by Mihai Capotă and Alexandru Iosup and
in 2013 and 2014 the manual received a refresh and expansion by Otto Visser. Finally, in 2014 the
decision was made to switch from the x86 to the x86-64 architecture and the manual was edited
by Elvan Kula.

Until 2022, Tim Hegeman maintained the lab manual.
In 2022/2023, David Breitling and Paul Ellsiepen made all the examples and explanations

independent of absolute addressing (PIE) and refreshed parts of the reference and assignments.
They also adapted the manual to the newly developed Lab Framework, enabling the use of au-
tomated tests. Tiziano Coroneo extended this framework to make x86-64 development on Apple
Silicon Macs possible.

3

https://github.com/ComputerScienceEducation/co-framework

Chapter 1

Introduction

1.1 Getting started

Given that this course is given in the first year, it is quite likely that you have little programming
experience. There is, however, also a reasonably large group amongst you that seems to have some
programming experience. For those, a computer was usually “sketched” as a machine that executes
program statements in a line-by-line fashion, manipulating variables and performing calculations
as it goes along. This simple model allowed you to write your first computer programs in C++,
Python, or some other language. Of course, the mechanisms underlying the execution of programs
are a bit more complicated. It is quite likely that you have already encountered the limitations
of this naive model in the form of incomprehensible error messages and seemingly inexplicable
program failures. Apparently, it is necessary to acquire a more thoroughly detailed mental picture
of the machine in order to solve many common programming problems. The goal of this lab course
is to help you paint this picture. Much of this knowledge is to be acquired through practical
assignments, but careful reading is also an important part of the educational process.

You should read the remainder of this introductory section before starting on the first assign-
ment in Section 2.1. Take special notice of Section 1.3, which summarises and refreshes the prior
knowledge that we assume on your part. The assignment texts will frequently refer to the reference
(found in Chapter 3), which contains essential information for completing the lab course.

1.2 Lab course rules and etiquette

Teaching assistants will be present during lab course hours to offer you advice and the possibility
to have your work reviewed. Please keep in mind that they are not there to deal with faulty lab
course equipment, problems with your laptop and software, problems with your login account,
disputes about deadlines and lab course rules, possible special exceptions (e.g., due to illness on
your part) or problems with lab course enrolment. We kindly ask you to bypass the teaching
assistants in such matters and to go straight to the lab course coordinator (see table below).
In addition, before asking for help from a TA, please have a close look at the general FAQ1 on
Canvas – you will have to confirm that your issue is not (sufficiently) addressed there.

Lab course equipment: GNU environment (see Canvas)2.
Deadlines, rules, exceptions: Lab coordinator (David Breitling)
Grades: Grading coordinator (Paul Ellsiepen)
Enrolment: Director of education
MacOS (M1/M2) Issues: Tiziano Coroneo

1https://canvas.vu.nl/courses/68250/pages/lab-faq
2https://canvas.vu.nl/courses/68250/pages/lab-technical-setup-+-framework

4

https://canvas.vu.nl/courses/68250/pages/lab-faq
https://canvas.vu.nl/courses/68250/pages/lab-technical-setup-+-framework

Keep in mind that the work you hand in during the lab is subject to certain rules and quality
guidelines. The rules and guidelines are listed explicitly for this lab course in Appendix A. You
are expected to check your work prior to handing it in for review. The lab course assistants will
only consider work that is in full compliance with the stated rules and guidelines.

1.3 Assumed prior knowledge

This lab course is by no means an introductory course in computer programming. In this subsection
we will briefly describe the level of experience that we assume on your part. More importantly, we
will refresh and summarise the knowledge that you must have before you can start the assignments.

Background knowledge

We assume that you have followed and understood the lectures and that you have studied the
accompanying book and lecture notes in the necessary detail. In particular, we assume that
you know and understand what opcodes, instructions, subroutines, stacks, registers and program
counters are and that you have a general idea of what occurs during the compilation and linking
stage of an executable program. We further assume that you know the difference between bits,
nibbles and bytes and that you can convert numbers between different number representation
systems (hexadecimal, binary, etc.) and we assume that you understand the concept of endianness.
These topics have all been treated during the lectures and instructions.

In this lab course you will learn how to program in the x86-64 assembly language. You should
know that “the x86-64 architecture” is the generic name for the architecture of CPUs found in
garden-variety personal computers3. We assume that you have studied the x86-64 architecture in
your lecture notes. You should know that x86-64 has six 64-bit general purpose registers (RAX,
RBX, RCX, RDX, RDI and RSI) which you can use freely when writing programs. You should know
that the x86-64 has a 64-bit stack pointer register (RSP) which contains the memory address of the
top of the current program stack and a base pointer register (RBP), which is used during subroutine
execution. The purpose of these registers will be explained to you during the assignments. There
is a second set of eight general purpose 64-bit registers named R8-R15.

Finally, you should know what we mean by the Von Neumann architecture, i.e., you should
know that a computer is roughly comprised of three subsystems: a CPU, a random access main
memory and an IO subsystem which is in turn comprised of IO devices such as mice, keyboards,
sound cards, hard disks, etc. You should know that the CPU is capable of executing instructions
which reside in the main memory and that instructions are simply binary codes of varying lengths.
In the next paragraph we refresh your knowledge of some important definitions regarding computer
languages.

Essential concepts

It is likely that you do not yet have a very clear image in your mind as to what goes on inside
the bowels of your computer when it is executing a program. The main goal of this lab course
is to remedy this situation. To start off, we will eliminate any romantic preconceptions on your
part regarding assembly languages, machine language and high-level programming languages by
carefully restating their definitions and their respective purposes. Much of this should already be
known to you, but it is essential that you read the following carefully.

Computer memory stores programs as sequences of instructions and data in binary format. To
a computer, there is no essential difference between instructions and data. Below you can find a
real example of part of a computer program, as it would look in the main memory of a computer:.

The line numbers are not part of the program but you could think of them as memory addresses,
as each byte has its own memory address. This type of “zeros and ones” program representation
is called the machine language representation of a program. The machine language representation

3In the literature you may encounter the terms AMD64 and x64, which are synonyms for x86-64.

5

is of course the only representation that a computer can understand. Any higher level language
representation of a program (such as a Java or C program) needs to be translated into machine
language at some point, before it can be executed by the hardware. Machine languages are specific
to the CPU architecture, e.g., there is a PowerPC machine language, an x86-64 machine language,
etc.

0 01001000

1 11000111

2 11000000

3 00000001

4 00000000

5 00000000

6 00000000

7 01001000

8 11000111

9 11000001

10 00000001

11 00000000

12 00000000

13 00000000

14 01001000

15 00000001

16 11000001

The little code snippet above is actual x86-64 machine code written in binary notation. As you
can see, programs take up a large amount of space when written in binary, so we will commonly
write such code in hexadecimal format. As you know, each nibble is represented by one hex digit
so we can rewrite these 17 bytes of code in 34 hex digits:

48 c7 c0 01 00 00 00 # move the number 1 into the RAX register

48 c7 c1 01 00 00 00 # move the number 1 into the RCX register

48 01 c1 # add the contents of RAX to RCX

We have regrouped the bytes in such a way that one instruction fits on one line and we have
added some explanatory comments, which are denoted by the ‘#’ character. Do not be afraid at
this point if you do not understand the code fragment completely, but please do take a close look.
In this piece of code you can see three x86-64 instructions with some operand data. The first
instruction is the so called mov instruction. It moves a value to a register. In this case, the value
is the number 1 and the register is the x86-64’s RAX register. On the second line you see another
mov instruction, again with operand 1, but this time it moves the value to the RCX register. The
third line shows us the add instruction which sums the contents of RAX and RCX and stores the
result in RCX. As you can see, not all of the instructions in the x86-64 architecture are of the
same length. Usually the actual instruction is one to two bytes long. The mov instruction is only
two bytes long (48 c7) and the add instruction is three bytes long (48 01 c1). The operand data
of the mov instructions is four bytes long. Since x86-64 is a little-endian machine, the four byte
integer 1 is encoded as 01 00 00 00 as you can see. One final thing to note is that the operand
registers are encoded as c0 and c1.

In ancient times4, programmers had to enter programs into the computer’s memory by means
of punch cards - small pieces of cardboard which contained zeros and ones encoded in the presence
or absence of holes in the cardboard. Obviously, writing computer programs in zeros and ones or
hexadecimal numbers like this was a very cumbersome, error-prone task and in modern times it
would be next to impossible. Modern computer programs easily contain around 10MB of machine
code, which would amount to 83 886 080 zeros and ones or 20 971 520 hex digits. You could imagine

4In computing terms, “ancient” is roughly between 1920 and 1950.

6

the horror of having to type them by hand. Worse, you could imagine the horror of finding bugs
in such programs! For these reasons, people switched to assemblers in the 1950s. Assemblers are
special computer programs that translate text from a more humanly readable symbolic assembly
language (“assembly” for short) into machine code. In the assembly language, each instruction
code has a short mnemonic or nickname associated with it and each number can be represented
in decimal or hex, instead of in bits. Just as each architecture has its own machine code, each
machine code has its own assembly language. Below, we see the same program snippet as above,
but this time it is written in x86-64 assembly language:

movq $1, %rax # Move the number 1 into the RAX register

movq $1, %rcx # Move the number 1 into the RCX register

addq %rax, %rcx # Add the contents of RAX to RCX

As you can see, our cryptic piece of binary machine code is as simple as 1 + 1! Well, almost. The
most significant property of assembly language is that it closely resembles the raw machine code in
structure. If you have a table of opcodes and some knowledge of the fields in an x86-64 instruction
you could easily translate this assembly code directly into machine code - even by hand.

Writing large programs in assembly language still has its drawbacks unfortunately. As pro-
grammers, we still have to deal with millions upon millions of instructions and we still have to
concern ourselves with registers, stacks and memory locations, while we would rather like to focus
on solving our problems. If we want to add two numbers, we would like to tell the computer
something like y = a + b rather than having to explain the operation in register-level detail. In
short, we would like to program computers in a language that translates easily to mathematics or
English rather than machine language. This desire prompted the development of so-called 3GLs5.
You have probably heard of a lot of these 3GLs and in due time you will learn many of them: C,
C++, Java, Pascal, Prolog, Haskell, etc. In order to run a program that is written in a 3GL, we
need to translate it to assembly language first6. The tools that do this are called compilers. Unlike
assemblers, compilers are amongst the most complex computer programs in existence. Compiler
technology continues to evolve as it has done for over sixty years since admiral Grace Hopper wrote
the first compiler in assembly language7. It is often difficult to predict exactly what instructions
a compiler will generate when given a particular snippet of 3GL code. Nonetheless, below is a
line of C/Java code that might cause a compiler to spit out something that looks like our example
fragment:

int x = 1 + 1;

And there it is! As an aside, it is in fact highly unlikely that a compiler will ever generate our
little snippet of assembly code due to optimisations like constant folding. Luckily for you, that is
entirely outside the scope of this lab course.

1.4 Assignment Overview

During the lab course you will learn the basics of writing programs in assembly language. You
will learn how to call functions and what recursion looks like.

• Assignment 0 + study of paragraph 3.1 (at home)

• Learn programming environment and do assignment 1 (2 hours)

• Assignment 2 (2 hours)

5This stands for “third generation language”, with machine language being the first- and assembly being the
second generation.

6We could also use an interpreter, but we ignore that option here.
7Hopper is also renowned for the discovery of the first “bug”: a dead moth in one of the relay switches of the

Mark II calculator.

7

• Assignment 3 (4 hours)

• Assignment 4 (6 hours)

• Assignment 4+ (optional) (4-6 hours)

• Assignment 5 (optional) (6 hours)

• Assignment 6 (optional) (8 hours)

• Assignment 7 (optional) (8 hours)

• Assignment 8 (optional) (at least 8 hours)

• Assignment 9 (optional) (at least 8 hours)

You will need your time for this lab course, it is not easy. Many students underestimate the
lab, do not start when they should and find out that they cannot complete it anymore too late.
Do not let this happen to you and make sure you visit every session, so you can talk about your
questions to the assistants.

1.5 Why assembly (still) matters

To round up this introductory chapter, it is time to answer an important and often asked question.
Why is it necessary that you learn how to program in assembly? Is Java or C not much more
convenient? There are two answers to this question. First and foremost, not all programs can be
written in high level languages like C or Java. Contrary to popular lore, new compilers, Virtual
Machines and operating system kernels are not passed down to us from the heavens. Instead, and
with an equal sense of drama, they have to be forged by the hands of engineers of flesh and blood
through long toil and serious hardship. Engineers like you. If you, the computer scientists of the
future, do not know how to program in assembly language, who will? And who will port our
kernels to the latest 128-bit CPU or develop the next generation of embedded cellphone software
or the driver for your new video card? In a few years, people will be looking at you to perform
such feats, and you better be prepared.

