
Quasi-Newton methods for large-scale linear programming

immediate

February 12, 2024

Abstract: In general, the application of general algorithms does not apply to solving large-scale linear
programming. Currently, there are several researches in the development of special algorithms for certain
groups of problems. Researchers present a variety of algorithms with special features for each one, by using
different methods. In this thesis, a no-precise Newton algorithm for optimizing with equality constraints
on large scales presents by Beard et al., is studied. Often the linear searching methods for non-convex
optimization need Jacobean analysing of constraints or elementary-dual matrix. In this approach, those
directions are accepted that sufficiently reduce topical approximation of a precise penalty function. This
method is free of analysing any matrices. In the Mangasarian Newton method with an external penalty
function, a no-limited non-linear optimization problem (a second-order segmented convex function) is formed
that is equivalent to the main linear programming problem. Also shows that the minimizing problem of this
function is the same optimization condition with the minimal norm of the dual problem. The result of
optimizing this function is the result of dual and thereby, primal problems. In this method, the normal
result (base) of the linear problem is obtained.

Keywords: Lagrangian method, Optimal Solution, Simplex method, Newton’s method, Reduced Hessian,
Mangasarian method.

1 Introduction

Today, the optimization concept is accepted as a fundamental principle in analysing many of complex deci-
sions or allocation problems. By applying optimization concept, it would be possible to study on a complex
decision problem includes determining values for many related variables by focusing on unique objective that
is the direction of qualitative and quantitative measurement and evaluation of plan. This unique objective
will be minimum or maximum considering the problem constraints and conditions. It would be possible
to make a framework for analysing and study through optimization if can separate an aspect of problem
or determine an objective (goal). This objective can be the benefit or loose in business, speed of distance
in physics and etc. Therefore, can conclude that the proper formulation of problem is the first step or in
other word, the most important step in optimization process. After formulation of model, an optimization
algorithm can be used to find its answer. Unfortunately, there is no comprehensive optimization algorithm
but there are many algorithms that each are proper for specific problems. Determining the proper algorithm
is an important choice, because it determines the speed of solving the problem or either there is no answer.
After applying an optimization algorithm for a model, we should be able to determine the success of the
considered algorithm in finding the answer. In many conditions (states), in order to check that the current
answer set is the same problem answer, there are conditions as optimum conditions. There are many studies
on a large scale field also many researchers discover specific methods to analysis those problems. A group
of those studies are related to solving linear problems in large scale. This thesis aims to study research
in this field and develop a semi-Newton based algorithm. There are many algorithms to solve linear pro-
gramming. By advancing computation technology, researchers are always seeking more efficient algorithms
to solve linear programming. The Simplex method by Dantzig.B George in 1974 is introduced to solve the
linear programming problems [7]. This method of solving linear problems is a valuable algorithm. Since the
introduction of Simplex method, many modifications and editing have been applied to increase the efficiency
of this method. After introducing of this method, the time complexity was the subject. Khachiyan 1979
presented an algorithm for solving the linear problem through oval method [2]. The results of Khachiyan
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are also used in hybrid optimization. For many years, there was not any correct inference of Khachiyan
results.The Oval method was good enough in theory, but its computational results were not able to compete
with Simplex algorithm. In 1974 Karmakar introduced a new group of algorithms named inner point. Its
computational results showed that it is better than the Simplex method [1]. Since the introduction this
method, there have been many modifications and adjustments to this method. Each iteration of inner-point
is computationally costly but getting an optimum answer is satisfactory, in other hand, Simplex method
has more iteration to reach optimum answer. These two methods are different in getting answers. The
inner-point method moves from inside to outside of feasible region to get optimum answer on the border of
feasible region. In Simplex method in each iteration, moves from each point on multidimensional feasible
region to optimum answer. Theoretically,the Simplex method can solve any type of linear problem, but
for large-scale problems,the above algorithm has weak performance and cannot solve this set of problems
in reasonable time [4]. Many studies have been done in the field of solving linear programming where all
developed algorithms are numerical algorithms. In large-scale, the performance of normal algorithms for
solving linear problems are very different. Increasing variables and constraints leads to lack of memory for
optimization algorithms and thereby, increasing computational time. Sometimes, the computation of the
initial start point would be very difficult. Therefore, in recent decades, researchers have tried to introduce
numerical optimization algorithms for solving linear programming problems.

