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Abstract—Driven by the recent innovation in battery tech-
nology and electric drivetrain, electric vehicles (EVs) have
grown rapidly and are widely deployed to enable a sustainable
transportation system. One of the key challenges is how to
optimize the sizing and operation of the charging stations to
meet the ever-increasing EV demands. In this paper, we develop
a two-stage optimization framework to address this challenge.
The proposed framework can determine the optimal capacity
of renewable energy generation, and the optimal scheduling
for power supply, in two stages, respectively. We reformulate
a single-level stochastic programming problem to solve the two-
stage optimization problem. In addition, we analyze the arrival
patterns and demand profiles of EVs using real-world data
to facilitate a practical EV request model. Numerical results
demonstrate the optimal planning for a renewable-powered EV
charging station. We show the optimal mix of solar and wind
energy generations and the optimized power scheduling.

Index Terms—Smart grid, renewable energy, solar, wind,
energy storage, electric vehicle, charging station.

I. INTRODUCTION

The transportation sector is one of the major contributors
to air pollution and carbon dioxide emissions. Widespread
adoption of electric vehicles (EVs) is a promising solution
to address the environmental problems and decarbonize trans-
portation sectors [1]. However, increasing penetration of EV
load can result in negative impact on the operation of power
systems, especially the distribution networks [2]. For example,
remarkable EV charging load may lead to problems such
as load spikes, voltage fluctuations, overload of circuits, and
energy losses. Rather than upgrade the grid infrastructure,
those impacts can be mitigated by investing in local gen-
erations. Moreover, renewable energy resources from solar
and wind can provide clean power to meet the EV charging
demand. Motivated by this, we aim to develop an optimization
framework for determining the optimal planning for an EV
charging station using realistic renewable data.

Many research efforts have been made in EV charging
station planning. A few of them, e.g., [3], [4], [5], [6], [7],
[8], [9], studied the placement and sizing of the EV charging
stations, taking into consideration of the constraints in both
transportation network and power grid. A number of heuristic
solutions have been proposed to minimize the investment and
operational costs. The authors in [10] proposed a capacity
planning strategy aiming at maximizing social welfare while
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minimizing the grid cost. They considered multi-class clients
and conducted experiments in both big and small cities. In
[11], the authors proposed a coordinated charging solution
that uses the valley-filling technique to optimize the capacity
planning. They used a capacity margin index to select the best
time for the grid to supply the charging station and a charging
priority index to select the appropriate EV to charge. In [12],
the authors proposed a two-stage solution where the first stage
offers an offline optimal solution that can be used as a day-
ahead strategy for the capacity sizing and the second stage
provides a real-time charging plan for each EV based on their
demands.

In this paper, we analyze the realistic data trace of EVs and
derive the arrival patterns and demand profiles of EVs, which
facilitate a practical EV request model. In addition, we develop
a two-stage optimization framework to determine the optimal
planning of an EV charging station, including the optimal
capacities of renewable energy generations and optimal power
scheduling. We reformulate a single-level stochastic program-
ming problem to jointly optimize the planning and scheduling
decisions. The main contributions of this work are as follows:

e EV data analytics: We analyze and discuss arrival patterns
and demand profiles of EVs using realistic data.
Two-stage charging station optimization: We develop a
two-stage optimization framework for the optimal plan-
ning of an EV charging station. The framework jointly
optimizes the capacity planning and power scheduling in
the two stages.

o Numerical results based on realistic data: We demon-
strate the optimal planning using realistic data of EV
loads and renewable generations, showing the optimal ca-
pacities of solar/wind energy and optimal power schedul-
ing.

The rest of this paper is organized as follows. In Section II,
we present data analytics of EV arrival patterns and demand
profiles. We present the system model and the two-stage
optimization framework in Section III. In Section IV, we
present the problem formulation and solution method. Section
V shows the simulation results and Section VI concludes this

paper.
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II. DATA ANALYTICS OF EV CHARGING PROFILES

To formulate a practical EV model, we need to answer the
following questions: (1) When will an EV arrive? (2) How
much is the charging demand of the EV? (3) How long will the
EV stay in the station? We analyze a real-world EV data trace
[13] to answer these questions, and obtain several insightful
findings in terms of (1) the average number of EV arrivals per
hour, (2) the cumulative distribution function (CDF) of EV
charging demand, and (3) the average duration of EV. The
detailed description of the EV model is as follows.

