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A B S T R A C T

This paper proposes an order-up-to (OUT) replenishment policy integrated with inventory routing optimization,
formulated as a three-echelon supply chain. The OUT policy is used for raw material purchasing and
transportation from the suppliers to support warehouses. Inventory routing optimization is applied to transport
the raw materials to the main warehouse when required, where manufacturing operations take place.
The optimization problem is solved using a many-objective genetic algorithm. The proposed optimization
framework can be applied to the pharmaceutical industry and to any other highly dynamic industry with
large product portfolios. This paper presents a real-world case in the pharmaceutical industry from Hovione
Farmaciência SA. The performance of the many-objective optimization is compared with a summed single-
objective simplification, showing that while the total cost reduces by using single-objective optimization,
the optimal scenarios offered by the many-objective optimization may provide additional insight to decision-
makers and act as a decision support system, being more inline with the human–machine cooperation trends
of the industry.
1. Introduction

With the Industry 4.0 becoming more commonplace throughout
manufacturing companies, the advent of a new iteration of industry
starts to become an interesting topic of research. This next iteration
of industry sets out to be more human-centric, i.e., with a greater focus
on the cooperation between man and machine, both in physical (e.g.
robotics) and computational terms (e.g. artificial intelligence-based de-
cision support tools) (Breque, De Nul, & Petridis, 2021). Furthermore,
industrial resilience and environmental conscience are two additional
main pillars of this industrial revolution, frequently harnessed by com-
putational strategies that can minimize the unpredictability of the
future via data-driven estimation and aid companies in opting for the
most sustainable choices without great manufacturing impact.

This work tackles a three-echelon supply chain, which includes raw
material suppliers, support warehouses, and main warehouse echelons.
The focus of this work is on balancing stock on each echelon, since
there are costs associated with keeping stock at each level, transporting
stock and purchasing stock, but also serious shortage costs when raw
materials do not arrive at lower level echelons for production on time.
This work is a case study on the pharmaceutical industry, but can be
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applicable to enterprises with extensive manufacturing portfolios and
which require inventory routing management. Nevertheless, the work
is based on data from the pharmaceutical contract development and
manufacturing organization Hovione Farmaciência S.A.

1.1. State of the art

Supply chain management is a widely researched topic, both in in-
dustry and academia. This research deals mostly with some specific top-
ics of SC management, namely inventory routing optimization (layered
warehouses), restocking policies optimization and (many-objective)
optimization for decision support.

1.1.1. Restocking policies optimization
Generally speaking, replenishment (or restocking) policies can ei-

ther follow an order cycle or restocking can take place when needed.
The first is characterized by having a specific cycle time for each
raw material bought from each supplier. According to Bhagwat and
Sharma (2007), the total order cycle time can impact the supply
chain response time and directly influence the satisfaction level of the
vailable online 7 October 2022
360-8352/© 2022 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.cie.2022.108729
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

http://www.elsevier.com/locate/caie
http://www.elsevier.com/locate/caie
mailto:joaoasantos@tecnico.ulisboa.pt
https://doi.org/10.1016/j.cie.2022.108729
https://doi.org/10.1016/j.cie.2022.108729
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2022.108729&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers & Industrial Engineering 173 (2022) 108729J.A.M. Santos et al.

w
e
o
r
t
a
c

1

d
s
r

p
r
t
s
p
v
p
p
L
(
w

j
s
f
s
s
c
t
t
r
p
L
&
f
p
i

p
s
f
o

customer. The latter restocking policy, often called order-up-to policy
(OUT), is characterized by raw materials being purchased when needed
(considering the lead-times required by each raw materials bought
from each supplier). It is a riskier method and more prone to stock
shortages. According to Sustrova (2016), ‘‘a universally suitable model
for inventory management has not been developed, so in each specific
situation, the optimal solution for the inventory model must be found
as a derivative of existing models’’. Different companies in different
industries require different restocking strategies.

Several publications found in academic literature directly tackle dif-
ferent strategies for restocking policies. The subject was first discussed
and mathematically formulated by Harris (1913). The vast majority of
the publications follow either order cycles or an order-up-to policy.

