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Abstract:  Gold nanorod has generated great research interest due to its 
tunable longitudinal plasmon resonance. However, little progress has been 
made in the understanding of the effect. A major reason is that, except for 
the metallic spheres and ellipsoids, the interaction between light and 
nanoparticles is generally insoluble. In this paper, a new scheme has been 
proposed to study the plasmon resonance of gold nanorod, in which the 
nanorod is modeled as an LC circuit with an inductance and a capacitance. 
The obtained resonance wavelength is dependent on not only aspect ratio 
but also rod radius, suggesting the importance of self-inductance and the 
breakdown of linear scaling. Moreover, the cross sections for light 
scattering and absorption have been deduced analytically, giving rise to a 
Lorentzian line-shape for the extinction spectrum. The result provides us 
with new insight into the phenomenon. 
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1. Introduction 

It is well known that the metallic particles will undergo the plasmon oscillations when 
illuminated by an incident light, where the confined conduction electrons can be driven by the 
electric field into resonance [1]. In addition to maxima of light scattering and absorption, the 
plasmon resonance is accompanied by a strong field enhancement inside and around metallic 
particles. Such effect has generated great research interest due to its wide range of potential 
applications in fields such as signal amplification, molecular recognition [2], as well as cancer 
diagnosis and therapy [3]. Moreover, since the size of metallic particle is much smaller than 
the resonance wavelength, this effect enables us to manipulate light with a wavelength of 
microns by using nanoscale objects. For example, employing a plasmonic waveguide 
consisting of closely spaced nanoparticles, light propagation below the diffraction limit can be 
achieved [4]. 

Recent advances in nanotechnology have lead to successful synthesis of nonspherical 
nanoparticles such as gold nanorods [5, 6], which typically has a length of 40~200nm and 
diameter of 10~30nm. Compared with a spherical metallic particle, a gold nanorod has a 
tunable longitudinal plasmon resonance, which is particularly desirable for practical 
applications [3, 7]. To deeply exploit the resonance effect, a full understanding of the 
interaction between light and nanorods is urgently needed. Conventionally, the interaction of 
light with metallic particles is investigated by solving the Laplace or Maxwell equations and 
matching the fields at the metal surface [8]. This works well for the metallic spheres and 
ellipsoids but is not suitable for nanorods. Numerical simulation using various methods may 
provide another solution for this problem [9-11], but unable to reveal the underlying physics. 
Currently, a widely used method is to employ the Gans theory, which was developed more 
than ninety years ago for spheroidal particles, to approximately describe the plasmon 
resonance of gold nanorod [6, 12, 13]. According to the Gans theory, the resonance 
wavelength is only a function of aspect ratio and medium permittivity, and in certain 
conditions a linear relationship between them can be resulted [12]. Nonetheless, recent 
numerical results suggest that, even when the aspect ratio is fixed and the retardation effect is 
weak, the position of longitudinal resonance can still vary strongly with the rod radius [9, 10]. 
This indicates that the detailed physics for the plasmon resonance of gold nanorod has not 
been well captured and understood. 

Here, we will break through the confines of Gans theory and propose a new scheme to 
study the longitudinal plasmon resonance of a gold nanorod. In this scheme, the problem is 
treated simply using an LC circuit model without solving the Laplace or Maxwell equations. 
The obtained resonance wavelength is dependent on not only aspect ratio but also rod radius, 
in agreement with the numerical simulations. The result shows that the radius dependence is 
related to the self-inductance of nanorod and that a breakdown of linear scaling is also present 
due to the formal inductance associated with the inertia of electrons. Moreover, the cross 
sections for light scattering and absorption have been deduced analytically, giving rise to a 
Lorentzian line-shape for the extinction spectrum. The result overcomes the deficiency of 
Gans theory and provides us with new insight into the phenomenon. 
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2. LC circuit Model 

The structure under study is composed of a subwavelength gold nanorod, which has a length 

of l and radius of 
0 0( )r r l<  and is embedded in a dielectric with the permittivity of 

dε . The 

incident light propagates with the electric field along the rod axis, thus exciting the 
longitudinal plasmon resonance (see figure 1a). Supposing that the radius of nanorod is 

smaller than the skin depth (
0 ~ 20r nmδ< ), the retardation effect can be neglected and the 

fields inside the nanorod can be taken to be homogeneous. We also assume that the size of 

nanorod is much larger than the Fermi wavelength (
0 ~ 0.5Fr nmλ>> ), so that the quantum 

effect can be ignored and a classic description of the effect is applicable. These assumptions 
can be satisfied considering the actual sizes of the nanorods [6]. 