This article is organized as follows. In the next section,in Armijo rule an approach for its linear search
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selects as step size. In section 3, is focus on for solving optimization problems, an algorithm is used that
generates a sequence of points to converge towards a solution. The optimal solution is reached by this
algorithm.Comprehensiveness, reliability, novelty, and sensitivity to parameters and data provide us with
an efficient algorithm for addressing problems. In part 4 we explain about Newton’s method on solve liner
programming, the linear search process starts from an initial point and moves along it in the created direction
towards the maximum or minimum of the objective function. At the new point, a new direction is set and
the process is repeated. In general, after finding a new point, the process continues until reaching the
stopping point. in Section 5, an external penalty function is described. Furthermore, penalty function-based
methods transform a constrained problem into an unconstrained or a sequence of unconstrained problems.
Constraints are incorporated into the objective function with a penalty parameter, such that violations
of constraints result in a penalty. In section 6, we discuss the extended Newton method by Mangasarian
where the reduction direction in Newton algorithm has high efficiency and the amount of function decline
is considerable. Those set of imprecise Newton methods where approximate solution of Newton equations
with some arbitrary methods are considered is derided in section 7. Moreover,in this section we elaborated
on the concept of the descent condition, which aims to determine when the obtained decrease in a local
approximation is sufficiently large for a given step. An imprecise Newton method based on model reductions
is shown in section 8. Static tests 1 and 2 are the ones that should be fulfilled in the condition of the reduction
model, and the stages present in this tests are the ones that are directly valid in the condition of the reduction
model are presented in sections 9 and 10. In part 11, explained about Hessian modification strategy and
when we use it that, wk should be modified if and only if computed step is not holds in static steps 1 and 2. In
section 12, an approximate algorithm INS using an unbounded matrix for solving constrained optimization
problems has been presented in which method, approached delves into optimizing a local function based on
stability tests for reduction. Additionally, the correction of the Hessian matrix in iterative calculation step
has been proposed and demonstrated. Moreover, a global heuristic algorithm has been applied to first-order
optimal points, and its effectiveness has been examined and tested on various problems. INS Algorithm is
derived in section 13. Finally, Implementing imprecise Newton method for non-convex optimization with
equality constraints and tables are presented in sections 14 and 15.

2 The Armijo rule

According to Armijo rule due to costly computation of function it is not possible to use a precise linear
search. Therefore, the optimization methods normally use a sufficient precise linear search that guarantees
the reduction in objective function. Assume that we want to minimize the differentiable function f : Rn → Rn
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in point
−
x and d is a reduction direction. Define the linear search function θ : R→ R for λ ≻ 0 as follows:

θ(λ) = f(
−
x+λd)

Then assume first order approximation θ in λ = 0

θ(0) ̸= λθ′(0)

θ(λ) = θ(0) + λ
−
ε θ′(0)
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selects as step size.

3 Algorithms

Algorithm means a solution of a problem as an iterative process that should have following three conditions:
1. be step by step.
2. each step be free of ambiguity.
3. has termination condition.
Mathematically, it is possible to show an ambiguity-free command by mapping. So, an algorithm is a

mapping as:
A : X → 2x

xk → xk+1 ∈ A(xk)