There is a second, perhaps even more important reason for you to study assembly. In the
words of Donald E. Knuth, one of the most respected minds in our field:

Expressing basic methods like algorithms for sorting and searching in machine language
makes it possible to carry out meaningful studies of the effects of cache and RAM size
and other hardware characteristics (memory speed, pipelining, multiple issue, look
aside buffers, the size of cache blocks, etc.) when comparing different schemes.

The point Knuth makes here is that you cannot ever expect to develop proper computer programs
if you do not have a basic understanding of how computers work on the lowest level and of how
programs are represented there. A point that Knuth does not mention is that we live in an online
world today and that malicious attackers use their knowledge of assembly language to exploit the
programs that you may one day write. Thus, learning something about assembly language is a
lesson that will be of essential value to you whether you aspire to be a kernel hacker, a systems
analyst, a game programmer, a web developer or a theoretical computer scientist. In fact, here is
another priceless quote from Knuth that says it all:

People who are more than casually interested in computers should have at least some
idea of what the underlying hardware is like. Otherwise the programs they write will
be pretty weird.

You should now be mentally prepared to start the assignments. Good luck!

8

Chapter 2

Assignments

Please note: all the assignments marked “extra” will only provide points iff1 you have assignment
1–4 checked (but you do not need to do Assignment 7 before you can do 8; no worries)! It is also
worth noting that you cannot get points for doing more than one of the Assignments 5 a–b, you
have to choose one of them.

Framework

For Assignments 1-6 (including 4+), we provide a framework2 for implementing your programs as
well as some basic testing. Please refer to the README for usage instructions. It is mandatory
to use this framework as a private cloned git repository.3. For all other assignments, you should
use the same repository by extending it with the necessary files and folders.
You should use regular commits (e.g. every 30 work-minutes or every finished logical block of
code) with meaningful descriptions - this will simplify team work and version control as well as
accelerate the submission procedure (the TA might reject your submission based on the quality of
your git usage).

Important: In order to pass the automated tests on CodeGrade, your programs must adhere
to the specifications outlined in the framework above.

Submission Procedure

In order for you to get point for a successfully completed lab exercise, you need to have your work
checked by a teaching assistant (TA). For this, you will have to submit your work to CodeGrade
(via Canvas) and then register your submission request via the Google Form provided on Canvas.
One of the TAs will then come to you and give you the opportunity to explain your work. The
TA will verify that (both of) you can express an appropriate level of understanding of the work
submitted. In addition, the TA will ask you to illustrate your development process by checking
the commit history of your git repository. When working as a pair, there might also be some
questions regarding individual contributions and how you coordinated the work.

In case of uncertainties, the expected results of the CodeGrade AutoTests should be treated
as the binding specification for your program. You are hereby explicitly made aware of the fact
that these AutoTests are subject to change until the respective assignment’s deadline, and that it
is your responsibility to ensure that your program passes the tests.

1no, this is not a spelling error; see http://en.wikipedia.org/wiki/If_and_only_if
2You can find the framework at https://github.com/ComputerScienceEducation/co-framework.
3If you have little experience using git, or need a refresher, have a look at our guide shared on Canvas:
https://canvas.vu.nl/courses/68250/pages/lab-guide-for-git-gfg

9

http://en.wikipedia.org/wiki/If_and_only_if
https://github.com/ComputerScienceEducation/co-framework
https://canvas.vu.nl/courses/68250/pages/lab-guide-for-git-gfg

If your submission request gets rejected, the TA will indicate the reason for rejection and, after
implementing this feedback, you can try again using the same procedure until the deadline of the
assignment, unless otherwise communicated by the lab coordinator.

2.1 Assignment 0: a detailed example

In this assignment you will study the development process and the implementation of a simple,
non-trivial example program. In the subsequent exercises you can borrow ideas from this example
for your own programs, but for now, the most important thing is that you will learn:

• what an assembly program looks like

• how the basic programming constructs work in assembly (if/else, while, for, etc.)

• how to transform an idea into a good specification

• how to transform a specification into an assembly program

Since this is an introductory exercise, we will start with a very simple example problem. We are
going to develop a program that prints all prime numbers below 1000. The algorithm that we will
use to solve this problem was developed by an old scholar who went by the name of Eratosthenes
of Cyrene. Eratosthenes lived in northern Africa from 276 b.c. to 194 b.c. and he devised what is
probably the oldest known algorithm for finding prime numbers: the Sieve of Eratosthenes. The
algorithm is not terribly efficient but it is very easy to understand, which is exactly why we use it
here.

We will start by describing the Sieve algorithm in plain English. We will then write the
algorithm down more formally in pseudocode. Finally, we will translate the pseudocode into
working assembly code and we will discuss that code in line by line detail.

Step 1: description of the algorithm

The Sieve algorithm is quite simple. We start by constructing a list of all numbers between 2 and
some upper limit, which in our case is the number 1000:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ... 997 998 999 1000

We then take the first element of the list (the number 2, which is a prime!) and remove all
multiples of this number from the list, except for 2 itself:

2 3 . 5 . 7 . 9 . 11 . 13 . 15 . 17 . 19 . 21 ... 997 . 999 .

We then continue with the next element after 2 which is still in the list. This number is 3, again
a prime number, and we remove all multiples of 3 except 3 itself:

2 3 . 5 . 7 ... 11 . 13 ... 17 . 19 ... 997 ...

We continue this process with the next number in the list (5, again a prime), etc. until we reach
the end of the list. You should be able to convince yourself that the remaining numbers are all
the prime numbers below 1000.

10

Step 2: specification of the algorithm

Now that we are familiar with the basics of Eratosthenes’s Sieve, we will transform the algorithm
into a formal specification. Why do we have to do this? Well, because there are many small,
practical details that we need to consider before we can actually implement the algorithm. One
such problem is the problem of representation: how will we represent the list of numbers in our
program? Will we use a linked list4 structure containing the numbers or is it better to store
the numbers in a list of fixed size? What implications will it have for the complexity of our
program if we choose one representation over another? Resolving such questions is part of the
creative challenge of programming, so usually you will have to decide on these matters for yourself.
However, we will always expect you to formalise these decisions in the form of a good specification,
before you start programming. As an example of what we consider to be a good specification, we
present the specification of our sieve program below.

Instead of maintaining a list of remaining numbers, we will maintain an array of Boolean values
to denote which numbers are still present and which have been crossed out. All entries in this
array are initialised to true, since all numbers are initially present. We remove a number from
the list by setting its corresponding table entry to false. Here is the pseudocode that describes
the algorithm:

1 main () {
2 bool numbertable [1 0 0 0] ;
3
4 // I n i t i a l i s e the number t ab l e
5 f o r (i n t i = 0 ; i < 1000 ; i++)
6 numbertable [i] = true ;
7
8 // The s i e v e a lgor i thm
9 f o r (i n t number = 2 ; number < 1000 ; number++) {

10 // I f the number i s s t i l l in the l i s t i t must be prime
11 i f (numbertable [number]) {
12 // Pr int the prime number
13 p r in t (number) ;
14
15 // Cross out a l l mu l t i p l e s o f the number
16 i n t mu l t ip l e = 2 ∗ number ;
17 whi l e (mu l t ip l e < 1000) {
18 numbertable [mu l t ip l e] = f a l s e ;
19 mul t ip l e += number ;
20 }
21 }
22 }
23 }

The pseudocode above uses only simple operations on simple data types (integers, booleans) and
basic programmatic constructs such as for-loops and if statements. These constructs can easily be
translated to assembly programs, as we shall see in the next step.

Step 3: implementation

The final step in our development process is to translate the specification into working assembly
code. We present the complete implementation of the sieve program in working x86-64 assembly
on the next page, followed by a detailed explanation of the code. In later exercises, you can use
this program as a template for your own work. Try to read along and try to understand what
happens, using the comments in the code and the subsequent explanations as a guide. Do not be
intimidated if you do not understand all the details just yet. The first programs that you will be
asked to write will be much simpler than this one.

4http://en.wikipedia.org/wiki/Linked_list

11

http://en.wikipedia.org/wiki/Linked_list

1 # ∗∗
2 # ∗ Program name : s i e v e ∗
3 # ∗ Desc r ip t i on : t h i s program pr i n t s a l l the prime numbers below 1000 ∗
4 # ∗∗
5
6 # . . . some setup here , s e e framework
7
8 .data
9 .comm NUMBERS, 1000 , 1 # memory space f o r the number t ab l e

10
11 . t e x t
12 fo rmat s t r : . a s c i z ”%d\n” # format s t r i n g f o r number p r i n t i n g
13
14 . g l o b a l main
15 # ∗∗
16 # ∗ Subrout ine : main ∗
17 # ∗ Desc r ip t i on : app l i c a t i on entry po int ∗
18 # ∗∗
19 main :
20 pushq %rbp # s t o r e the c a l l e r ’ s base po in t e r
21 movq %rsp , %rbp # i n i t i a l i z e the base po in t e r
22
23 subq $16 , %rsp # a l i g n stack to 16 bytes
24 movq $2 , −8(%rbp) # i n i t i a l i z e ’ number ’ to 2 on stack
25
26 # I n i t i a l i z e the number t ab l e :
27 movq $0 , %rbx # i n i t i a l i z e ’ i ’ to 0 .
28 loop1 :
29 l eaq NUMBERS(%r ip) , %rax # load address o f NUMBERS tab l e in to rax
30 movb $1 , (%rax , %rbx) # se t number t ab l e entry ’ i ’ to ’ t rue ’
31 incq %rbx # increment ’ i ’
32 cmpq $1000 , %rbx # whi le ’ i ’ < 1000
33 j l loop1 # go to s t a r t o f loop1
34
35 # The s i e v e a lgor i thm :
36 loop2 :
37 movq −8(%rbp) , %rbx # load ’ number ’ i n to a r e g i s t e r
38 l eaq NUMBERS(%r ip) , %rax # load address o f NUMBERS tab l e in to rax
39 cmpb $1 , (%rax , %rbx) # compare NUMBERS[number] to ’1 ’
40 jne lp2end # i f not equal , jump to end o f loop 2
41 l eaq fo rmat s t r (%r i p) , %rd i # f i r s t argument : f o rmat s t r
42 movq %rbx , %r s i # second argument : the number
43 movq $0 , %rax # no vec to r arguments
44 c a l l p r i n t f # pr in t the number
45 movq −8(%rbp) , %rbx # ’ mul t ip l e ’ := ’ number ’
46 sh lq $1 , %rbx # mult ip ly ’ mu l t ip l e ’ by 2
47
48 loop3 :
49 cmpq $1000 , %rbx # compare ’ mu l t ip l e ’ to 1000
50 j g e lp2end # goto end o f loop2 i f g r e a t e r / equal
51 l eaq NUMBERS(%r ip) , %rax # load address o f NUMBERS tab l e in to rax
52 movb $0 , (%rax , %rbx) # se t number t ab l e entry ’ i ’ to ’ f a l s e ’
53 addq −8(%rbp) , %rbx # add another ’ number ’ to ’ mu l t ip l e ’
54 jmp loop3 # jump to the beg inning o f loop 3
55 lp2end :
56 movq −8(%rbp) , %rbx # load ’ number ’ i n to a r e g i s t e r
57 incq %rbx # increment ’ number ’ by one
58 movq %rbx , −8(%rbp) # s t o r e ’ number ’ on the s tack
59 cmpq $1000 , %rbx # compare ’ number ’ to 1000
60 j l loop2 # i f smal l e r , r epeat loop2
61
62 end :
63 mov $0 , %rd i # load program ex i t code
64 c a l l e x i t # ex i t the program

12

Program explanation

We will now discuss the implementation in some detail. Note that a slightly altered version of
this program (see also the comment on line 6) is available as part of the lab framework for you to
examine and run on your own machine.

Assembler Directives

The commands that start with a period (e.g. .bss, .text, .global, .skip, .asciz, etc.) are
assembler directives. Assembler directives have special functions in an assembly program. For
instance, the .data and .text directives on lines 8 and 11 tell the assembler to put all the
subsequent code in a specific section. Other assembler directives, like .global on line 14, make
certain labels visible to the outside world. Study the description of these assembler directives in
paragraph 3.5.3.

Instructions

The example program uses a number of commonly used instructions, such as mov, push, cmp and
jmp. You can look up the exact meaning and function of these and other useful instructions in
paragraph 3.5.2.

The beginning of the program

At the beginning of the program, which actually starts at main on line 19, we see that the base
pointer is being initialised. This opaque ritual has to be performed at the start of each subroutine,
including the main subroutine. You will learn all its secrets when we discuss subroutines and the
stack in Assignment 1.

Input and Output

If you examine the pseudocode and the resulting assembly code of the example carefully, you can
see that we have translated the print(number); statement into the following lines of assembly
code:

leaq formatstr(%rip), %rdi # first argument: formatstr

movq %rax, %rsi # second argument: the number

call printf # print the number

This deserves a thorough explanation. First of all, doing input and output in a computer program
is not really a trivial job. It involves a call to the kernel and the gory details on how to do this
differ from operating system to operating system. Luckily, there is an easy way to circumvent
all these difficulties and that is by using the I/O functions in the operating system’s standard C
library5. Calling functions in the standard C library is no different from calling subroutines in
your own programs. We will discuss this mechanism in the next assignment.