   
                                         (a)                                                                    (b) 

Fig. 1. (a) Schematic view of the structure under study. The subwavelength gold nanorod is 
embedded in a dielectric, and the incident light is propagating with the electric field along the 
rod axis, thus exciting the longitudinal plasmon resonance. (b) The magnetic field distribution 
around the nanorod when a current flow in the rod is excited by the light electric field. 

We will show in the following that a gold nanorod can be treated as an LC circuit having an 
inductance and a capacitance. As we know, under the action of the incident light, a current 
flow I will be generated in the nanorod, which is accompanied by a magnetic field with the 
amplitude proportional to the current. The self-inductance L is induced by the magnetic field 

energy w that is stored both inside and outside the conductor with 2 / 2w LI=  [14]. Since the 

internal part of the magnetic energy is much smaller than the external part, we can neglect the 
former in the calculations. A plot of the magnetic field distribution (see figure 1b) shows that 
the external magnetic energy is concentrated mainly near the nanorod, namely, in a cylindrical 
region with the length l, the inner radius r0 and the outer radius l/2. By calculating the energy 
in this cylindrical region, the self-inductance is obtained as 

0 0( / 2 ) ln( / 2 ),L l l rµ π=                                                 (1) 

which is mainly dominated by the length of nanorod. 
It is also significant that a formal inductance can be provided by the ac resistance of a 

nanorod. Under the driving of a time-harmonic field with the angular frequency ω , the 

velocity of electrons and the current density cannot be in phase with the driving field due to 
the presence of electron inertia. As a result, a frequency-dependent and imaginary part will 

present in the ac resistance 
0 0R R i Lω= − , where 

0 0/R l sσ=  ( 2

0 /ne mσ τ=  is the dc 

conductivity, 2

0s rπ=  is the cross-section area of nanorod) and 2

0 0 / pL l k sµ=  ( /p pk cω= , 

2

0/p ne mω ε=  is the bulk plasma frequency, and c is the light velocity). Therefore, an ac 

resistance will behave as a cascade of a dc resistance 
0R  and a formal inductance 

0L . We note 

E
+ + +

− −−

l
02r
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that the formal inductance can also be derived by calculating the electronic kinetic energy 
2

0 / 2w Nmv=  and setting 2

0 0 / 2w L I=  [15], where /v I nes= −  is the electron velocity and 

N nsl=  is the total number of electrons. Since the formal inductance is inversely 

proportional to the cross section, it will play a crucial role in the nanocircuit. 
As a consequence of the current flow, electric charges with different signs q±  will 

accumulate on the opposite ends of the nanorod (where a homogeneous distribution of charge 
on the end faces can be assumed). Correspondingly, the two end faces (circular disks) of the 
nanorod will function as one circular capacitor. According to the electrostatics theory that is 
applicable here, the potential of one charged circular disk can be determined theoretically and 
a potential difference between the two oppositely charged disks will be expected. It should be 
mentioned that the potential of a circular disk is not homogeneous but decreases gradually 
from the center to the edge. Nonetheless, at the center of one disk, the potential is simple and 

can be worked out analytically with 
0 0

/ 2
d

U q rπε ε=  (the weak contribution from the other 

disk is firstly neglected). If the capacitance C is defined simply as the electric charges divided 

by the potential difference between the two disk centers, we immediately have 
0 0d

C rπε ε= . 

Certainly, the effective capacitance will be modified (increased) by the effects such as the 
inhomogeneous distribution of the potential and the weak coupling between the two disks. To 
take account of these effects, we phenomenologically introduce a correction coefficient α  to 

the effective capacitance 

0 0.d
C rαπε ε=                                                        (2) 

The expression given by equation (2) is different from that of a commonly-used parallel-plate 
capacitor, which shows that the effective capacitance of nanorod is mainly governed by the 
rod radius and the permittivity of surrounding medium. Here, the correction coefficient can be 
determined by comparing the analytically and numerically obtained resonance peaks. For the 

gold nanorod, an appropriate value of 2.5α =  has been found and will be used in the 

following.  

3. Results and discussions 

In the quasi-static approximation, the Ohm equation applied to a subwavelength LC circuit, 
which is subject to an incident light with a time-harmonic field, is written as 

( / )I R i L i Cε ω ω= − + , where ε  is the electromotive force (emf). Different from the split-

ring resonators (SRRs) having a negative permeability [16, 17], here the emf is provided by 

light electric field rather than the magnetic field, with E dl Elε = ⋅ =∫ . As is seen above, the 

gold nanorod, which carries the positive and negative charges on the opposite ends, can be 

regarded as an electric dipole with its dipole moment p ql= . By using the Ohm’s law and 

the relationship /I dq dt= , we have 

0

2 2

0

,
A

p E
i

ε
ω ω ηω

=
− −

                                                   (3) 

where 1 2

0 0 0 0/( ), 1/ ( )A l L L L L Cε ω−= + = + , and 
0 0/( )R L Lη = + . Therefore, the gold 

nanorod is a typical Lorentz resonator in response to the light. 
According to equation (3), the gold nanorod has a plasmon resonance frequency of 