4 Newton method to solve linear programming

The developed Newton method by Mangasarian is presented and is convergent for the set of problems where
the number of constraints is more than variables [6]. This method can find the answer with minimum norm
for linear programming problem. This method uses of external penalty function of elementary problem with
minimum norm for secondary problem of linear programming Assume that the primal problem is:

min cTx s.t Ax ≤ b (2)

x ∈ Rn

where A ∈ Rm+n, b ∈ Rm and c ∈ Rn. Consider that decision variables of this linear programming model
are free-sign and secondary model of above programming model is:

max
u∈Rm

−bTu = min
u∈Rm

bTu (3)

s.t ATu+ c = 0, u ≥ 0

Here the parameter modelling of an external penalty function with a fixed penalty parameter ε as a minimum
problem is

min f(x)

x ∈ Rn
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where f is a penalty function as:

f(x) = min εcTx+
1

2
||(Ax− b)||2 (4)

x ∈ Rn

When the penalty parameter ε tends to zero, then the answer of equation (4) tends to the answer of linear
programming [6]. If assume inf fp as the largest limit of p if inf fp is a real number, then the primal linear
problem (also dual problem) has non-empty solution set. Now assume L = inf{bT v : AT v + c = 0, v ≥ 0} as
optimum answer of dual problem. We can get optimum answer of minimum norm for secondary problem as:

min
1

2
vT v (5)

s.t bTu = L, AT v + c = 0, v ≥ 0

Normal and standard method to find optimum answer of minimum norm for convex programming is based
on Tikhonov simplification.This simplification creates vk sequence where vk is the answer of following pro-
gramming [5]

−min(bT v +
ε

2
vT v) (6)

s.t AT v + c = 0, v ≥ 0

Optimum answer of minimum norm for secondary problem for each ε with ε ∈ [0,
−
ε] is from the set of dual

answers as objective function of this problem is convex then the answer of this problem
−
v is unique [3, 5].

The necessity and sufficiency conditions Karush-Kuhn-Tucker for model(4) states that there is y ∈ Rn if:

εv ≥ 0, εv − b−Ay ≥ 0, (7)

εvT (εv − b−Ay) = 0, AT v + c = 0

In other words:
εv = (Ay − b)+, AT v + c = 0 (8)

According to (8) we can conclude that:

v =
1

ε
(Ay − b)+,

AT (Ay − b)+ + εc = 0.

By defining f(y) in form of (4) optimization conditions for equation (5) for minimum norm of dual problem
is :

v =
1

ε
(Ay − b)+, (9)

∇f(y) = AT (Ay − b)+ + εc = 0.

Or it can be said in a more complete method

v =
1

ε
(Ay − b)+ (10)

y ∈ arg f(y) = argmin εcT y +
1

2
||(Ay − b)+||2 (11)

y ∈ Rn

Precisely is the necessity and sufficiency condition for positivity of minimum answer of external penalty
function f(y) for primal linear programming (2) for each penalty parameter ε.
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5 External penalty function.

Unique answer for minimum norm of dual problem in linear programming (2) obtains from

v =
1

ε
(Ay − b)+, (12)

Where the following optimization problem is the answer of primal basic problem:

min f(y) = εcT y +
1

2
||(Ay − b)+||2 (13)

y ∈ Rn

Consider that function gradient is as follows:

∇f(y) = AT (Ay − b)+ + εc (14)

We can define generalized Hessian with many features of basic Hessian. Following Hessian matrix is positive
sub semi-definite

∂2f(y) = AT diag(Ay − b)∗A
Where diag(Ay − b)∗ refers to a diagonal matrix m × m with diagonal arrays Aiy − bi. step function
(.)∗ is defined in introduction. Matrix ∂2f(y) is used to produce Newton directions. Generally, use Newton
method for determining optimum value of differentiable and continues functions. Newton reduction direction
of second order expansion is obtained from Taylor series:

f(xk + d) = fk + dT∇fk +
1

2
dT∇2fkd = mk(d) (15)

If assume that ∇2fk is positive-definite, by selecting vector d that minimizes the mk(d) ), Newton direction
obtains. By putting zero the derivative of function mk(d), Newton direction in kth iteration (dnk ) would be
defined as follow:

(dnk ) = −∇2f−1
k ∇f (16)

When the difference between function f(xk+d) and its second order modelmk(d) is not big, Newton direction
is most trustworthy. Comparing above results and Taylor theorem shows that only difference between these
is in third sentence where matrix ∇2fk is replaced with ∇2f(x+ td).

