
Assignment I:

Multi-threaded implementation of
PageRank

● PageRank measures the importance of a node i in a graph G as the
weighted sum of the importance of its neighbours.

● Let v be a vector storing the importance of each node
○ v[i] = importance of the i-th node, and elements of v sum up to 1
○ The contribution of each neighbor j is normalized by its out-degree o(j)

PageRank

PageRank

● Note that the above update rule can be rewritten as a matrix-vector
multiplication:

● The above update rule, defines an iterative process:
○ we start from a random vector v0, (v0 sums up to 1, it is a probability distribution)
○ the update rule is applied for several iterations (<=50) until convergence
○ a.k.a. random surfer model

PageRank

● Does it converge?
● Only if the original graph G is irreducible (all states are reachable from any

other state) and aperiodic (no “cycles” of fixed length)
● The Web Graph does not satisfy this criteria (it has dead ends and cycles)
● Solution (leading to the so called Google Matrix):

Teleportation and dead ends removal

○ with probability β we follow M, with probability (1-β) we jump to a random node
○ dead end nodes link to all nodes of the graph

To Be Delivered

● Sequential implementation (C/C++)
● Parallel implementation

○ Multi-threaded std::threads or OpenMP

● Report discussing performance figures of the proposed parallel
implementation
○ varying graphs (small, large, sparse, dense)
○ varying number of threads
○ pdf file, max 2 pages

MH96
Highlight

MH96
Textbox
 در ریپورت باید آنالیز کنید . لازم نیست که page rank را توضیح دهید.

Deadline and Evaluation

● Final Score = 70% written exam +
10% 1st assignment + 10% 2nd assignment + 10% 3rd assignment

● Delivery before March 29:
○ speed bonus +3/30

● Or, delivery at written exam
○ no speed bonus

● Evaluation is based on:
○ report quality
○ code quality
○ depth of analysis

● Oral presentation/discussion, first weeks of April…

MH96
Textbox
 یک فایل زیپ: سورس کد (با گوشیتون عکس نگیرید)و پی دی اف

Implementation

● Datasets:
○ https://snap.stanford.edu/data/index.html
○ You may generate synthetic data by implementing the preferential attachment

algorithm https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model

● Dataset Representation
○ you may represent M as a full square matrix
○ sparse representation I: for each row of M, store non-zero elements by using an

array of node ids, and an array of weights
○ sparse representation II: for each column of M, store non-zero elements by using

an array of node ids, and a single value for o(j)
○ remove dead ends and process them separately

https://snap.stanford.edu/data/index.html
https://en.wikipedia.org/wiki/Barab%C3%A1si%E2%80%93Albert_model
MH96
Textbox
 بهتر است که انواع مختلف گراف را توضیح دهید

Implementation

● Parallelize by partitioning vt+1 into chunks
(and corresponding rows of M)
○ each thread computes a chunk of vt+1

● Is the load balanced?
○ depends on the graph, can we measure this?

● Does the order of the rows impact on the load balancing?
○ do I need to assign to a thread consecutive rows of vt+1?
○ can I further split rows with a large number of neighbors?

● [optional] Parallelize by partitioning M into chunks
○ by rows or columns? depends on the representation…

○ by both rows and columns?

References

● Mining of Massive Datasets
○ Sections 5.1 and 5.2

● Short
○ http://www.plutospin.com/files/OpenMP_reference.pdf
○ https://computing.llnl.gov/tutorials/openMP/

● Long:
○ http://lib.mdp.ac.id/ebook/Karya%20Umum/Portable_Shared_Memory_Parallel_Programming.pdf
○ http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.Examples.pdf

● Compilation
○ Use the –fopenmp flag when compiling !

http://www.plutospin.com/files/OpenMP_reference.pdf
https://computing.llnl.gov/tutorials/openMP/
http://lib.mdp.ac.id/ebook/Karya%20Umum/Portable_Shared_Memory_Parallel_Programming.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.Examples.pdf

Comments

Recommendations:

● Algorithm
○ provide a description of the algorithm you implemented and the data structures

you used
■ in some reports, the algorithm is clear only after looking at the code

● Analysis
○ try to explain where you algorithm performs nicely and when it does not
○ possibly with experiments

■ e.g. “i think it is because of the cache”, then measure the cache performance

Recommendations:

● Implementation and source code
○ think about implementing a library that someone else may easily use

■ clear definition of the “core” functions, e.g. load_graph, compute_something
○ separate the “core” code from the experiments

■ e.g., avoid testing different thread numbers inside the implementation of your
solution

○ avoid hardcoding input files, rather use shell arguments

Recommendations:

● Experimental settings and results
○ clarify the number of cores/processors of your test environment
○ consider using the cluster, as speedup up to 4 cores does not make a lot of sense
○ it is ok to focus on the speedup, please report at least the running time of the

sequential algorithm as the reader might like to know if we are talking about
seconds or hours of computation

○ make sure you compile with -O3 and make this clear in the report

Recommendations:

● Baselines and careful implementations
○ scalability is the focus, but performance is important
○ make sure your implementation cannot be easily improved or it has some major

drawbacks
■ e.g., you touch every cell of a large and sparse square matrix

Recommendations:

● Analysis
○ clarify what you are optimizing

■ e.g., “i’m optimizing step X which takes 90% of the total computation”, and
support with experiments

○ Consider and evaluate different strategies and different data structures

● Experiments
○ clarify what you are measuring and motivate

■ e.g., “when computing the speedup, i’m not including the loading time
because…”

MH96
Textbox
 فقط بعضی از قسمت ها که مهم تر هستند را optimize کنید لازم نیست همه را optimize و paralleize کنید

Recommendations:

● Analysis
○ most of the times poor scalability is due to load imbalance
○ measure the load (size of input data) or the running time of each task/thread
○ evaluate strategies to reduce load imbalance

■ e.g., different order of the tasks, different granularity, split larger tasks, merge
smaller tasks

Recommendations:

● Report
○ think at the report as a book
○ be careful with everything
○ make sure you use the right terminology when relevant and avoid ambiguities

■ e.g., if you use a std::vector do not say you are using a list