EV arrival pattern: We first analyze the average number of
hourly arrival EVs in a day. Since the renewable energy source
(e.g., solar or wind) and the EV’s travel condition may vary
in different seasons, we conduct comprehensive data analytics
to produce four different arrival patterns in four seasons. In
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Fig. 1: Data analytics of a real-world EV data trace
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each season, we select a representative month (e.g., January,
April, July, and December) and summarize the average results
in each of those 30 days, as shown in Fig. 1 (a). We see
that the four EV arrival curves follow a similar pattern that
has a peak number of EV arrivals at 9am, 4pm and 10pm.
This is reasonable since the pattern coincides with the human
behaviors that people may drop their EVs at the station when
they get to the office (e.g., 9am) or back home (4pm or 10pm).
From Fig. 1 (a), we can also observe that there are slight
differences between these four patterns, where the average
number of arrival EVs in July is the highest and that in
December is the lowest. The reason is that people may travel a
lot or constantly use air conditioners in the vehicles in summer,
while they travel less in winter.

EV charging demand profile: When an EV arrives, we
need to know its charging demand before it departs from the
charging station. To obtain the EV charging demand profile,
we calculate the CDF of EVs’ charging demand, as shown in
Fig. 1 (b). We see that 99% of the EVs have a charging demand
of less than 10kW, which indicates that EVs are mostly used
for short distance commute. This finding holds true in practice
because EV’s battery may not be sufficient to support long
distance travels. Another reason is that the charging stations
are not widely distributed, which may limit the usage of EVs
only in a small area, such as the downtown area of a city.

EV duration pattern: To satisfy the charging demand, the
charging station operator can either choose to immediately ful-
fill the requirement using fast chargers or optimally schedule
the charging tasks by flexibly allocating the charging time
and adjusting the charging rate. For example, for the EVs
having requirement of a short charging time, the expensive
fast charger may be applied; while for the EVs that stay in
the charging station for a long time, the operator may defer
their demands to a later time or use a slow charger (which
is less expensive), as long as the EVs can get their charging
demand satisfied before their departures. In Fig. 1 (c), we plot
the average charging duration of EVs over 24 hours. We see
that the average duration is relatively stable, ranging between
40 and 65 minutes. Therefore, in our modeling and simulations
(to be presented in Sections III and V), we assume that all EVs
must have their charging demands satisfied within an hour
upon their arrivals!.

III. SYSTEM MODEL

In this section, we present the system model for the EV
charging station planning problem. We consider a typical EV
charging station that receives supply from the power grid and
local renewable generations to serve the EV charging demand.
We assume that the charging station has been equipped with
superchargers, and thus focus on the investment in renewable
energy generation. We consider both solar and wind gener-
ations as candidate renewable energy technologies’. The de-
mand side consists of a set of EVs denoted by N' = {1, ..., N}.

'We will consider the flexibility of charging demand in our future work.
2We did not present the results when an energy storage unit is co-located
with renewable generations, due to page limit.
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The operator of the charging station determines the optimal
capacities of renewable energy for the entire planning phase
and the optimal power scheduling in each day.

Note that the optimization problem is challenging due to
the fact that (1) the operator needs to jointly optimize both
planning and operation in two different time scales, and (2)
the capacity investment and operational decisions are highly
coupled. We denote the planning phase as D = {1,...,D},
which includes D days in total. For each day d € D, we further
divide it into 7" = 24 hours and denote the daily operational
horizon as 73 = {1, ..., T'}. To model the decision process of
planning and operation, we formulate a two-stage stochastic
program. Specifically, the operator determines the capacities
of solar and wind energy generations in the first stage. Once
the capacities are installed, in the second stage, the operator
schedules the power supply from renewable generations and
the grid to serve the aggregated EV charging demand.

A. EV Charging Demand

Since the charging station serves many EVs at the same
time, the operator is interested in characterizing the aggregated
behaviors of EVs. Based on the data analytics in Section II,
we see that the EV behaviors exhibit periodic patterns on a
daily basis. To capture the EV patterns on different days, we
call each daily EV pattern (e.g., EV arrival rate) as an EV
scenario, denoted by w.. Each EV scenario is associated with
a realization probability 7, . All the EV scenarios form an
EV scenario set (2.