We can use Newton direction in time linear search where ∇2fk is positive-definite. We will have:

∇fTk dNk = −dNT

k ∇2fkd
N
k ≤ −σk||dNk ||2 (17)

−σk is in fact Armijo step size in kth iteration. In order to use Newton direction to solve non-constraint
optimization problem (11) we should apply the same function.

d d is the adjusted Newton direction:

d = −(δI + ∂2f(y))−1∇f(y) (18)

Where δ is a small positive number. This adjust ability is due to making possible to use this matrix when
Hessian matrix is singular. By using this direction and the size of different steps, we can proof the global
convergence. The critical practical computational point about this direction is global convergence for a
class of linear programming problems where the number of constraints is much more than the number of
its variables. Its start point is arbitrary and is free of computing the step size. Precise answer of minimum

norm
−
v for dual linear programming is computed by primal problem of external penalty for ε ∈ [0,

−
ε] and

then by using (10) unique answer of minimum norm
−
v . We can use the precise answer of dual to obtain

the answer of primal linear programming problem. So we must solve equally, the set of linear programming

equations related to positive arrays
−
v .

Ajz = bj , j ∈ S, S = {j| −vj ≻ 0} (19)
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It should be considered that this linear equations system always has answer based on the result of auxiliary
conditions of equation (5)

Ajz − bj = 0,
−
vj ≻ 0} (20)

In fact, leads to obtain the answer of primal linear programming problem by considering following assumption:
The columns of matrix Ak are linear-independent. So this presumption that gradually points to unique-

ness of primal optimum answer is sufficient but not necessary to produce primal answer.

6 Newton algorithm to solve linear programming problems

The presented algorithm includes solving the problem (11) for approximate answer y, computing precise

answer minimum norm
−
v for dual linear programming from (18) and finally, computing answer z for primal

programming problem is from (2). Equation (5) is used to guarantee the global convergence, Armijo step
size. Also, we should consider the linear independence assumption for precise answer of minimum norm of
linear programming problem.

The steps of Newton algorithm to solving linear programming problem is:

yi+1 = yi + λid
i

λi = max
{
1, 1

2 ,
1
4 ,

1
8 , . . .

}

di = −
(
δI + ∂2f(yi)

)−1

∇f(yi)

f(yi) − f(yi + λid
i) −λi

4
∇f(yi)′di

v =
1

ε
Ayi+1 − b

)
+

Ajz = bj ; S = {j | vj > 0}

yi+1 = yi + di

i = i + 1

‖yi+1 − yi‖ tol
Yes*

End

Start

No

* (tol is considered to 10−4, 10−1 and 10−12)

Figure 1: Newton Algorithm.

In this paper we discuss the extended Newton method by Mangasarian where the reduction direction
in Newton algorithm has high efficiency and the amount of function decline is considerable (11) Another
advantage of Newton algorithm is stabling the step size of reduction direction (18)that prevents computing
the value of objective function (13) and minimizes the number of approximations for objective function
gradient. The minimum reduction direction of Newton leads to minimizing the time of solving problem
and the number of iterations to obtain optimum answer. But the Newton algorithm is sensitive against
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start point and the convergence speed of this method is efficient when start point is sufficiently close to the
optimum point.

7 An imprecise Newton method for non-convex optimizing with
equality constraint

As stated before, Newton is a classic algorithm for solving a non-linear system of equation that in large scale,
computing the exact answer of Newton system (if existed) by using the Gauss removal method, is costly
and so using the repetitive solving method to approximately solve the Newton system become reasonable.
Therefore, imprecise Newton methods presented by Styhawke and Co-workers where in each iteration, needs
approximate answers of Newton equation. In this chapter, we describe imprecise Newton methods and
shows that how use them to solve non-linear system of equations; in under study approach in this chapter,
those directions are accepted that make sufficient reductions in topical approximation of a precise penalty
function. This approach uses repetitive solution methods of generalized minimum residuals GMERS for
solving initial-dual systems. Although, we can use some other repetitive methods [8].