Registers, variables and the stack

The example program uses a number of variables to store data. On lines 28 through 33 it uses the
loop counter i and on line 24 we see in the comments that we are using a variable called “number”
which corresponds to the one used in the pseudocode. But where do these variables live? Do
they exist in the registers, on the stack or somewhere in main memory? The answer is: all of the
above. Sometimes, like in the case of i, we can simply keep our variables in the registers. The
registers are fast and easy to access, so if possible we like to keep our variables there. The number
of registers is limited however, so sometimes we may have to temporarily store their values on the

5Some of you will probably be curious about how to do it the hard way. We appreciate and encourage your
curiosity, so we provided the details in the appendix, Section 3.6

13

stack, as we see with the number example: it is created by storing the number 2 on the stack on
line 24, but later we load it into a register (line 37) when we need to check its value.

Aside from register shortage, there is one very important reason to store variables on the stack
in some cases: on the x86-64 platform, registers are caller saved by convention. This means that
if you call a subroutine from your program, like printf or one of your own subroutines, the
subroutine may and will likely overwrite some of your registers. In other words, if you need the
data in your registers to be consistent after you call a subroutine, you will need to save it on the
stack. We will delve into stack details in one of the exercises.

Programming constructs (if/else, for, while, etc.)

Our pseudocode program is defined in terms of familiar program constructs, such as for loops
and if statements. In assembly, we do not have such high level constructs, but we do have a
number of standard tricks to achieve similar results. These tricks are all listed and explained in
Section 3.2. You can use this information to translate your pseudocode into assembly language
systematically.

The end of the program

At the end of the program, we see another call to a function in the C system library. In most
operating systems, programs need to return an error code which tells the operating system whether
your program encountered any internal errors while running. By convention, programs return zero
if no errors were encountered. Furthermore, the operating system may want to do some cleaning
up after a program runs. To facilitate this, we call the exit function with our error code (zero)
in the same way we used the printf function earlier.

2.2 Assignment 1: your first simple program

In this assignment you will be asked to write your first assembly program. You will have to use
the knowledge you acquired from assignment 0 in order to complete this task, so make sure you
have a thorough understanding of the example program. Remember that you can always ask the
lab course assistants for help. For this program, you will not have to write any specifications,
since there is no significant algorithmic complexity involved. However, you are of course required
to write proper comments.

In order to complete this assignment you will need to call the printf subroutine. Paragraph
3.3.1 of the reference section explains the details of calling subroutines and paragraph 3.4.1 explains
how to use the printf subroutine. Section 3.1 explains the commands that you will need to enter
on your shell in order to build and run your program.

Exercise:
Using the skeleton file provided in the framework, implement a simple my main routine that exits
the program immediately with the proper exit code and without crashing. Build your program
and run it. Alter your main routine in such a way that it prints a message containing your names,
study numbers and the name of the assignment on the terminal. You should not need more than
one call to printf to display your message.

Important: For this assignment, you must have your submission checked by a Teaching
Assistant alongside Assignment 2. Only enter the submission queue when both assignments are
fully implemented and passing all CodeGrade tests.

14

2.3 Assignment 2: subroutines and I/O

In this assignment you will write your first simple subroutine. You will also learn how to obtain
input from the user. The scanf subroutine from the C standard library can be used to obtain
input from users. It is discussed in paragraph 3.4.2 of the reference section. Paragraph 3.3.2
explains how to define your own subroutines.

Exercises:

1. Using the skeleton file provided in the framework and the coding steps learned in assignment
2, alter the printed message in such a way that it prints the correct assignment name (“As-
signment 2: inout”). Create a subroutine called inout and call it from within your my main

routine right after your message is displayed. At first, your subroutine should simply return
immediately. Build and test your program.

2. Add a subroutine my increment, that takes one number as an input and returns its incre-
ment.

3. Alter your inout subroutine in such a way that it asks the user for a number, uses the
my increment subroutine to increment it, and prints the result on the terminal. Build and
test your program and save it for later approval.

Important: For this assignment, you must have your submission checked by a Teaching
Assistant alongside Assignment 1. Only enter the submission queue when both assignments are
fully implemented and passing all CodeGrade tests.

2.4 Assignment 3: parameter passing and local variables

Now that you have played around with some simple subroutines it is time to gain a more complete
understanding of this important programming construct. In this assignment you will write a
subroutine that takes several input parameters and returns a computed value. If you have not
already done so, study the remainder of paragraph 3.3.2, which discusses the techniques and
conventions surrounding subroutine parameter passing and return values.

Exercises:

1. The following partial specification of the my pow subroutine is given:

1 /∗∗
2 ∗ The my pow subrout ine c a l c u l a t e s powers o f natura l bases
3 ∗ and exponents .
4 ∗
5 ∗ Arguments :
6 ∗
7 ∗ base − the exponent i a l base
8 ∗ exp − the exponent
9 ∗

10 ∗ Return value : ’ base ’ r a i s e d to the power o f ’ exp ’ .
11 ∗/
12 i n t pow(i n t base , i n t exp) {
13 i n t t o t a l = 1 ;
14
15 // . . .
16
17 re turn t o t a l ;
18 }
19

Complete the specification of the my pow subroutine. You should only use looping constructs
and simple arithmetic operations to compute the total.

15

2. You may have your specification checked by one of the lab course assistants. The lab course
assistants can prevent you from implementing the wrong algorithm. If you are confident your
specification is correct, you don’t have to ask an assistant to check and you may immediately
proceed with the next step.

3. Following the skeleton file provided in the framework, implement a subroutine called my pow.
The my main routine should ask the user for a positive base and exponent. The program
should then calculate the resulting power using the my pow subroutine and print the return
value.

2.5 Assignment 4: recursion

By now, you should have a fairly thorough understanding of the stack mechanism and of its uses
(e.g., storing local subroutine variables). In this assignment you are going to write a recursive
subroutine that calculates the factorial of a number (“n!”). A recursive subroutine means that
the subroutine will call itself, usually with a different parameter to calculate a part of the final
solution. This subroutine will be about 14 instructions in length when it is finished, but writing
it will be fairly difficult. Do not be discouraged if it takes you a few hours to get it working.

Exercise

1. Using the skeleton file provided in the framework, implement a subroutine called factorial.
This new subroutine should take one parameter, n, and for now it should simply do nothing
and return n in the RAX register. Alter your inout subroutine in such a way that it calls
factorial with the number it reads, instead of incrementing it by one. It should print the
result of factorial on the terminal.

2. Write a pseudocode specification of your factorial subroutine. The subroutine accepts a
parameter n and it should return n!. Make sure your algorithm is recursive. It should not
need to be more than a few lines of pseudocode.

3. Implement your factorial routine. Test your program thoroughly.

This exercise wraps up the basic assembly programming assignments. You should go and have
your code checked by a lab course assistant. Well done!

2.6 Assignment 4+: Fibonacci sequence (150-400 points)

This extra assignment will require you to reproduce and combine the skills you learned in Assign-
ments 1-4. For an additional set of points, you will have to adjust your solution to fulfil some
additional criteria (with the intention of inspiring you to reason about implementation alternatives
in Assembly).

Note: At this point you should be able to determine yourself how to make use of previously
applied concepts and code (that you have written yourself, e.g. in prior assignments).

Part 1: implementation of a simple Fibonacci calculator (150 points)
First, you will get familiar with the calculation of the Fibonacci sequence6 and at least two different
approaches to obtain a desired term (which will be useful for part two).

(a) Write a program that calculates recursively the n-th term of the fibonacci sequence.

(b) Write a new program to calculate iteratively, i.e. not using any recursive algorithm, the n-th
term of the fibonacci sequence.

6See https://en.wikipedia.org/wiki/Fibonacci_number#Definition. The first and second value of the se-
quence are 0 and 1 respectively.

16

https://en.wikipedia.org/wiki/Fibonacci_number#Definition

Your program(s) should provide simple I/O functionality, i.e. a user should be prompted for
the appropriate input and provided with some “prettified” output (minimum: the results alongside
their label(s)).

Part 2: saving results and user interaction (250 points)
Combine and extend your program(s) from Part 1 such that a user gains more control over the
output. To this end your program must...

(a) ...ask for a number n and print out the n-th term of the Fibonacci sequence.

(b) ...allow multiple calculation requests without restarting the program.

(c) ...quit when the user enters ’0’, and not quit otherwise, even for other wrong inputs (your
program should handle at least negative numbers).

(d) ...not re-calculate the entire Fibonacci sequence for every request. In other words, your
program should save the results up to the largest previously calculated term: If a user enters
15, then 3, the third term should be fetched from memory, not calculated. Your fibonacci
subroutine should be callable from another context (i.e. another file / module) and should
have the following signature:

uint64_t *fibonacci(int n, int curr_max, uint64_t *addr);

The return value should be a pointer to the first value of an array in memory representing
the Fibonacci sequence. The arguments represent the desired value, the maximum stored
value, and the base pointer of the existing Fibonacci array respectively (can be NULL).

(e) ...not use more memory for storing results than indicated by the largest input max of the
user: if max is 20, your program should only use memory necessary for 20 terms of the
sequence (using memory for other calculations is allowed).

Note: Consider overflow errors as the natural limits of testing, there is no need to correct them.

Ensure that you first calculate all results, and then have exactly one loop/procedure in your
program where you call printf. This follows the general programming principle that one should
separate the calculation of values/results from their “usage”, e.g. using them as output or doing
further calculations.

2.7 Assignment 5a: (extra, excludes 5b) implement “diff”
in assembly (500 points)

Important: you can only get points for either assignment 5a or assignment 5b, not both. Please
read both assignments before picking which you want to attempt.

For this exercise you will implement a simplified version of the Unix “diff” program in assembly.
There The purpose of the diff program is to compare two files line by line and show all the
differences between them. As a sample output, consider the following two files:

Hi, this is a testfile.

Testfile 1 to be precise.

Hi, this is a testfile.

Testfile 2 to be precise.

The resulting output of diff is then:

$ diff testfile1 testfile2

2c2

< Testfile 1 to be precise.

> Testfile 2 to be precise.

17

As you can see it tells us that the second line is different (2c2 means that line 2 in the original has
been changed to become line 2 in the new file). For more information on how the diff command
works, please check the diff manuals (type man diff in a terminal or search for man diff online)
and check Wikipedia at http://en.wikipedia.org/wiki/Diff.

For this assignment your program will have to be able to do the following:

• Implement a line-by-line comparison version of diff. This means it is not required to have the
a and d outputs that the real diff offers. Only the changes will suffice, though we encourage
you to also reason about how the detection of addition and deletion of lines works.

• Implement the -i and -B options that diff offers (ignore case and ignore blank lines, respec-
tively). For more details, read the diff man page or try some test cases with an existing diff
implementation.

Note : You are implementing a simplified version of diff. To achieve this, you are allowed to
use any of the following C library functions (in alphabetic order): fgets fread fprintf fscanf

printf strcasecmp strcmp strcpy strlen strncasecmp strncmp strncpy strnlen

In case you are not yet sure what is expected of you, you can take a look at the framework and
the provided test files to get a better idea.

2.8 Assignment 5b: (extra, excludes 5a) implement a hash-
ing function (500 points)

Important: you can only get points for either assignment 5a or assignment 5b, not both. Please
read both assignments before picking which you want to attempt.

For this assignment, implement a program to calculate a hash such as SHA-1, SHA-256, MD4,
MD5, or any other hash you like, of the input given to the program. If you do not know what a
hash function is, Google a bit first.

Exercise:
Choose a well known hashing algorithm, and write a program that calculates and prints the hash
of the input given to the program. (From standard input or from a file.)

Optional help from our side for SHA-1:
Read the Wikipedia page about SHA-17 (especially the pseudo code). As you will see, the algo-
rithm has to split up the data up in 512-bit chunks, and then process each chunk separately. In
this simplified exercise, you will only implement the function to process a chunk. The rest of the
code is provided by us.

Our part of the code can be downloaded from Canvas. You can combine this with your own
code by adding “./sha1 test64.so”8 as another parameter to gcc. Our code does everything
until and including the line “break chunk into sixteen . . .” in the pseudo code on Wikipedia. The
command used to compile your code could like something like this:

gcc -o test my_sha1_chunk.s ./sha1_test64.so -no-pie

Your part of the code should not have a main function, but instead have a sha1 chunk function,
which will be called by our part of the code. This sha1 chunk function takes two parameters:
First, the address of h0 (h1, h2, etc. are stored directly after h0). (See Wikipedia’s pseudo code
for SHA-1 for these names.) Second, the address of the first 32-bit word of an array of 80 32-bit
words. The first sixteen of this array are set to the sixteen 32-bit words the chunk contains (which
are called w[0] till w[15] on Wikipedia). Your function should modify h0 till h4 as described in
the pseudo code.