We denote the number of arrival EVs over a day as n“¢ =
{n¥et Vw,,t}. The number of arrival EVs varies over a day
as shown in Fig. 1 (a). We assume that the charging demand
of EVs satisfies the same distribution, as depicted in Fig. 1
(b). We denote [; as the demand of EV 7 and the associated
probability density function is p(l;). As shown in Fig. 1 (c),
EVs will depart in an hour and thus the charging station needs
to charge the arrival EVs in current time slots. Therefore, we
can calculate the aggregated EV charging demand in time slot
t and scenario w, by:

Lot = noet N " p(l)li, Ywe € Q, V€ Ty,
ieN
and we denote the demand vector L¥ = {L¥t Vt € Ty}

B. Power Supply in the EV Charging Station

To meet the EV charging demand, the charging station can
use its local renewable generations and the grid power. In this
paper, we consider both solar and wind energy generations.
We calculate the energy generations based on realistic meteo-
rologic data [14], [15], since solar energy generation and wind
energy generation heavily depend on the solar radiation and
wind speed, respectively.

We call each daily renewable energy generation (consisting
of both solar energy generation and wind energy generation) as
a renewable energy scenario, denoted by w,.. Each renewable
energy scenario is associated with a realization probability
T.,.. All the renewable energy scenarios form a scenario
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set denoted by ().. We use realistic data from [14], [15]
to numerically model the distribution of renewable energy
generation. Specifically, we denote P¥r = { Pt Vt € T}
and Por = {P%~t Vt € T} as solar and wind generations
per kWh capacity of installed solar panel and wind turbine
in scenario w, € (),.. Given the solar energy capacity o
and wind energy capacity «.,, the total renewable energy
generation in the charging station is

Ps“’“tozs + P;‘j“togw.

In each scenario w, and time slot ¢, the charging station
needs to schedule the renewable power supply, grid power
procurement to meet the aggregated EV charging demand.
The renewable power supply p¥r = {p¥! Vt € T3} and
grid power procurement pi” = {p'*, Vt € Tg} satisfy the
following constraints:

0 < pert < Portag + Perta,, Vit € Ty, (1)
0 <pyrt < Pyt e Ta, 2)

where constraint (1) restricts the renewable power supply but
allows the charging station to curtail renewable generation.
Constraint (2) specifies that the charging station can purchase
power from the grid to meet the EV charging demand but is
upper-bounded by the line capacity P.

IV. PROBLEM FORMULATION AND SOLUTION METHOD

After modeling the EV charging demand and power supply,
we formulate a two-stage stochastic programming problem for
the optimal planning for the charge station. We first present
the problem formulation in the second stage.

A. Daily Operation in the Second Stage

We define a joint scenario set over EV scenarios and re-
newable generation scenarios, i.e., Q) = {w = we X w,., Yw, €
Qe, w, € Q.}. In each joint scenario w € ) and time slot
t, the charging station needs to balance the power supply and
EV charging demand as follows:

Pt Pt =Lt Ve Ty (3)

The cost of grid power production is modeled as a quadratic
function [16]:

Cy(p2) =B, Y (021)7,

teTq

where 3, is the coefficient of the production cost.

We assume that the marginal operational cost of producing
renewable energy is zero. Therefore, the charging station will
utilize renewable energy generation as much as possible. If the
total renewable generation can meet the EV charging demand,
ie., PYtag + Ptay, > L@, then the charging station does
not need to purchase grid power, i.e., p°gJ7t = 0. Otherwise, the
charging station will use up all the renewable generation, and
purchase grid power to compensate the local power deficit.

The charging station operator coordinates power supplies p”
and p to minimize the daily operational cost in the second
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stage. We state the operational cost minimization problem in
scenario w:

P2: Operation Cost Minimization in the Second Stage
min Cy(p?
pY ,p‘; g (p g )
subject to  Constraints (1)-(3).

Note that the minimized operational cost depends on the
capacities of solar energy and wind energy generations and
thus we denote the minimized operational cost as a function
of oy and oy, In scenario w:

flas, ay,w) = min Cy(py). 4

28 244
B. Capacity Planning in the First Stage

In the first stage, the charging station operator needs to
decide the capacities of solar energy and wind energy for
the planning phase. The planning decision in the first stage
will determine the operational cost in each day of the second
stage, and the charging station must incorporate the impact on
operational cost in the planning decision.

Denote ¢, and ¢, as the unit investment costs for solar
energy and wind energy, respectively. Therefore, we have the
total investment cost as

CI(asv aw) = CsQls + CyQlyy (5)

The minimized daily operational cost is a function of
the invested capacities as shown in (4). The expected daily
operational cost over all scenarios can be written as

Eweﬂ [f(asa awaw)} = Z Wwf(asv awvw)v (6)

wenN

where 7,, is the realization probability of scenario w.
Usually, the charging station has set a budget for the
planning, and thus we model the budget constraints as:

CsQs + Cpouy < B, (7N
as >0, a, >0, (8)

where (7) ensures that the total investment cost is no larger
than the budget B.