7.1 Introducing imprecise Newton methods

Initially we will give a brief description about the imprecise Newton method. A distinctive feature of Newton
method is that based on any initial proper and sufficient guess, would be converged and thereby, a linear
system in each time iteration with large variables could be costly. Therefore, those set of imprecise Newton
methods where approximate solution of Newton equations with some arbitrary methods are considered [9,10].
those set of imprecise Newton methods where approximate solution of Newton equations with some arbitrary
methods are considered is devrived in section 6.

7.2 Reduction condition of model

Assume that θ ≥ 0 and (dk, δk) is an imprecise answer for following equation

[
wk AT (xk)

A(xk) 0

] [
dk
δk

]
= −

[
g(xk) +A(xk)

c(xk)

]
(21)

if and only if 0 ≤ σ ≤ 1 and for proper πk we have:

∆mk(dk, πk) ≥ max

{
1

2
dTkwkdk, θr

}
+ δπk max{||ck||, ||rk|| − ||ck||} (22)

and rk is defined according to the following relation. Where rk is defined in

[
wk AT

k

Ak 0

] [
dk
δk

]
= −

[
gk +AT

k λk
ck

]
+

[
ρk
rk

]
(23)

Finally, we present important results that is critical for our analysis in convergence section. If direction
derivative of penalty function ρ(xk, πk) in xk and in dkdirection presents with Dρ(dk, πk) then we have

Dρ(dk, πk) ≤ gTk dk − πk(||ck|| − ||rk||)
= −∆lk(dk)− πk∆||rk(dk)||
= −∆mk(dk, πk) (24)

So, a step that satisfies (holds) model reduction condition would be the reduction direction for penalty
function ρ(xk, πk) in xk you can see [11].
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8 An imprecise Newton method based on model reductions

In this section, a complete algorithm for non-convex optimization based on sufficient reduction in topical
approximation of a merit function is described. First, a test step (dk, δk) is computed that satisfies (holds)
dual-primal equation (21). if the condition of reductive model satisfies (holds) for maximum recent value
in penalty parameter π, then call it πk−1 and consequently accept this step and assume that πk−1 ⇒ πk
and continue the iteration, else, due to obtaining a reduction in constraint model (see [12]), consider the
increasing of π for fulfill the condition of reductive model. Any way this should be done in both states. In
other hand, if 1

2d
T
kwkdk ≥ θrk then assume that the problem if sufficiently convex and therefore,(dk, δk)is

acceptable and π must be increased. Also, if 1
2d

T
kwkdk ≤ θrk then we just consider the increasing of π if vk

be a considerable part of dk (like when normal step in sufficient). Therefore, condition r ≤ φrk states for
some φ ≻ 0 where:

0 ≤ vk ≤ ||vk||2 (25)

(Where every lower band for square norm is from normal step component). If any above mentioned ap-
proaches for trust in properness of reductive model condition for every πk−1 ≺ πk are not efficient, then
we will have no other choice unless we have changes in step computations by modifying wk. When such
a modification is applied, we compute a new test step by modifying dual-primal equations and iterate the
above steps to acceptable level. In imprecise state, we merge this process with added constraints for residual
in (23) Then we introduce static tests where we can introduce each two tests as a generalization of static
test approximation reduction of merit matrix (in brief, SMART Tests) [13].

9 Static test 1

Assume σ ≤ 0, k ≺ 1 and θ is in reduction model condition. Step (dk, δk) is acceptable if reductive model
condition satisfies πk−1 = πk and [

ρk
rk

]
≤ k ∥

[
gk +AT

k λk
ck

]
∥ (26)

Steps in static test 1 are the same steps that directly satisfies(holds) reductive model condition. There is no
need to change penalty parameter or modify the step computation (we will describe in next sections).