7http://en.wikipedia.org/wiki/Sha1
8there is also a sha1 test32.so for 32 bit compilation available

18

http://en.wikipedia.org/wiki/Diff
http://en.wikipedia.org/wiki/Sha1

When you execute the combined program, our part of the code prints a lot of information on
what is happening, and when your function is called. It displays the result of your function, and
whether that is correct or not. You can of course print more debugging information from your
own function using printf.

2.9 Assignment 6: (extra) implement a simplified printf
function (500-750 points)

As mentioned before, the printf subroutine is just a subroutine like any other. To prove this,
you will write your own simplified version of printf in this assignment.

Exercise (500 points):

Write a simplified printf subroutine that takes a variable amount of arguments. The first ar-
gument for your subroutine is the format string. The rest of the arguments are printed instead
of the placeholders (also called format specifiers) in the format string. How those arguments are
printed depends on the corresponding format specifiers. Your printf function has to support any
number of format specifiers in the format string. Any format specifier after that may be printed
without modification.

Unlike the real printf, your version only has to understand the format specifiers listed below.
If a format specifier is not recognized, it should be printed without modification. Please note that
for this exercise you are not allowed to use the printf function or any other C library function,
except for the putchar function to output a single ASCII character.

Your function must follow the proper x86 64 calling conventions. It must accept any num-
ber of arguments (e.g., tens of arguments) like any standard printf implementation. Refer to
Section 3.3.1 for details on how to pass and accept a large number of arguments.

Supported format specifiers:

%d Print a signed integer in decimal. The corresponding parameter is a 64 bit signed integer.

%u Print an unsigned integer in decimal. The corresponding parameter is a 64 bit unsigned
integer.

%s Print a null terminated string. No format specifiers should be parsed in this string. The
corresponding parameter is the address of first character of the string.

%% Print a percent sign. This format specifier takes no argument.

Example:

Suppose you have the following format string:

My name is %s. I think I’ll get a %u for my exam. What does %r do? And %%?

Also suppose you have the additional arguments “Piet” and 10. Then your subroutine should
output:

My name is Piet. I think I’ll get a 10 for my exam. What does %r do? And %?

Hints

To get started you may divide the work in a number of steps. Note that these are just hints, you
do not have to follow these steps to finish this assignment.

1. Write a subroutine that prints a string character by character, for example by using putchar.

19

2. Modify the subroutine to recognize format specifiers in the format string. Initially, you can
discard the format specifiers rather than process them. Characters that are not part of a
format specifier can be printed as before.

3. Implement the various format specifiers. It may help to implement %u before %d.

4. It may help to store all input argument registers on the stack at the start of your function,
even if you don’t end up using them.

Bonus points: support flags and width fields (+250 points)

Extend your printf function to support the flags and width fields on a format specifier. You
can find a comprehensive definition in any C standard library reference (e.g., https://www.

cplusplus.com/reference/cstdio/printf/) or on Wikipedia at https://en.wikipedia.org/
wiki/Printf_format_string. To get the bonus points, you must support all of the following for
the %d, %u, and %s format specifiers:

1. the minus (on %d and %u), plus (on %d and %u), space, and zero flags, including any
combination of flags;

2. the width field given as an integer in the format string; and

3. the width field given as an argument to printf, indicated by an asterisk in the format string.

2.10 Assignment 7: (extra) using assembly to hide data in
a bitmap (500-750 points)

On April 2, 1990, Dilbert was sent to the tiny country of Elbonia on a secret mission9: to
infiltrate the formerly communist, newly capitalist country and find targets who can become
Western engineers. Secretly, Dilbert was also charged with becoming a liaison to the resistance
movement from within Elbonia’s totalitarian neighbour, North Elbonia. It has been over three
decades, and the mission is still on . . . with a twist. The governments of Elbonia and North
Elbonia have joined forces and together tightened their grip on information. Facebook, Twit-
ter, YouTube have been banned. Searches on google.com are often filtered out or redirected to
NorthElbonia-SearchAndTortureDept.com.

You are the new tech assistant of Dilbert. Your mission: using assembly, encrypt messages
into the photos of Elbonian white noise that Dilbert provides for you. In detail:

1. Make sure you understand the message.

2. Compress the message using the Run-Length Encoding (RLE) technique.

3. Prepare the white noise image.

4. Hide the message in the white noise image using the techniques described, and some creativ-
ity.

5. Save the results as image bitmaps, in BMP format.

6. Test that you can decrypt the message, using again the XOR encryption technique.

More details follow. This message will not self-destruct in 5 seconds.

9See http://www.dilbert.com/fast/1990-04-02/ and http://www.dilbert.com/fast/1990-04-03/.

20

https://www.cplusplus.com/reference/cstdio/printf/
https://www.cplusplus.com/reference/cstdio/printf/
https://en.wikipedia.org/wiki/Printf_format_string
https://en.wikipedia.org/wiki/Printf_format_string
google.com
NorthElbonia-SearchAndTortureDept.com
http://www.dilbert.com/fast/1990-04-02/
http://www.dilbert.com/fast/1990-04-03/

Input Output
x y XOR(x,y)
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.1: XOR truth table.

Data: The Message

Complexity: Easy
To demonstrate that your assembly code works, encrypt and decrypt the message Reading Dilbert

strips or encoding Elbonian messages are not good excuses for failing the XBCO09 final

exam., including the final dot (‘.’). Save the message as an assembly data chunk before you con-
tinue.

Each message, before encryption, must be preceded and followed by the pattern 8 × X, 4 ×
B, 4 × C, 4 × O, 4 × 0, 8 × 9, where <number> × <character> means that character is repeated
number times, e.g., 8 × X means X X X X X X X X. The added parts are called the “lead” and
the “trail” of the message.

Data Compression: Run-Length Encoding (RLE)

Complexity: Moderate
Run-Length Encoding (RLE) is one of the simplest data encoding techniques. RLE is based on
the notion of runs, which are sequences of specified length of the same item.

For this assignment, you will use RLE-8, which encodes, in turn, the size of the sequence and
each item on 8 bits each. For example, the RLE-8-encoded sequence of two bytes 8X means that
the sequence length is 8 and the item is X, for the fully decrypted text X X X X X X X X.

You have to devise your own algorithms for RLE-8-encoding and RLE-8-decoding the message
described in the previous paragraph.

Data: Repeating White Noise Patterns

Complexity: Easy
Since Dilbert’s photo camera has been confiscated, we cannot provide you with pictures of anything
Elbonian. However, Elbonians are very proud of their national art, which is based on white noise
rectangles, that is, rectangles filled with a seemingly random collection of white and black pixels.
You are to implement a generator of Elbonian white noise.

Be warned, to show that in Elbonia even white noise is controlled, the Elbonian Ministry of
Mud approves every year a single pattern as that year’s white noise. The pattern can be seen in
the numerous works of poorly printed art on the streets. Dilbert believes this year’s pattern is:

W W W W W W W W B B B B B B B B W W W W B B B B W W B B B W W

(31 pixels long), where W means white and B means black.
Create a sequence by repeating the Elbonian white noise pattern, followed by a red pixel, 32

times. This will form a 32× 32 image, where each pixel is either white, black, or red.

Data Encryption: XOR

Complexity: Moderate
One of the common logical operations is the eXclusive OR (XOR, ⊕), equivalent to the Boolean
logic concept of “TRUE if only one of the two operands, but not both, is TRUE”. Table 2.1
summarises the truth table of XOR.

21

Two properties of XOR are of interest:

x⊕ 0 = x (2.1a)

x⊕ x = 0 (2.1b)

From Equations 2.1a and 2.1b (non-idempotency), it is trivial to observe that:

(x⊕ y)⊕ y = x⊕ (y ⊕ y)

= x⊕ 0

= x

(2.2)

Equation 2.2 means that we can use XOR to first encrypt (x⊕ y) and then decrypt ((x⊕ y)⊕ y)
a one-bit message x with the encryption/decryption key y. It turns out that these two one-bit
operations can be extended to n-bit operations, that is, for an n-bit message M and an n-bit key
K:

(M ⊕K)⊕K = M (2.3)

For example, if the message is TEST in ASCII (M = 01010100 01000101 01010011 01010100

in binary) and the key is TRY! in ASCII (K = 01010100 01010010 01011001 00100001), the
encrypted text is:

M ⊕K = 01010100 01000101 01010011 01010100

⊕ 01010100 01010010 01011001 00100001

= 00000000 00010111 00001010 01110101

(2.4)

The decrypted text is:

(M ⊕K)⊕K = 00000000 00010111 00001010 01110101

⊕ 01010100 01010010 01011001 00100001

= 01010100 01000101 01010011 01010100

= M

(2.5)

If the size of the message is m bits and the size of the key is k << n bits, the key can be repeated.
Effectively, using the full k bits of the key K, first the first k bits of the message M are encrypted,
then the next k bits, etc.

Last, a good example of implementing the XOR encryption technique in C is the “C Tutorial
- XOR Encryption” by Shaden Smith, June 200910.

Data Representation: the BMP Format (Simplified)

Complexity: Difficult
Storing data as images requires complex data formats. One of the simplest is the bitmap (BMP)
format, which you must use. BMP files encode raster images, that is, images whose unit of
information is a pixel; raster images can be directly displayed on computer screens, as their pixel
information can be mapped one-to-one to the pixels displayed on the screen.

The BMP file format consists of a header, followed by a meta-description of the encoding used
for pixel data, followed sometimes by more details about the colours used in the image (look-up
table, see also the paragraph on white noise). The BMP file format is versatile, that is, it can
accommodate a large variety of colour encodings, image sizes, etc. It is beyond the purpose of this
manual to provide a full description of the BMP format, which is provided elsewhere11.

Luckily for you, of the many flavors of encodings, Elbonian authorities only accept one type.
Thus, you must use the following BMP format for this assignment:

10[Online] Available: http://forum.codecall.net/topic/48889-c-tutorial-xor-encryption/.
11BMP file format, Wikipedia article. [Online] Available: http://en.wikipedia.org/wiki/BMP_file_format.

Note: Although Wikipedia is not a universally trustworthy source of information, many of its articles on technical
aspects, such as the “BMP file format” have been checked by tens to hundreds of domain experts.

22

http://forum.codecall.net/topic/48889-c-tutorial-xor-encryption/
http://en.wikipedia.org/wiki/BMP_file_format

1. File Header, encoded as signature (two bytes, BM in ASCII); file size (integer, four bytes);
reserved field (four bytes, 00 00 00 00 in hexadecimal encoding); offset of pixel data inside
the image (integer, four bytes). The file header size is 14 (two bytes for signature and four
bytes each for file size, reserved field, and offset of pixel data). The file size is the sum of 14
(the file header size), 40 (the size of the bitmap header), and the size of the pixel data.

2. Bitmap Header, encoded as12: header size (integer, four bytes, must have a value of 40);
width of image in pixels (integer, four bytes, set to 32–see paragraph on white noise); height
of image in pixels (integer, four bytes, set to 32–see paragraph on white noise); reserved field
(two bytes, integer, must be 1); the number of bits per pixel (two bytes, integer, set here
to 24); the compression method (four bytes, integer, set here to 0–no compression); size of
pixel data (four bytes, integer); horizontal resolution of the image, in pixels per meter (four
bytes, integer, set to 2835); vertical resolution of the image, in pixels per meter (four bytes,
integer, set to 2835); colour palette information (four bytes, integer, set to 0); number of
important colours (four bytes, integer, set to 0).

3. Pixel Data, encoded as B G R triplets for each pixel, where B, G, and R are intensities of the
blue, green, and red channels, respectively, with values stored as one-byte unsigned integers
(0–255). It is important that the number of bytes per row must be a multiple of 4; use 0
to 3 bytes of padding, that is, having a value of zero (0) to achieve this for each row of
pixels. The total size of the pixel data is Nrows × Srow × 3, where Nrows is the number
of rows in the image (32–see paragraph on white noise); Srow is the size of the row, equal
to the smallest multiple of 4 that is larger than the number of pixels per row (here, 32–see
paragraph on white noise); and the constant 3 is the number of bytes per pixel (24 bits per
pixel, as specified in the field “number of bits per pixel”, see the Bitmap header description).

Last, but not least

You should go and have your code checked by a lab course assistant. The amount of points (500-
750) will be determined based on your ability to hide a message within a “ real“ BMP file. If you
followed the above steps, and understood the mentioned techniques, you should have a solution
worthy of full marks. Either way, you now officially proved mastery in the basics of assembly
programming. Not bad!

2.11 Assignment 8: (extra) Intro to HPC: implement a
memory bandwidth benchmark (500–750 points)

For this assignment, you are required to implement using x86-64 assembly, a simplified (i.e., single-
core) version of the STREAM (http://www.cs.virginia.edu/stream/ref.html) benchmark.
This benchmark measures the memory bandwidth of the computer using simple array operations
(kernels).