The objective of planning is to minimize the overall cost,
inclucing both instant investment cost (5) and accumulative
expected operational cost (6) over all the entire planning phase.
Hence, we formulate the overall cost minimization problem in
the first stage as:

P1: Overall Cost Minimization in the First Stage

min
s, 0y

Cl(asv aw) + Z EwGQ [f(as» Qs W)]
deD
subject to  Constraints (7) and (8),

where ), Euea [f(as, aw, ae,w)] denotes the total ex-
pected operational cost under all scenarios w € 2 over the
entire planning phase D.
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C. Problem Reformulation and Solution

To solve the two-stage optimization problem for the charg-
ing station planning, we can reformulate the two-stage opti-
mization problem into a single-level overall cost minimization
problem. Specifically, the two-stage optimization problem in
P1 and P2 is equivalent to the following single-level optimiza-
tion problem EP1:

min (csas + Cpouy) + Z Z 7,Cy(Py)
deD wel
subject to  Constraints (1)-(3), (7) and (8),

Varaibles: a5, aw, {py,py,Yw € Q}.

Since the charging station knows the scenarios of EV
charging demand and its local renewable generations, it can
solve the equivalent problem EP1 in a centralized manner. The
problem EP1 is a convex quadratic program and can be solved
by standard convex optimization techniques [17].

V. SIMULATION RESULTS
A. Simulation Setup

In the simulation, we consider a 10-year planning phase
and use the realistic date of renewable energy scenarios and
realization probabilities from [15]. We set 8, = 0.01 and
budget B from 0.1 to 0.8 million dollars. The unit costs for
solar energy and wind energy are set as ¢, = $3000 per kW
and ¢,, = $2000 per kW, respectively.

B. Simulation Results

We first study the optimal planning strategy under different
budgets. The optimal mixed investment in solar energy and
wind energy is depicted in Fig. 2. When the budget is 0.1
million dollars, the optimal investment portfolio only consists
of solar energy. This is because the solar energy profiles fit the
EV charging demand better than the wind energy. When the
budget increases to 0.4 million dollars, the investment in wind
energy becomes greater than the investment in solar energy.
This is because the wind energy is complementary with solar
energy and the cost of wind energy is lower. When the budget
increases to 0.7 million dollars, the investment cost remains the
same, since the capacity investment has achieved the optimal
value.

200

‘-Solar energy IllWind energy‘

Invested Capacity (kW)

01 02 03 04 05 06 07 038
Investment Budget (million dollars)

Fig. 2: Optimal planning under different budgets.
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We also show the minimized costs under different budgets in
Fig. 3. We can see that investment cost increases steadily with
increasing budgets. When the budget is larger than 0.7 million
dollars, the system already achieves the best performance and
thus the overall cost does not decrease. Compared with the
benchmark case without investment in renewable energy and
energy storage, our planning strategy can reduce the operatonal
cost and overall cost by 49.1% and 31.2%, respectively.

Finally, we take a deeper look and study the optimal
operational strategy in one specific scenario. As shown in Fig.
4, the charging station utilizes renewable energy (from mixed
solar and wind energy) in most of the time slots (during hours
1-18). In the showed scenario, there is no renewable generation
at night. Therefore, the operator purchases grid power at night
to meet the EV charging demand.

VI. CONCLUSION

Given the ever-increasing number of EVs, it is essential to
effectively plan the capacity and schedule the power supply
for the EV charging stations. In this paper, we developed
a holistic framework for the planning and operation of an
EV charging station, taking into consideration the supply of
both the grid and local renewable energy. To capture the
coupled decisions in two phases (i.e., investment and daily
operation), we formulated a two-stage stochastic programming
problem to jointly optimize the capacities of solar energy and
wind energy, as well as the optimal daily power scheduling.
Using realistic EV and renewable energy generation traces,
we demonstrated the optimal planning strategy and showed the
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optimal capacities and optimized costs with respect to budgets.
We also showed the optimal energy scheduling of renewable
energy and grid power in one scenario.

Due to the page limit, we present the results with fixed EV
charging demand and only consider solar and wind energy.
In our extended study, we explore the flexibility of EV
charging demand and develop a smart charging strategy. We
also consider energy storage in the charging station to improve
the utilization of renewable generation and reduce the system
cost.
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