10 Static test 2

Assume 0 ≤ ε ≤ 1, β ≥ 0 and φ and θ is in reduction model condition. step (dk, δk) is acceptable if:

||rk|| ≤ ε||ck||, (27)

||ρk|| ≤ β||ck|| (28)

And
1

2
dTkwkdk ≥ θrk (29)

or
φvk ≥ rk

Satisfies (holds) for rk, (ρk, rk) and vk that are defined by (23),(25) Steps that satisfy(hold) the static test
2 do not necessarily satisfy(hold) the reductive model condition for πk−1 = πk

In order to update penalty parameter, we need following:

πk ≥
gTk dk +max{ 12dTkwkdk, θr}

(1− r)(||ck|| − ||rk||
∼= πtrial

k

Where 0 ≺ r ≺ 1. Considering this inequality and through equations (27) shows that:

∆mk(dk, πk) ≥ max

{
1

2
dTkwkdk, θr

}
+ rπk(||ck|| − ||rk||)

+max

{
1

2
dTkwkdk, θr

}
+ r(1− ε)||ck|| (30)
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Therefore, this step satisfies (holds) reductive model condition for σ = r(1 − ε). In fact, to balance static
test 1 and static test 2, we assume that σ = r(1 − ε) is selected and finally, Hessian modification strategy
implements to modify the step computations. A modification technique wk is increase some or all especial
values to close resulted matrix to positive definite. For example, if f includes a regression parameter then
this parameter can raise. wk can replace with positive half-definite semi-Newton approximation or a positive
half-definite added to wk to get final matrix named

∼
wk −wk ≻ µl that holds for some µ ≻ 0.

11 Hessian modification strategy

Assume that wk is current Hessian approximation and θ, σ and φ in sufficient reductive model and static
test 1 and 2 and (dk, δk) given test step if (dk, δk) holds in following equation:

∆mk(dk, πk−1) ≤ max

{
1

2
dTkwkdk, θr

}
+ σπk−1 max {||ck||, ||rk|| − ||ck||}

+

{
1

2
dTkwkdk

}
≤ θrk and φvk ≤ rk (31)

Therefore, wk is modified otherwise, we will keep current wk. (Also, after definite number of modifications,
wk ≥ 2θ) is assumed. This update is possible by viewing a state where primal-dual equation is solved directly
(21). Like this state, wk should be modified if and only if computed step is not holds in static steps 1 and
2. In this state, it is clear that (ρk, rk) = 0 and therefore (26) and (27) are held. Anyway, it should be
considered that under these conditions of strategy, definite number of modifications during kth iteration are
feasible and wk ≥ 2θI shows that ||vk|| ≤ y2(||ck|| − ||rk||) does not hold. Finally, to compute acceptable
step, we have a reversible searching route on merit function ϕ(x, πk) where step size αk in following Armijo
condition holds for some η ∈ (0, 1).

ϕ(xk + αkdk, πk) ≤ ϕ(xk, πk) + ηαkD(dk, πk) (32)

||gk +AT
k λk||∞ ≤ 10−6 max {||g0||∞, 1} (33)

12 Computing step of INS algorithm

Assume that wk = ∇2
x.Lk, (d0, δ0) = 0, j = 0 and loop starts. µ = 10−4

while j ≤ n+ t

Then put,
j = j + 1

� Run iteration GMARES from equation (21) to compute (dj , δj).

�from ∥Akd||2
||Ak||d → v and ||d||2 − ∥Akd||2

||Ak||d → r, compute rj and vj .

� if static test 1 and static test 2 are held, stop.

� If (dj , δj) holds in ||vk||2 ≤ y1 max {||ck||, ||rk||} , ||vk||2 ≤ y2 {||ck|| − ||rk||} .

and vk ≤ ||AT
k (Ak−AT−1

k )||(||ck||+||rk||). Then we assume that j = 0, wk = wk+µI, (d0, δ0) = (dj , δj)
, µ = 0 and loop terminates.

� We have also a return such that (dj , δj)→ (dk, δk), and (rj , vj)→ (rk, vk).
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13 INS algorithm

This algorithm is showed as a flowchart in figure 2.