Considering A,B,C are arrays of length N , and q is a scalar, the four STREAM kernels are
the following:

• COPY: A[i] = B[i], for i ≤ N

• SCALE: A[i] = q ·B[i], for i ≤ N

• ADD: A[i] = B[i] + C[i], for i ≤ N

• TRIAD: A[i] = B[i] + q · C[i], for i ≤ N

12This encoding is BITMAPINFOHEADER, which is a typical encoding for Windows and Linux machines. Older
encodings, such as BITMAPCOREHEADER for OS/2, are obsolete. Newer versions, such as BITMAPV5HEADER exist, but
they are too complex for Elbonian engineers.

23

http://www.cs.virginia.edu/stream/ref.html

Exercise: For this assignment, your goal is to implement the four STREAM array operations
in x86-64 assembly and compare its performance with the default (single-core) STREAM im-
plementation. The input arrays should consist of 64 bit unsigned integers. Is the performance
better/worse? Why?

Basic requirements (500p):

• Implement the four array operations.

• Find N large enough such that the data does not fit into the CPU cache (i.e., if the array is
too small, the bandwidth you measure may be the cache bandwidth).

• Measure the running time of each operation (for this you may use a system call).

• Run each operation 20 times and report average running time.

• Based on the runtime, report the best achieved memory bandwidth.

Extra requirements (250p):

• Vectorize the previously designed code using Intel AVX, or your SIMD instruction set of
choice.

• Compare its achieved performance with the basic version. Does it perform better? Why?

2.12 Assignment 9: (extra) using assembly to implement a
game (1,000 points)

Disclaimer for Apple Silicon Users: The ”bootlib” library described below is not compatible with
the Rosetta emulator. Of course, you are welcome to figure out an alternative solution. In any
other case (or in addition), please contact the lab coordinator about an alternate assignment with
a similar level of complexity and difficulty, or choose other extra assignments for a similar point
value. Note that we do not guarantee the availability of alternative assignments - make sure to con-
tact us early on, and definitely before starting to work, to confirm that you will be able to get points.

For this exercise you will use your basic assembly programming skills to develop a complete and
useful program: a game. For the purpose of this assignment, a game is an interactive computer
application in which at least one user (player) influences the outcome via keyboard or mouse input.

You are free to choose any game, except for simple text-based games such as “Guess a number”
or Trivia. The game you choose does not have to be overly complex either; we suggest implement-
ing a (single-player) Pong game, where the player controls a paddle and tries to prevent the ball
from crossing the player’s goal line, or something of comparable difficulty. Before you start pro-
gramming, we encourage you to ask a lab assistant whether they think your idea is reasonable and
sufficient.

Your task is to implement a game, subject to the following requirements:

Requirements

1. Your implementation should implement correctly the rules of the game.

2. Your implementation should display the state of the game. If the rules of the game make
it possible, your implementation should display the current progress of the player toward
achieving the goal of the game.

3. Your implementation should permanently record the top scores, if the rules of the game
allow it. Your implementation should also have an option to display them. A bootable game
only needs to store top scores until the next reboot (i.e. they do not need to be written to
disk).

24

4. Your implementation should be able to receive input from at least one player. The input
has to come either from the keyboard or from the mouse.

Notes and Hints about solving this assignment

Important: For this extra assignment you should NOT expect content-related help from the lab
assistants, that is, you should not expect the lab assistants to debug your code or even to suggest
how you should solve the assignment. Instead, this assignment allows you to demonstrate your
ability to go beyond the manual (and lab assistant).

Hint #1: Although we are sure you know how to use a search engine and understand the
keywords you need to search for this assignment, we would like to give you a hint for writing
games in assembly. For the past 15 years, the demo scene and several generations of students
around the world have learned much from Denthor’s Asphyxia Tutorials, http://archive.
gamedev.net/archive/reference/listed82.html?categoryid=130. In particular, you may be
interested in graphics (tutorial Mode 13h, http://archive.gamedev.net/archive/reference/
articles/article347.html).

Hint #2: Bootable game Another option is to make your game bootable, so that it can
run without any operating system. This means that you will have access to the graphical (VGA)
memory directly, implement interrupt handlers to work with timing and input, and basically be
able to (but also have to) do everything yourself. There are no standard libraries either. (So no
printf, no exit, no nothing.) These advantages may also be disadvantages.

You do not need to start from scratch in implementing a bootable game. You can use a simple
library that we13 made and that will set up most of the basic things for you. This library switches
the processor to 32 bit mode, makes sure you have a stack, and lets you set interrupt handlers.
After that, you are basically on your own. Again, many advantages, but these can turn easily into
disadvantages.

The “bootlib” library can be found online, at https://github.com/thegeman/gamelib-x64.
It contains a README (which you should read), and an example which you should try. We
recommend you work on some Linux distribution, as it is not quite easy to get the compiler/linker
working right on Windows or Mac.

Last but not least

You should go and have your code checked by a lab course assistant. You have now officially
proved excellence in mastering the basics of assembly programming. Congratulations, you have
completed the most difficult part of the lab!

13Otto Visser, teacher at Delft University of Technology, and Tim Hegeman are the authors.

25

http://archive.gamedev.net/archive/reference/listed82.html?categoryid=130
http://archive.gamedev.net/archive/reference/listed82.html?categoryid=130
http://archive.gamedev.net/archive/reference/articles/article347.html
http://archive.gamedev.net/archive/reference/articles/article347.html
https://github.com/thegeman/gamelib-x64

Chapter 3

Reference documentation

This section contains all the reference material and background information that is needed to
complete the lab course. Throughout the assignments, you will frequently be referred to parts
of this additional documentation. This chapter is by no means a complete reference, but should
contain all the information needed to complete at least the compulsory part of the assignments.

3.1 Building and running programs*

The short story: open a terminal window, navigate to the directory that contains your sources
and run the following commands:

gcc -o nameofyourprogram nameofyoursource.S

./nameofyourprogram

The longer story: in order to create an executable program out of your assembly source code
you need to assemble it using a tool called gas, the GNU assembler. This creates a so called
object file1. Since your actual program may consist of subroutines that are defined in different
object files and libraries, the resulting object file(s) needs to be linked into an executable using the
tool ld, the linker. Unfortunately, it is also necessary to include a host of other files in the linking
process, such as the standard C library and the C runtime environment, to produce a proper Linux
executable. The exact files to link may differ from one Linux distribution to another and the list
may become rather long, which is why we do what every sane person does: we swallow our pride
and cheat by simply using gcc, the GNU compiler collection, to call gas and ld on our behalf. If
your are curious as to how bad the actual calls look, try using gcc in verbose mode with the -v

flag. You will see that we did not succumb without battle:

gcc -v -o nameofyourprogram nameofyoursource.S

3.2 Programming constructs*

In your pseudocode specifications you will often use common, high-level programming constructs
such as if-statements, while-loops and switch-statements. In this subsection we show you how to
transcribe these constructs into assembly language by means of a series of examples. Fundamental
to all the conditional examples is the general concept of Conditional branching which is discussed
in paragraph 3.2.1. In paragraphs 3.2.2 through 3.2.4 we provide examples of actual programming
constructs.

1This has nothing to do with objects in the Object Oriented Programming sense.

26

3.2.1 Conditional branching*

There are many so-called “jump” or “branch” instructions in x86-64 which load a new value into
the program counter. These instructions come in two flavors. First, there are the normal branch
instructions such as jmp or call which cause program execution to continue at a different memory
address. Second are the conditional branch instructions, which will only jump to the new target
address if some condition holds. We can use these conditional jump instructions to implement
conditional constructs, such as if-statements and while-loops:

Pseudocode:

1 i f (RAX > 1) {
2 //IF−code
3 } e l s e {
4 //ELSE−code
5 }

Implementation:

1 cmpq $1 , %rax # compare RAX to 1
2 jg i f c o d e # jump to IF−code i f RAX > 1
3 jmp e l s e c od e # jump to ELSE−code otherw i se
4
5 i f c o d e :
6 . . . # IF−code
7 jmp end
8
9 e l s e c od e :

10 . . . # ELSE−code
11 end :

The cmp instruction on the first line compares the contents of RAX to the number 1. It stores
the results of this comparison (e.g. whether the contents of RAX were greater than-, equal to
or less than 1) in the special RFLAGS register. The jg instruction (“jump if greater-than”) is
a conditional branch instruction. It tests the contents of the RFLAGS register and jumps to the
ifcode label if the flags indicate that the second operand of the cmp instruction was greater
than the first. For an overview of the various conditional branch instructions, see the instruction
set reference in paragraph 3.5.2. The subsequent paragraphs will demonstrate other programming
constructs based on the conditional branch instructions. Paragraph 3.2.2 will give a more compact
implementation of the if-statement.

3.2.2 If-then-else statements*

In the previous paragraph we have seen an example implementation of the familiar if-statement.
In this paragraph we change the sequence of the if- and else-blocks to come to a shorter imple-
mentation.

Pseudocode:

1 i f (RAX > 1) {
2 //IF−code
3 } e l s e {
4 //ELSE−code
5 }

27

Implementation:

1 cmpq $1 , %rax # compare RAX to 1
2 jg i f c o d e # jump to IF−code i f RAX > 1
3
4 e l s e c od e :
5 . . . # ELSE−code
6 jmp end
7
8 i f c o d e :
9 . . . # IF−code

10 end :

3.2.3 While/do-while/for loops*

The do-while-loop Pseudocode:

1 do {
2 // loop code
3 } whi le (RAX > 1) ;

In this example we jump back to the beginning of the loop as long as the condition holds.
Implementation-wise, this is the simplest type of loop:

1 loop :
2 . . . # loop code
3
4 cmpq $1 , %rax # repeat the loop
5 jg loop # i f RAX > 1

The while-loop Pseudocode:

1 whi l e (RAX > 1) {
2 // loop code
3 }

In this example we will break the loop if the condition does not hold, i.e. we jump to the end if
RAX is lesser or equal to 1:

1 loop :
2 cmpq $1 , %rax # i f RAX <= 1 jump to
3 j l e end # the end o f the loop
4
5 . . . # loop code
6
7 jmp loop # repeat the loop
8 end :

The for-loop Pseudocode:

1 f o r (RAX = 0 ; RAX < 100 ; RAX++) {
2 // loop code
3 }

A for loop is really nothing more than a glorified while-loop:

1 RAX = 0 ;
2 whi l e (RAX < 100) {
3 // loop code
4
5 RAX++;
6 }

You should be able to implement this one yourself.

28

3.2.4 Switch-case statements

Pseudocode:

1 switch (RAX) {
2 case 0 :
3 // case 0 code
4 break ;
5
6 case 1 :
7 // case 1 code
8 break ;
9

10 case 2 :
11 // case 2 code
12 break ;
13 }

To implement the switch-statement we have to create one small subroutine for each of the cases.
We then create a table containing the starting addresses of these subroutines and we use the value
of RAX to look up the proper subroutine address in the table. A table like this is called a jump
table:

1 # The jumptable :
2 jumptable :
3 .quad case0sub
4 .quad case1sub
5 .quad case2sub
6
7 # The case subrout ine s :
8 case0sub :
9 . . . # case 0 code

10 r e t
11
12 case1sub :
13 . . . # case 1 code
14 r e t
15
16 case2sub :
17 . . . # case 2 code
18 r e t
19
20 # The ac tua l switch statement :
21 sh l $3 , %rax # mult ip ly RAX by 8
22 l eaq jumptable(%r i p) , %r10 # load the address from the tab l e
23 movq (%r10 , %rax) , %rax # index in to i t
24 c a l l ∗%rax # c a l l the subrout ine

There is some trickery going on in the last four instructions that deserves some attention: first
of all, we have to remember that the subroutine addresses in the jumptable are eight bytes long,
so we will have to multiply our RAX register by eight before we can use it as a table index. We
can of course accomplish this by shifting the operand left by three bits. Second, we need to figure
out the actual address of the jumptable relative to where we are in the program, i.e. relative to
the instruction pointer (line 22), and index into it (line 23). Lastly, we have to use the ‘*’ when
calling a subroutine whose address is located in a register.

3.2.5 Lookup tables

Very often, programs need to perform time consuming computations inside tight loops. If a small
number of values are computed over and over again, we can simply precompute them at compile-
time, put them in a table and replace the actual computation with a table lookup. Such a construct
is called a lookup table and it can be used to simplify and speed up programs considerably. We
demonstrate the lookup table through an example:

29

1 // Pr int va r i ous Fibonacc i numbers
2 f o r (i n t i = 0 ; i < 100000; i++) {
3 p r i n t (f i b o n a c c i (30 + (i % 10))) ;
4 }

Computing the n-th Fibonacci number is a very computationally intensive task and the fibonacci()
subroutine can be tricky to implement in assembly. By studying the example carefully, we observe
that the only values which are actually calculated are fibonacci(30) through fibonacci(39).
Of course, we can simply precompute these values at compile time without having to implement
the fibonacci() routine at all. The resulting program is both faster and easier to implement:

1 // A tab l e conta in ing the Fibonacc i numbers from 30 to 39
2 i n t f i b t a b l e [] = {
3 832040 ,
4 1346269 ,
5 2178309 ,
6 3524578 ,
7 5702887 ,
8 9227465 ,
9 14930352 ,

10 24157817 ,
11 39088169 ,
12 63245986
13 } ;
14
15 // Pr int var i ous Fibonacc i numbers
16 f o r (i n t i = 0 ; i < 100000; i++) {
17 p r i n t (f i b t a b l e [i % 10]) ;
18 }

In assembly, we can use the .byte, .word, .long and .quad directives to construct the lookup
table:

1 f i b t a b l e :
2 . l o n g 832040
3 . l o ng 1346269
4 . l o ng 2178309
5 . l o ng 3524578
6 . l o ng 5702887
7 . l o ng 9227465
8 . l o ng 14930352
9 . l o ng 24157817

10 . l o ng 39088169
11 . l o ng 63245986

3.3 Subroutines*

In this subsection we will introduce the concept of subroutines. A subroutine is the generic
name for a sequence of instructions with a well defined start and end and a well defined purpose.
Java methods, C functions and Pascal procedures are all examples of subroutines in higher level
languages. In the subsequent paragraphs we will explain how to call subroutines and how to define
them.