0 01/ ( )L L Cω = + . Correspondingly, the vacuum wavelength of plasmon resonance, which 

is of particular interest, can be determined to be 
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2 2

0 010 (2 ln ),
d

n rλ π κ δ κ= +                                             (4) 

where 
dn  is the refractive index of the surrounding medium, 

0/ 2l rκ =  is the aspect ratio of 

nanorod, and / pcδ ω=  is the skin depth of gold (~21.9nm). In contrast to previous result 

based on the Gans theory [12, 13], two features can be pointed out here. Firstly, although a 
linear dependence was believed, equation (4) presents a nonlinear relationship between the 
resonance wavelength and the aspect ratio as well as the medium permittivity. Secondly, the 
resonance wavelength is not only a function of aspect ratio but also a function of the rod 
radius, thus overcoming the deficiency of Gans theory [10]. Since the gold nanorod is thin and 
the phase retardation is not considered here, the latter feature is not due to the retardation 
effect as believed but rather due to the self-inductance of the nanorod. This is not difficult to 
understand: if we neglect the self-inductance L (when the rod radius is very small), the 
resonance wavelength is then dependent on the aspect ratio alone (L0 and C is proportional to 

2

0
/l r  and 0r  respectively, thus 

0L C κ∝ ). Note that when the rod radius is large enough (not 

studied here), the retardation effect will also play an important role. The above result suggests, 
on the other hand, that a scaling down of the rod size cannot reduce the resonance wavelength 
infinitely, in agreement with previous reports on SRRs [15, 18]. This means a breakdown of 
linear scaling is also present in the nanorod, originating from the formal inductance associated 
with the inertia of electrons (neglecting the formal inductance will lead to a linear scaling 

0 0rλ ∝ , which means the resonance wavelength is proportional to the rod size). 
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Fig. 2. (a) Dependence of resonance wavelength on the aspect ratio. The squares represent the 
experimental data [10] and the line gives our calculated values (the rod diameter is fixed as 
22nm). (b) Dependence of resonance wavelength on the rod radius. The symbols are obtained 
by numerical calculations [19] and the lines obtained by our calculation. Here the aspect ratio is 
set as 3, 5 and 7, respectively (from the bottom to the top). 

To test the performance of the theoretical result, we have compared the resonance 
wavelengths obtained by equation (4) with that of the experiments. Figure 2(a) shows the 
dependence of the resonance wavelength on the aspect ratio, where the refractive index of the 
surrounding medium (water) is 1.33 and the radius of gold nanorod is fixed as 11nm. The 
solid squares represent the measured values (the nanorods have a particle size distribution) 
[10], and the solid line gives our analytical results for the single nanorods. One can see that 
the analytical calculations agree well with the experiments, concerning the spectral position of 
plasmon resonance as well as its dependence on the aspect ratio (a deviation presents when 
the aspect ratio becomes very small, where the capacitance of nanorod will be less well 
defined). It should be noted that the actual geometry of a fabricated nanorod will deviate 
slightly from the modeled structure, yielding a reduced plasmon resonance wavelength [10]. 
Nonetheless, compared with a single nanorod, the resonance wavelength of an ensemble of 
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nanorods, which has a particle size distribution and an average aspect ratio, will be shifted to a 
longer wavelength [10]. As a result, the two effects will be largely canceled by each other. 

By fixing the aspect ratio, we have also studied the dependence of resonance wavelength on 
the rod radius. Figure 2(b) shows both the analytically determined (solid lines) and 
numerically calculated (solid symbols taken from Ref. [19]) results, where the aspect ratio is 
set as 3, 5 and 7 respectively (from the bottom to the top) and the rod diameter is increased 
gradually from 5nm to 30nm. The analytical and numerical calculations agree well with each 
other, which suggest that, even when the aspect ratio is fixed, the resonance wavelength will 
still increase with the rod radius significantly. For the three aspect ratios 3, 5, and 7, a 
wavelength shift of 83nm (712~795nm), 154nm (920~1074nm), and 217nm (1090~1307nm) 
has been obtained respectively, which corresponds to a relative shift of wavelength about 
12%, 17%, and 20%. In contrast, the Gans theory predicts a constant resonance wavelength, 
which is, respectively, 670nm, 860nm, and 1060nm for the above aspect ratios [10]. It can be 
deduced from figure 2(b) that the resonance wavelength in the surrounding medium is more 
than 20 times larger than the rod width. Hence, the retardation effect can be neglected in the 
propagation direction of light (note that, in the present incident configuration, there is no 
phase retardation along the rod axis). 