πk−1, λ0, τ 0

k = 0

πk ← πk−1

Calcluate (dk, δk)

Static test 1, 2

Hessian Reform strategy

πk ← πtrial
k + 10−4

k = k + 1

Enter:

σ ← τ(1 − ε), θ, β, ε, z, ψ > 0, k > 0, η < 1

Wk, fk, gk, ck, Ak

Calcluate (νk,Υk)

Again Calculate Wk

The static test 2 is in progress and

is no available

πk

gTk dk + max{ 1
2d

T
kWkdk, θΥ}

(1 − r) ‖ck‖ − ‖rk‖
) ∼= πtrial

k

(xk+1, λk) ← (xk;λk) + αk(dk, δk)

Calculate αk from below equation, αk ← 1

φ(xk + αkdk;πk) π(xk;πk) + ηαkD(dk, πk)

Yes

Yes

No

No

Figure 2: INS Algorithm
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14 Implementing imprecise Newton method for non-convex opti-
mization with equality constraints

INS algorithm is presented in MATLAB software. Here we noted some issues about implementing algorithm
and time order of running its steps and then describe its performance on different sets of experimental
problems. A general guide for selecting parameters k, ε, β, τ and σ is given in [11]. Generally, parameters
k, ε, β can have considerable effect on algorithm convergence speed and preferably should be implemented
separately for each program. For instance, see[14]. For INS algorithm residuals entrance, do the following
selections. First, do wk as precise Hessian Lagrange for all k and then an approximate value θ,during each
iteration recommended as:

10−8 max {||wk||, 1} → θ. (34)

Our acceptable conditions are independent from f, c. For ψ ,approximate value is considered between 0 and
1. A step is sufficient step if ||uk||2 is equivalent to ||vk||2. Estimated values are applied for these data
(values). Table 3 shows a complete list of parameters in our implementation.

Also, we need the two following equations for stop criteria of external loop of INS algorithm, 2.

||ck|| ≤ 10−6 max {||c0||∞, 1} (35)

This algorithm will terminate if this equality does not hold after 1000 iteration. Following, a simple technique
is presented to compute lower and upper bounds tangential component u and normal component for primary
step d during iteration k. in fact we have:

||d||2 = ||u||2 + ||v||2 (36)

When Aku = 0 then we have following inequality

||v|| ≥ ||Aku||
||Ak||

=
||Akd||
||Ak||

(37)

According to

min qk(d) ∼= f(xk) + g(xk)
T +

1

2
dTwkd

s.t rk(d) ∼= c(xk) +A(xk)d = 0 (38)

we have

||u||2 ≤ ||d||2 − ||Akd||2
||Ak||2

. (39)

Therefore, considering (37) and (39)we can use the following equation

||Akd||2
||Ak||2

→ v. (40)

and

||d||2 − ||Akd||2
||Ak||2

→ r (41)

That is lower bound for ||v||2 and upper bound for ||u||2. Then by computing step of INS algorithm introduce
it as iteration loop in algorithm.

15 Conclusion

More complex linear programming models and the application of mathematical models to the real world
have increased the scale of linear programming problems. Therefore, designing algorithms that are able to
obtain the answer to a linear programming problem with higher quality and less time is expanding. Many
algorithms are recommended in this field that, according to their structure, have challenges in solving some
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large-scale linear programming problems, while these algorithms theoretically are rich. Computation occu-
pies much memory when applying numerical algorithms on a large scale to solve mathematical programming
problems. Also, it holds for non-linear programming. Selecting and designing algorithms and determining
the linear searching path depends on implementing algorithms, and determining parameters could result in
improvements and upgrades in performance, quality of answer, and time. This paper discusses a Mangasar-
ian Newton method-based algorithm and, in order to upgrade algorithm performance, uses an imprecise
Newton method for non-convex optimization with equality constraints free of matrix analysis. Comparing
computational results shows that the new recommended algorithm has higher performance than other meth-
ods. Computational results for small-scale problems have the same Newton algorithm performance, but for
large-scale problems, the imprecise Newton method can solve problems much faster than other methods.
The recommended method not only can highly efficiently solve the problems that the Newton algorithm,
due to its lack of memory, is not able to solve, but also has higher speed and performance, so it can solve
linear programming in large-scale and higher dimensions.
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