3.3.1 Calling subroutines*

A subroutine is simply a block of instructions which starts at some memory address. If we want
to execute or call a subroutine, we simply need to jump2 to its first instruction. After executing
the subroutine we expect control to return to us, i.e. we expect the program to return to the first

2A “jump” is nothing more than loading a new memory address into the program counter, or RIP, as this register
is called on the x86-64.

30

instruction after our subroutine call. To make this possible, the called subroutine should somehow
be aware of the address of the next instruction after the call. By convention, we simply push that
address onto the stack right before making the jump. To our ease and comfort, the kind people
at Intel provided a single instruction that performs both these steps in one fell swoop: the call

instruction. Calling a simple subroutine is thus no more difficult than this:

1 c a l l somesub # c a l l the somesub subrout ine

The label somesub in this example is associated with the starting address of the subroutine that
we want to call. After executing all instructions in the somesub-subroutine, execution will simply
return to- and continue at the first instruction after the call instruction.

Usually, we will want to pass some parameters to a subroutine. To do this, we need to put
them somewhere where the subroutine can find them when it executes. We are more or less free
to choose between using the registers, the stack or some part of memory other than the stack to
store these parameters, as long as both the writer of the subroutine and the user agree on the
location. By convention3 we will use registers for this purpose. More specifically, we will place
the arguments in the following registers:

1. %RDI

2. %RSI

3. %RDX

4. %RCX

5. %R8

6. %R9

If you have more arguments, than the remaining arguments need to be pushed to the stack in
reverse order (first argument pushed last).

We will clarify this by an example. Let us assume that we have a subroutine called foo, that
takes three integer arguments, i.e. the signature of the subroutine is foo(int a, int b, int c).
Imagine that we want to call foo with the parameters 1, 5 and 2, i.e. foo(1, 5, 2) in pseudocode.
In assembly, we copy the arguments in the registers and execute the call instruction to call this
subroutine:

1 movq $2 , %rdx # th i rd argument
2 movq $5 , %r s i # second argument
3 movq $1 , %rd i # f i r s t argument
4 c a l l f oo # Cal l the subrout ine

Note that foo might use these registers as well, so the value might no longer be the same when
the function returns. If you want to preserve these values, you will need to save them somewhere
(e.g. the stack); this is called: caller saved. Registers can also be callee saved; these registers
may be used by a subroutine, but when the subroutine returns they must have the same value
they had when the subroutine started execution. The list of callee saved registers is: %RBX, %RSP,
%RBP, %R12, %R13, %R14 and %R15, all other registers are caller saved and may be modified by
subroutines. Note that if you needed to use the stack, that foo will not remove the arguments
from the stack, so you should pop them off yourself after the call returns.

Furthermore: if you are going to use the stack in your code, you need to make sure that the
stack remains 16-byte aligned. This means that the %rsp register should always be a multiple of
16 when you do a call. If you are not using the stack for function arguments, then this is easy:
any call instruction pushes an 8 byte return address and in the prologue of your function you

3This convention is the so called “C calling convention” and if we adhere to it our subroutines and calls will
be fully compatible with the system’s standard C library. You can find the full documentation of the calling
conventions here: https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf

31

https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf

push the old %rbp value. These two pushes together are exactly 16 bytes, thus ensuring your stack
remains aligned.

The final question that remains regarding the invocation of subroutines is that of the return
value. Some subroutines (such as sqrt() or sin()) return a value after they execute. By conven-
tion, subroutines leave their return value in the RAX register. If for example our foo returned an
integer, it would be in the RAX register after the call instruction returned.

3.3.2 Writing your own subroutines*

As we have seen in the previous paragraph, the calling of subroutines hinges heavily on a number
of conventions. Thanks to these conventions, if you know how to call one subroutine you know
how to call them all. Imagine if this was not the case, you would have to check the exact register
and stack usage of each subroutine you would want to use. On the flip side, when writing our own
subroutines we will have to honour these conventions as well. One important part of the calling
conventions is the x86-64 stack and how you can use it. This will be explained first. Afterwards,
we will implement the foo subroutine from the previous paragraph.

We will now explain the stack mechanism. The x86-64 has a special stack pointer register: RSP.
This register is initialised by the operating system once your program starts. At that point, it
contains the address of the first byte after your program’s memory space. Essentially, this means
that the stack is empty at this point in time. The stack can “grow” downward into your program’s
memory space. When a push instruction is executed, the value in the stack pointer register gets
decremented by some amount and the pushed value is stored at the new location at which the
stack pointer then points.

Here is a visual impression of the memory layout of a running process:

3.3.3 Cleaning up the stack*

Of course, if the stack grows too large, it will eventually overwrite your program’s code and data.
This is called a stack overflow and it is usually indicative of a serious design flaw in your program.
To avoid this problem the caller must clean up the stack after every function call by adding the
parameter-block size to the stack pointer directly. Look at the simple example of the print function
below. Cleaning the stack should not be more difficult than this:

1 pushq $42 # Push a magic number
2 movq . . . , %. . . # The other 5 arguments to t h e i r r e g i s t e r s
3 l eaq fo rmat s t r (%r i p) , %rd i # The format s t r i n g
4 movq $0 , %rax # no vec to r arguments f o r p r i n t f
5 c a l l p r i n t f # Print the numbers
6 addq $8 , %rsp # Clean the stack (magic number)

32

3.3.4 The foo subroutine

If we want to implement a version of the foo subroutine that accepts more than 6 arguments, we
will need to know where to find the extra arguments from inside the subroutine. We will also need
to know where the return address resides on the stack, so that we can safely return control to the
caller after our subroutine finishes. To understand how this is done, we will take a look at the stack
right after someone calls our foo routine. Remember that the caller pushes the extra arguments
in reverse order before executing the call instruction? Remember also that the call instruction
automatically pushes the return address? Well, if you do, it should not be too surprising that the
stack will look like this by the time control reaches the first instruction in our subroutine:

With this knowledge under our belts we can start to envision our first simple subroutine. First
and foremost, a subroutine is a block of instructions which has a label. Second, it should pop the
return address off the stack and load it into the program counter (i.e. “jump”) once it finishes.
Being ever so considerate of our lazy nature, the x86 designers provided the ret instruction to
do exactly that: it pops an eight byte value off the stack and loads it into the program counter.
Thus, our first implementation of foo simply looks like this:

1 foo : r e t # return from subrout ine

This implementation of foo does very little of course. It ignores the arguments and it returns
immediately without setting a proper return value in RAX. A more interesting routine would do
some calculations and return a value. It might in turn call other subroutines. It is very likely that
the subroutine will also push some values onto the stack during its lifetime. With the stack pointer
being ever in motion, it may become hard to keep track of things that reside on the stack. To
make stack navigation in subroutines easier, the x86-64 offers a special base pointer register: RBP.
It works like this: upon entry of our subroutine, we immediately push the current value of RBP
onto the stack. We then copy the current stack pointer value to RBP. During the lifetime of our
subroutine the RBP will not change. That is, it will always point at the “base” of our subroutine’s
stack area. This way, we can always find our local variables and subroutine arguments relative to
RBP. At the end of our subroutine we pop the old RBP value off the stack again and return from the
subroutine. The process of storing the RBP and copying the stack pointer is called the subroutine
prologue and it is the same for all subroutines you write. Below is a graphical representation of
the stack as it would look during the execution of a typical subroutine (each “block” in the image
represents eight bytes):

33

In addition to some parameters G, H and I, we can see two local variables x and y, which were
created on the stack during the execution of the subroutine body. We can see the “moving” stack
pointer RSP which keeps pointing at the current top of the stack. We can also see the “static”
base pointer RBP which remains fixed during the execution of the entire subroutine. Finally, we
present a more meaningful implementation of foo, one that does some actual calculations and
returns a value in RAX. The following example shows how the foo subroutine can access its actual
parameters and its local variables relative to the base pointer RBP.

1 # ∗∗
2 # ∗ Subrout ine : foo ∗
3 # ∗ Arguments : i n t a , i n t b , i n t c ∗
4 # ∗ Return value : i n t ∗
5 # ∗ Desc r ip t i on : a s imple demonstrat ion subrout ine ∗
6 # ∗∗
7 foo :
8 pushq %rbp # Prologue : push the base p o i n t e r .
9 movq %rsp , %rbp # and copy stack po in t e r to RBP.

10
11 movq %rdi , %rax # load ’ a ’ i n to RAX.
12 addq %r s i , %rax # add ’b ’ to ’ a ’ .
13 addq %rdx , %rax # add ’ c ’ to the t o t a l .
14 pushq $1234 # cr ea t e a l o c a l v a r i a b l e ’ x ’ .
15 pushq $0 # cr ea t e another l o c a l v a r i a b l e ’ y ’ .
16 addq $3 , −8(%rbp) # add 3 to ’ x ’ .
17 incq −16(%rbp) # increment ’ y ’ .
18 . . . # etc , e t c .
19
20 movq −16(%rbp) , %rax # Move a return value in to RAX.
21 movq %rbp , %rsp # Epi logue : c l e a r l o c a l v a r i a b l e s from s t a c k .
22 popq %rbp # Restore c a l l e r ’ s base p o i n t e r .
23 r e t # return from sub rou t i n e .

3.3.5 Recursive subroutines*

A recursive subroutine is a subroutine that calls itself during its execution. This enables the
subroutine to repeat itself for a number of times. Below is the pseudocode of a recursive example
function. For a given x less than or equal to 42, the function calculates and returns the sum of all
integers from x to 42. Pseudocode:

1 func t i on example (x) {
2 i f (x == 42)
3 re turn 42 ;
4 e l s e
5 re turn (x + example (x + 1))
6 }

With recursive subroutines there’s still an issue: when does the routine need to stop from
calling itself? To prevent infinite recursion, you need to determine a recursive case and a base case
(or stop condition). With this example it would be logical to stop the recursion when the function
receives an input value of 42. This is done by checking for the condition at every invocation of
the function. If the condition holds we can return a known correct value. If the condition did not
hold the function will call itself with different parameters and use the result of that invocation to
compute the correct value.

Recursive functions are often used in computer science because they allow programmers to
write a minimal amount of code. It often produces code that is very compact. However, recursion
can cause infinite loops when the stop condition is not written properly.

34

3.4 Input and output*

Doing IO in an assembly program can be quite tricky. First of all, normal processes do not have
permission to access the hardware IO devices directly, so all input and output has to be handled by
the operating system. Since different operating systems have different ways of doing things it isn’t
very useful to teach you the specifics of one system4. Instead, we will use the operating system’s
standard C library to do IO for us. This has many benefits. First of all, there is a standard C
library available on most operating systems and second, it will do some nice tricks for us such as
ASCII-to-integer conversions and vice versa. In this subsection we will discuss the printf and
scanf subroutines from the standard C library. Both these functions are functions that take a
non-fixed amount of arguments, also known as “varargs”. These functions take an extra (hidden)
argument in RAX, defining the number of vector registers used in the call. During this lab we will
not be using these registers, so you always load a zero into RAX.

3.4.1 Printing to the terminal*

The standard C library contains a subroutine called printf. We will use this subroutine for
output. The subroutines from the C library can be called directly from your programs, just like
normal subroutines. The linker will make sure that the actual subroutine is found once your
program is built. printf takes a variable number of arguments. In its simplest form, it takes
only one argument: an ASCII string. We will now present a pseudocode example followed by an
assembly example.

Pseudocode:

1 p r i n t f (”He l lo world !\n”) ;

Assembly:

1 mystr ing : . a s c i z ”He l lo world !\n”
2
3 movq $0 , %rax # no vec to r r e g i s t e r s in use f o r p r i n t f
4 l eaq mystring(%r i p) , %rd i # load address o f a s t r i n g
5 c a l l p r i n t f # Cal l the p r i n t f r ou t in e

As you can see there are two strange details in this example. First of all, we include the special
‘\n’-sequence inside the string. This is translated by the assembler to a single ‘newline’-character.
Second, we do not actually provide the entire string as an argument, but rather just load (lea)
the memory address of the first character of the string, which is denoted by the mystring label 5.
By convention, C functions know where a string ends by looking for a byte with the value 0x00.
That byte indicates the end of the string.