A significant consequence accompanying the plasmon resonance of nanorod is the greatly 
enhanced light scattering and absoption. These effects can be calculated by introducing the 

rod polarizability χ , which is linked to the dipole moment of nanorod via 
0p Eε χ= . The 

cross sections for light scattering and absorption can be thus expressed, respectively, as 
24

0
/ 6

sca
C k χ π=  and 1

0 Im[ ]abs dC k n χ−= , where 
0

k  is the wavevector in free space. With the 

use of equation (3), we have 

2 4 2

4 2 2 2 2 2 2 2 2 2 2

0 0

, .
6 ( ) ( )

sca abs

d

A A
C C

c n c

ω η ω
π ω ω η ω ω ω η ω

= =
− + − +

               (5) 

For small gold nanorods, it is easy to find that 2

pA Vω≈  and η γ≈ , where V is the volume of 

nanorod and γ  is the collision frequency of electrons (here we set 141.5 10γ = × rad/s, which 

is larger than that of the bulk metal due to additional scattering from the nanoscale metal 

surface [19]). Therefore, the maximal cross sections for scattering ( 4 2 2 2

0 / 6m

sca pC k Vω πγ= ) and 

absorption ( 2 /m

abs p dC k cV n γ= ) are strongly dependent on the volume of nanorod. Generally, 

the absorption is dominant for the small particles, and with the increase of rod size the 
scattering will become more significant. This agrees with the metallic spheres or ellipsoids. 

With equations (5), the extinction cross section (
ext sca abs

C C C= + ) of a nanorod can be 

obtained theoretically. Without loss of generality, figure 3(a) shows the calculated extinction 
spectrum (the open circles) for a gold nanorod, which has a length of 52.65nm and a radius of 
8.1nm. The spectrum exhibits a Lorentzian line-shape with the linewidth about 42nm. As a 
comparison, figure 3(a) also presents the measured extinction spectrum for the same (single) 
nanorod (the solid circles, see Ref. [11]). Although a slight shift of resonance wavelength 
(~55nm) is presented in the spectra (due to a deviation of actual geometry from the model, as 
mentioned above), a numerical fit of experimental data suggests, indeed, a Lorentzian line-
shape (the solid line). In addition, figure 3(b) has plotted the calculated extinction spectra for 
three gold nanorods with different rod sizes (the radius is fixed as 10nm, and the length is set 
as 60, 80, and 100nm, respectively). Besides the red-shift of plasmon resonance peak, an 
increase of light extinction with the rod length or particle volume is clearly demonstrated. 
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Fig. 3. (a) Normalized extinction spectra for a single gold nanorod, which has a length of 
52.65nm and radius of 8.1nm. The open and solid circles represent, respectively, the theoretical 
(by equation (5)) and experimental [11] results. The solid line is a numerical fit of experimental 
data with the Lorentzian line-shape. (b) Calculated extinction spectra for three gold nanorods 
with different rod sizes, where the rod radius is fixed as 10nm and the length is set as 60, 80, 
and 100nm, respectively (from the left to the right). 

The above scheme can also be employed to study the plasmon resonance of a rectangular 
nanorod. In this case, the resonance wavelength is deduced to be 

2

0
2 2 2 2

5 (2 ln )
.

ln( / 1 / ) ln( / 1 / )
d

l ab
n

a b a b a b a b a b

πδ κ
λ π

+
=

+ + + + +
                    (6) 

Here, ( / 2) /l abκ π≈ , l is still the length of nanorod, a and b are the side lengths of the cross 

section. Equation (6) predicts a nonlinear relationship between the resonance wavelength and 
the rod side length. Generally, the larger the side length of cross section is, the smaller the 
resonance wavelength. We stress that, even when the rectangular nanorod is folded into a U-
shaped SRR, the effective inductance and capacitance are just slightly modified (note that it is 
still the end faces but not the gap of the U-shaped SRR that forms the capacitor). Hence, the 
main characteristics of the plasmon resonance of rectangular nanorod can be well maintained. 
This explains why a U-shaped SRR and a cut-wire share the same resonance features and why 
the resonance frequency increases nonlinearly with the gold thickness [20]. 

4. Conclusions 

In summary, the interaction of light with a single gold nanorod has been studied analytically. 
The employment of an LC circuit model greatly simplifies the problem and captures well the 
characteristic of the phenomenon. The results show that the gold nanorod behaves as a 
Lorentz resonator in response to light and that the extinction spectrum has a Lorentzian line-
shape. The plasmon resonance wavelength relies on not only aspect ratio but also rod radius, 
thus overcoming the deficiency of Gans theory. In contrast to conventional wisdom, the effect 
is actually related to the self-inductance of nanorod rather than the phase retardation. It is 
worthy of noticing that, according to the theory, a breakdown of linear scaling is also present 
in the nanorod. Our result represents a new understanding of the phenomenon. 
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