In addition to simple printing, we can also use printf to print variables and other calculated
output to the terminal. We do this by embedding special character sequences in our string and by
passing extra values to printf. Note that these character sequences have no special meaning for
the assembler like ‘\n’, instead they are understood by the printf function (and related functions).

We give another example.
Pseudocode:

1 p r i n t f (” I am %d years o ld \n” , 25) ;

Assembly:

1 mystr ing : . a s c i z ” I am %d years o ld \n”
2
3 movq $0 , %rax # no vec to r r e g i s t e r s in use f o r p r i n t f
4 movq $25 , %r s i # load the value
5 l eaq mystring(%r i p) , %rd i # load the s t r i n g address
6 c a l l p r i n t f # Cal l the p r i n t f r ou t in e

4If you’re curious anyway, check out appendix 3.6.
5Remember that a label is just a memory address?

35

The printf function will automatically convert the integer value 25 to a ASCII representation
of the decimal number 25 and it will substitute the value into the string at the point where the
‘%d’ sequence is encountered. The ‘%d’ sequence simply tells printf that it may expect an extra
argument and that the argument must be interpreted as a decimal number for printing. We will
also use other special sequences, such as ‘%X’, during the lab course, but we will present them
during the relevant exercises.

3.4.2 Reading from the terminal*

To gather input from the user, we use another routine from the system C library called scanf.
This routine also has powerful number conversion facilities which work in a similar fashion as the
printf subroutine we saw in the last paragraph. We supply at least two arguments to scanf,
the first one being a format string containing a number of special character sequences and the
subsequent ones being memory addresses at which scanf may put the read values. In the following
pseudocode we use the ‘&’ operator to denote “address of”, e.g. &number is the memory address
of the variable number:

1 i n t number ;
2 s can f (”%ld ” , &number) ;

In assembly, the address of a variable depends on its location. If you want to store a value into
a global address you can simply use its label as the address. If you want to put a value in a
stack variable you could calculate the address using the base pointer. Fortunately, x86 offers the
lea instruction (“load effective address”) which makes this rather simple. We provide a complete
example of a scanf call which reads a decimal number from the keyboard and stores it in some
local stack variable:

1 fo rmat s t r : . a s c i z ”%ld ”
2 . . .
3 subq $8 , %rsp # Reserve s tack space f o r v a r i a b l e
4 l eaq −8(%rbp) , %r s i # Load address o f s tack var in r s i
5 l eaq fo rmat s t r (%r i p) , %rd i # load f i r s t argument o f s can f
6 movq $0 , %rax # no vec to r r e g i s t e r s f o r s can f
7 c a l l s can f # Cal l s can f

3.5 x86 assembly language reference*

This subsection contains a short language reference for the x86 assembly language. Apart from
a list of commonly used instructions, there is a short rundown of the differences between the so
called “AT&T syntax”, which is used by the GNU assembler 6 used during the course, and the
“Intel syntax” of x86 assembly, which is used in the official Intel x86 platform manual.

3.5.1 About the AT&T syntax*

If you have examined some of the x86 assembly examples in the book of Hamacher et al., you
will have noticed that there is a difference between the x86 assembly they use and the one we use
during the lab course. An explanation is in order here. First of all, there is of course no such
thing as an “official” x86 assembly language. In theory, you could write your own x86 assembly
and come up with a new syntax of your own. In practice however, there are only two flavors of
x86 assembly language which are in actual use. There are good arguments for using either, but
we have chosen to use the AT&T syntax for the lab course, while the book has chosen to use the
Intel syntax. While this is really all you need to know regarding the subject, we provide a short
background on the issue for the sake of completeness:

6https://sourceware.org/binutils/docs/as/

36

https://sourceware.org/binutils/docs/as/

The Intel syntax, as used in the book, is the preferred syntax that was used and developed by
the Intel Corporation - the designers of the x86 architecture. The Intel syntax is what you will see
in the official x86 reference manual and platform definition. If anything, this could be considered
the “official” x86 syntax. Long before the Intel Corporation introduced the x86 however, there
was the UNIX operating system and the programming language C, both of which were developed
at Bell Labs, the R&D department of the American phone company AT&T. Bell Labs and others
had ported the UNIX operating system to a variety of different architectures before the x86 even
existed, and thus the AT&T-style of assembly languages was widespread long before the x86 came
along. While Intel may favour its own syntax, it is much more beneficial for the rest of us to
learn AT&T syntax, as there are many other AT&T-style assemblers available for other hardware
platforms. In addition, most compilers generate AT&T-style output and it is, arguably, more
elegant than Intel syntax.

We will now discuss the most important properties of the AT&T syntax, both in relation to
the Intel syntax and on its own. You need to understand these properties before you can use the
instruction set reference in the next paragraph or the official Intel x86 manual. First and foremost,
many instructions in AT&T syntax need to be postfixed with a b, w, l or q modifier. This postfix
specifies the size of the operands, where b stands for “byte”, w stands for “word” (2 bytes), l
stands for “long” (4 bytes) and q stand for “quadword” (8 bytes). As an example, take a look at
four different uses of the push instruction:

1 pushb $3 # Push one byte onto the s tack (0 x03)
2 pushw $3 # Push two bytes onto the s tack (0 x0003)
3 pushl $3 # Push four bytes onto the s tack (0 x00000003)
4 pushq $3 # Push e i gh t bytes onto the s tack (0 x0000000000000003)

All four instructions in the example push the literal value ‘3’ onto the stack, but the actual size of
the operand is different in each situation. We will do assembly in 64-bit, so mostly you will have
to use the q postfix.

The size suffix is especially important when you use partial registers. The x86-64 allows you
to address smaller parts of the 64-bits registers through special names. By replacing the initial R
with an E on the first eight registers, it is possible to acces the lower 32 bits. If we use the RAX

register as an example, you can address the least significant 32 bits of this register by using the
name EAX. To access the lower 16 bits the initial R should be removed (AX for RAX). In a similar
fashion, the highest and lowest order byte in this AX register can be addressed by the names AH
and AL respectively. Again, we present a few examples using the mov instruction:

1 movl %eax , %ebx # Copy 32 b i t s va lue s between r e g i s t e r s
2 movq %rax , %rbx # Copy 64 b i t s va lue s between r e g i s t e r s
3 movw %ax , %bx # Copy only the lowest order 16 b i t s
4 movb %al , %bl # Copy only the lowest order 8 b i t s
5 movb %ah , %a l # Copy 8 b i t s with in a s i n g l e r e g i s t e r

In our instruction set reference we do not list these suffixes explicitly. The Intel manual does
not list them either.

AT&T syntax uses a number of prefixes for operands. You have probably seen them already:

• Register names are prefixed by the % character (e.g. %rax, %rsp).

• Literal/immediate values are prefixed with the $ character (e.g. $3, $label)

In AT&T syntax, a special expression exists to denote offsets. In many situations, you will
want to use the value in a register as an offset relative to some fixed point. We denote this by
putting braces around the register name and a base value before the braces:

1 foo : . by t e 12
2 bar : .quad 34
3
4 movq $ foo , %rax # Load the address o f foo in to RAX
5 movq 1(%rax) , %rbx # Load the va l u e o f bar in to RBX

37

In the example, we reserved space for the variables foo and bar. We then load the address of
foo into RAX. In the second mov instruction we use the offset notation to calculate the address of
bar, i.e. you should read 1(%rax) as “one plus the contents of the RAX register”. This syntax is
explained in more detail in the GNU assembler documentation 7.

As a final note, it is important stress that the Intel syntax uses a different order for source and
destination, e.g. if you read the Intel manual, mov A B will copy a value from B to A, whereas in
AT&T syntax the equivalent movl A B will copy the value from A to B.

3.5.2 Instruction set reference

The next page contains a list of commonly used x86 instructions. It should be sufficient to get
you through the lab course, but you may always study the official Intel manual 8 to obtain more
instructions. The instructions are all case insensitive. In the table we denote the necessity of a b,
w, l or q postfix with a period (‘.’). See the previous paragraph for a description of AT&T syntax
postfixes. As a further note, most bi-operand instructions require at least one of their operands
to be a register. The other operand may be either a register or a memory location. Note that the
multiplication- and division instructions require their operands to be in special registers9 and that
they store their results in more than one register (RAX and RDX).

7https://sourceware.org/binutils/docs/as/
8http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
9Other forms of these instructions also exist, but they are not listed here.

38

https://sourceware.org/binutils/docs/as/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

Mnemonic Operands Action Description
Data transfer

mov. SRC, DST DST = SRC Copy.
push. SRC %RSP -= 8, (%RSP) = SRC Push a value onto the stack.
pop. DST DST = (%RSP) , %RSP += 8 Pop a value from the stack.
xchg. A, B TMP = A, A = B, B = TMP Exchange two values.
movzb. SRC, DST DST = SRC (one byte only) Move byte, zero extended.
movzw. SRC, DST DST = SRC (one word only) Move word, zero extended.

Arithmetic
add. SRC, DST DST = DST + SRC Addition.
sub. SRC, DST DST = DST - SRC Subtraction.
inc. DST DST = DST + 1 Increment by one.
dec. DST DST = DST - 1 Decrement by one.
mul. SRC RDX:RAX = RAX * SRC Unsigned multiplication.
imul. SRC RDX:RAX = RAX * SRC Signed multiplication.
div. SRC RDX = RAX%SRC; RAX = RAX/SRC Unsigned division.
idiv. SRC RDX = RAX%SRC; RAX = RAX/SRC Signed division.

Branching
jmp ADDRESS Jump to address (or label).
je ADDRESS Jump if equal.
jne ADDRESS Jump if not equal.
jg ADDRESS Jump if greater than.
jge ADDRESS Jump if greater or equal.
jl ADDRESS Jump if less than.
jle ADDRESS Jump if less or equal.
call ADDRESS Jump and push return address.
loop ADDRESS decl %rcx, jump if not zero.
ret Pop address and jump to it.

Logic and shift
cmp. A, B sub A B (Only set flags) Compare and set condition flags.
xor. SRC, DST DST = SRC ˆ DST Bitwise exclusive or.
or. SRC, DST DST = SRC | DST Bitwise inclusive or.
and. SRC, DST DST = SRC & DST Bitwise and.
shl. A, DST DST = DST << A Shift left.
shr. A, DST DST = DST >> A Shift right.

Other
lea. A, DST DST = &A Load effective address.
int INT NR Software interrupt.

39

3.5.3 Assembler directive reference*

The following is a description of the most commonly used assembler directives or pseudo-instructions
as they are sometimes called. The directives are grouped by functionality. For a full reference, see
the official documentation of the GNU assembler. 10

Defining constants: .equ

1 .equ NAME, EXPRESSION

The .equ directive can be used to define symbolic names for expressions, such as numeric constants.
An example of usage is given below:

1 .equ FOO, 1024
2
3 pushq $FOO # push 1024

Declaring variables: .byte, .word, .long, .quad

1 .by t e VALUE
2 .word VALUE
3 . l o ng VALUE
4 .quad VALUE

The .byte, .word, .long and .quad directives can be used to reserve and initialise memory
for variables and/or constants. Just as the assembler translates instructions into bits of memory
contents directly (as explained in subsection 1.3), these directives will be transformed into memory
contents as well, i.e. there is no special magic involved here. .byte reserves one byte of memory,
.word reserves two bytes of memory .long reserves four bytes and .quad reserves 8 bytes. Whether
these bytes will actually be writable depends on the section in which you define them (see 3.5.3).
Each directive allows you to define more than one value in a comma separated list.

A few examples:

1 FOO: .by t e 0xAA, 0xBB, 0xCC # three bytes s t a r t i n g at address FOO
2 BAR: .word 2718 , 2818 # a couple o f words
3 BAZ: . l o n g 0xDEADBEEF # a s i n g l e long
4 BAK: .quad 0xDEADBEEFBAADF00D # a s i n g l e quadword

Note that the x86 is a little endian machine, which means that a value like .long 0x01234567

will actually end up in memory as 67 45 23 01. Of course, you normally do not notice this since
the movl-instruction will automatically reverse the byte order while it loads the long back into
memory. Taking endianness into account, it should be clear that the following four statements are
completely equivalent:

1 FOO: .by t e 0x0D , 0xF0 , 0xAD, 0xBA, 0xEF , 0xBE, 0xAD, 0xDE
2 FOO: .word 0xF00D , 0xBAAD, 0xBEEF, 0xDEAD
3 FOO: . l o n g 0xBAADF00D, 0xDEADBEEF
4 FOO: .quad 0xDEADBEEFBAADF00D

Reserving memory: .skip

1 . s k i p AMOUNT

Sometimes it is necessary to reserve memory in bigger chunks than bytes, words, longs or quads.
The .skip directive can be used to reserve blocks of memory of arbitrary size:

1 BUFFER: . s k i p 1024 # r e s e r v e 1024 bytes o f memory

10https://sourceware.org/binutils/docs/as/

40

https://sourceware.org/binutils/docs/as/

Section directives: .bss, .text, .data

1 . b s s
2 . t e x t
3 .data

The memory space of a program is divided into three different sections. These directives tell the
assembler in which section it should put the subsequent code. The .text segment is intended to
hold all instructions. The .text segment is read-only. It is perfectly fine to include constants and
ASCII strings in this segment. The .data segment is used for initialised variables (variables that
receive an initial value at the time you write your program, such as those created with the .word
directive). The .bss segment is intended to hold uninitialised variables (variables that receive a
value only at runtime).

Strings variables: .ascii, .asciz

1 STRING: . a s c i i s t r i n g
2 STRINGZ: . a s c i z s t r i n g

These directives can be used to reserve and initialise blocks of ASCII encoded characters. In
many higher level programming languages, including C, strings are simply blocks of ASCII codes
terminated by a zero byte (0x00). The .asciz directive adds such a zero byte automatically. The
following two examples are thus equivalent:

1 WELCOME: . a s c i i ” He l lo ! ! ” # A s t r i n g . .
2 .by t e 0x00 # . . f o l l ow e d by a 0−byte .
3
4 WELCOME: . a s c i z ”He l lo ! ! ” # A s t r i n g f o l l owed by a 0−byte .

Global symbols: .global

1 . g l o b a l l a b e l

This directive enters a label into the symbol table. The symbol table is a table of contents of sorts
which is contained in the binary assembled file. Publishing labels in the symbol table is useful if
you want other programs to have access to your labels, e.g. if you want the labels to be visible in
the debugger or if you want other programs to use your subroutines11. One very important use of
the symbol table is to export the main label. This label must be exported because the operating
system needs to know where to start running your program.

1 . g l o b a l main

3.6 Advanced topics

This section contains some background information on a number of advanced topics. The material
is provided for the interested reader, i.e. is not required knowledge for the TI1406 lab course and
it will mostly be interesting to those that have already finished the lab work. Most of the subjects
require basic knowledge of the C programming language.

11Sharing subroutines is not part of this lab course, but if you are interested you can have a look at subsection
3.6.1

41

3.6.1 Mixing assembly language with C/C++

During the assignments we made frequent use of the subroutines in the system’s standard C library.
As the name implies, this library was largely written in the programming language C, i.e. we have
seen that functions written in the C language are effectively ordinary subroutines that can be
called directly from assembly programs. This isn’t so strange if you consider that a C compiler
actually produces assembly programs as an intermediate step, after which it uses the assembly to
generate the actual object code. The obvious next question is: can we call assembly subroutines
from C as well? The obvious answer is “yes”.

The assembly subroutine is written in the normal manner. To allow the linker to “see” your
subroutine, it is necessary to publish its name in the symbol table using the .global directive.

In your C source file, you will need to specify a function prototype for your assembly subroutine,
e.g something like this:

1 /∗∗
2 ∗ A func t i on prototype f o r our assembly subrout ine .
3 ∗/
4 i n t foo (i n t x) ;

Of course, you should use the same subroutine name in your C program as you do in your assembly
file. After this prototype declaration, you can simply call the subroutine like you would call any
other C function. The final step is to compile both the assembly file and the C source file and to
link them together into a single binary. As usual, we offload all the hard work to gcc:

gcc -o myprogram myassemblysource.s mycsource.c -no-pie

. . . and presto!
As an aside, it is also possible to include snippets of assembly code directly into your C source

code. This can be very useful in cases where specific tight loops in your programs take a lot of
time to execute. The details on how to inline assembly code, as this technique is called, are not
standardised and they may differ from one C compiler to another. Consult the manual of your
favourite compiler to find out how this mechanism works.

3.6.2 Doing IO without the C library

During the lab course we have used the system’s standard C library to perform input and output
operations. Of course, it is also possible to do IO without the C library. The benefit of this
approach is that our programs will be as short and small as possible, as we save ourselves the
trouble of executing an extra subroutine call. The drawback, as explained earlier, is that the details
of the procedure differ from one operating system to another. As an example, we demonstrate
how to print a line of text on the terminal without using printf.

The procedure is fairly simple, but as with all topics in this advanced section, it requires
some prior knowledge that is slightly outside of the scope of this lab course. During the Operating
Systems course, you will learn that programs communicate with the kernel by performing a “system
call”. In a system call, a program transfers control to the kernel, much like a subroutine call
transfers control to a subroutine. In fact, it is possible to pass parameters to a system call in much
the same way.

The difference with an ordinary subroutine call is, as always, in the details. In 32 bit, the
actual control transfer was achieved by causing a software interrupt, which is sometimes called a
trap. This is done by executing an int instruction. On Linux, the interrupt number for a system
call is always 0x80. In 64 bit mode, things are not that different from what you are used to.
The arguments still go in the same registers as before, but now you will have to provide a magic
number in RAX defining what system call you want. For instance, doing an exit is done by setting
RAX to 60, putting the error code in RDI (normally 0) and then use the syscall instruction.

42

1 # Perform the ’ s y s e x i t ’ system c a l l :
2 movq $60 , %rax # system c a l l 60 i s s y s e x i t
3 movq $0 , %rdx # normal e x i t : 0
4 s y s c a l l

A complete list of available Linux system calls can be found in the kernel source code, or at the
following address: http://man7.org/linux/man-pages/man2/syscalls.2.html. The complete
call looks a bit less friendly than printf:

1 # de f i n e the s t r i n g and i t s l ength :
2 h e l l o :
3 . a s c i z ”He l l o !\n”
4 he l l o end :
5 .equ length , he l l o end − h e l l o
6
7 # Perform the ’ s y s w r i t e ’ system c a l l :
8 movq $1 , %rax # system c a l l 1 i s s y s w r i t e
9 movq $1 , %rd i # f i r s t argument i s where to wr i t e ; s tdout i s 1

10 l eaq h e l l o (%r i p) , %r s i # next argument : what to wr i t e
11 movq $ l ength , %rdx # l a s t argument : how many bytes to wr i t e
12 s y s c a l l

The code we see here is actually very similar to the code that we find inside the printf function
itself. Many functions in the C library, including printf, use inline assembly code to perform
their actual function (see 3.6.1). Since compilers are not operating system specific, the authors of
printf have to resort to this technique.
Now that your code does not depend on the C library anymore, you can even assemble and link
it yourself, without the gcc magic:

as -o hello.o hello.s

ld --entry main -o hello hello.o

Compare the size of your final program to the size of its C equivalent. Now that’s efficiency!

43

http://man7.org/linux/man-pages/man2/syscalls.2.html

Appendix A

Rules and Regulations

This appendix states the rules and regulations to which you need to adhere in order to have your
assignments approved. These rules effectively apply to all lab courses, but to avoid any confusion,
they are stated here explicitly for this course.

A.1 Necessary conditions for approval

To have your assignments approved, your work needs to meet all of the following conditions:

1. You need to deliver correct specifications.

2. Your finished code needs to be functionally correct.

3. Your code needs to be algorithmically correct.

4. Your code needs to be properly commented.

We stress that your work will not be considered fit for approval until you meet all four of these
criteria. The details on what we consider to be correct in this context will be defined in the
subsequent paragraphs.

A.1.1 Correct specifications

If an assignment so asks, you will need to hand in a correct specification for the specified part of
the exercise. Specifications must be written in pseudocode. Pseudocode is code that resembles
actual high level (non-assembly) program code closely. It is called pseudocode because it does not
necessarily have to be real, compilable code. A good, clear example of pseudocode is provided
in Assignment 0 (2.1). We expect your pseudocode to be similar in clarity, quality and level of
detail. Specifically, this means that your pseudocode must have:

• proper comments

• a good, clean layout

• a simple, clearly understandable structure

We expect that you have your specifications checked before you start on your implementation work.
It is highly likely that the teaching assistants will ask you to make changes to your specifications,
so we strongly advise you not to start programming before having your specs approved. If you
choose to ignore this advice, we do not accept responsibility for any wasted effort on your part.

44

A.1.2 Functionally correct code

The source code that you hand in should be functionally correct. This is implied by the following:

• The source code must compile without errors or warnings.

• The program must function as specified in the assignment.

• The program must run to completion without runtime errors.

A.1.3 Algorithmically correct code

The programs that you hand in should be algorithmically correct. The correct algorithm is, by
definition, the algorithm that was conveyed to you by the teaching assistants during the approval
of your specifications. This implies that a program cannot be algorithmically correct if you did not
have your specifications approved by a teaching assistant. We explicitly state here that you are
not free to implement the desired functionality at your personal leisure and that solutions which
are merely functionally correct are not sufficient for approval.

A.1.4 Compliance with subroutine conventions

As explained in Section 3.3, a calling convention allows subroutines to interact through a common
set of rules. Furthermore, other conventions, such as the use of a prologue and epilogue in each
subroutine, make code easier to understand and reuse by others. We expect that all uses of
subroutines in your code, both calling external subroutines and writing your own, adhere to the
conventions laid out in Section 3.3.

A.1.5 Properly commented source code

All source code, including pseudocode, should be properly commented. Commenting source code
is not an exact science, but at the least we expect that you adhere to the following guidelines:

Natural language comments should be written in a natural human language, which is preferably
in English or Dutch if you insist. We expect that you use the same language consistently.
Pseudocode and overly complicated mathematical notations are not accepted as proper com-
ments.

Continuity the comments in the body of your code should “tell the story” of the code in a
concise, clear manner. If you strip away the accompanying source code, your comments
should make up a compact description of the algorithm in acceptable prose. Do place your
comments with care and avoid overly lengthy comments.

Subroutines Each subroutine should be accompanied by a clear description of its function. A
description should also be given of the meaning and type of the arguments and the return
value.

Layout Part of the readability of source code comes from good layout. We expect you to be
precise and, most importantly, consistent in your style.

The “Sieve of Eratosthenes” example of assignment 1 contains good examples of properly com-
mented assembly- and pseudocode. You should strive for the same level of quality. You are allowed
to develop your own style of commenting and layout, but we demand that you to be consistent
and precise. Sloppy comments or disturbing layouts will not be accepted.

45

A.2 Deadlines

The lab runs from the 3rd through the 7th week of the course. All groups of students must submit
and present their four mandatory assignments and any extra assignments they wish to complete
before or during the lab session in the following weeks:

• week 5 for assignments 1 and 2,

• week 6 for assignments 3 and 4, and

• week 7 for extra assignments.

For concrete dates, please refer to the Canvas page on the lab. Please start early and submit your
assignments in time, such that we avoid the situation in which all students submit just in time
before the deadline.

A.3 Anti-fraud policy

Our anti-fraud policy is very simple: zero-tolerance, within the limits set by the Vrije Univer-
siteit. We will pursue each case of potential fraud, and will use the means provided by the Vrije
Universiteit to punish (attempts to) fraud.

The following are some of the cases that are considered fraud:

• Sending your code to other groups. The motivation of “I sent it for them to find some
inspiration” does not work.

• Copying somebody else’s code. Changing the names of variables in someone else’s code and
submitting the results is still considered fraud.

• Receiving help from someone, when the help amounts to letting that someone write your
code.

• Renting the services of a programmer, for example from Rent-a-Coder.ro, to solve the
assignments for you.

46

	Introduction
	Getting started
	Lab course rules and etiquette
	Assumed prior knowledge
	Assignment Overview
	Why assembly (still) matters

	Assignments
	Assignment 0: a detailed example
	Assignment 1: your first simple program
	Assignment 2: subroutines and I/O
	Assignment 3: parameter passing and local variables
	Assignment 4: recursion
	Assignment 4+: Fibonacci sequence (150-400 points)
	Assignment 5a: (extra, excludes 5b) implement ``diff'' in assembly (500 points)
	Assignment 5b: (extra, excludes 5a) implement a hashing function (500 points)
	Assignment 6: (extra) implement a simplified printf function (500-750 points)
	Assignment 7: (extra) using assembly to hide data in a bitmap (500-750 points)
	Assignment 8: (extra) Intro to HPC: implement a memory bandwidth benchmark (500–750 points)
	Assignment 9: (extra) using assembly to implement a game (1,000 points)

	Reference documentation
	Building and running programs*
	Programming constructs*
	Conditional branching*
	If-then-else statements*
	While/do-while/for loops*
	Switch-case statements
	Lookup tables

	Subroutines*
	Calling subroutines*
	Writing your own subroutines*
	Cleaning up the stack*
	The foo subroutine
	Recursive subroutines*

	Input and output*
	Printing to the terminal*
	Reading from the terminal*

	x86 assembly language reference*
	About the AT&T syntax*
	Instruction set reference
	Assembler directive reference*

	Advanced topics
	Mixing assembly language with C/C++
	Doing IO without the C library

	Rules and Regulations
	Necessary conditions for approval
	Correct specifications
	Functionally correct code
	Algorithmically correct code
	Compliance with subroutine conventions
	Properly commented source code

	Deadlines
	Anti-fraud policy