Regarding order cycle-based replenishment policies, most works
suggest their replenishment intervals being adjusted through optimiza-
tion (Adeinat, Pazhani, Mendoza, & Ventura, 2022; Baboli, Fondrevelle,
Tavakkoli-Moghaddam, & Mehrabi, 2011; Huang, Yang, & Wang, 2021;
Kumar & Mahapatra, 2021; Sebatjane & Adetunji, 2022; Zhou, Chen, &
Ge, 2013) or artificial neural networks (Sustrova, 2016). Some of these
works address perishable raw materials (Baboli et al., 2011; Huang
et al., 2021; Sebatjane & Adetunji, 2022). Furthermore, Bakker, Rieze-
bos, and Teunter (2012) review inventory systems with deterioration,
often addressing the replenishment policies of this specific case of
inventory management. Many published works are not directly focused
on the issue of the replenishment strategies, but rather use standard
order cycles for their specific purposes (El Saadany & Jaber, 2008; Hong
& Hayya, 1992; Yu, Huang, & Liang, 2009).

As for OUT replenishment policies, most research done proposes
dynamic policies (Babai, Jemai, & Dallery, 2011; Barron, 2019; Chen &
Disney, 2007; de Oliveira Pacheco, Cannella, Lüders, & Barbosa-Povoa,
2017). Taleizadeh, Niaki, Aryanezhad, and Tafti (2010) consider inde-
pendent time periods between replenishments in an inventory control
system optimization; while not a typical order-up-to replenishment pol-
icy, its core principles end up aligned with the OUT ones. Clausen and
Li (2022) use the empirical risk minimization principle to formulate a
big data driven OUT inventory model, solved through machine learning
algorithms.

An issue frequently associated with OUT replenishment policies
is the bullwhip effect, where peaks and valleys of demand in pro-
duction are echoed and intensified throughout the supply network,
with suppliers often not able to fulfil the demand or doing so at a
premium. This is an extremely undesirable phenomenon since it can
either halt production due to lack of raw materials or increase their
costs. According to Chen, Drezner, Ryan, and Simchi-Levi (2000), the
bullwhip effect happens when demand variability increases along the
supply chain. This also justifies the tendency for the bullwhip effect to
take place with non-cyclical replenishment policies, since these have
a much more unpredictable demand. Some research done in OUT
replenishment policies also address this issue, e.g. Chen and Disney
(2007), Constantino, Di Gravio, Shaban, and Tronci (2013), de Oliveira
Pacheco et al. (2017) and Disney and Towill (2003).

While several methodologies can be followed for effective restock-
ing, different industries often require different replenishment strategies.
Companies with large product portfolios in very dynamic environments
may require adjustable order cycles or even non-cyclical restocking
policies to be resilient against changing conditions. Furthermore, more
complex strategies for determining when to replenish a given raw ma-
terial can be employed nowadays, with computational cost significantly
reducing every year.

1.1.2. Inventory routing optimization
The problem of optimizing the amount of raw materials that are

transported between support warehouses and the main warehouse,
a specific case of inventory routing optimization, is also a widely
researched topic. Theoretically, it is the combination of vehicle routing
2

and inventory management (Coelho, Cordeau, & Laporte, 2014). While d
generally associated with suppliers and the transportation of the mate-
rials to their clients, any transportation of stock from a higher echelon
to a lower falls in this category.

Coelho et al. (2014) provides a comprehensive review of publi-
cations on this topic. The authors classify each article according to
time horizon, structure, routing, inventory policy, inventory decisions,
fleet composition and fleet size (adapted from Andersson, Hoff, Chris-
tiansen, Hasle, and Løkketangen (2010)). According to the proposed
classification, this problem can be classified as shown below.

• Time Horizon: Finite
• Structure: Many-to-one
• Routing: Direct
• Inventory Policy: Order-up-to-level
• Inventory Decisions: Stock-out
• Fleet Composition: Homogeneous
• Fleet Size: Unconstrained

Excluding the structure classification, since the many-to-one option
as not a possibility suggested by the authors, no publication match the
xact classification. Most works appear to deal with the transportation
f finished products to retailers. For the problem at hand, the vehicle
outing problem is not the crucial component, but rather the inven-
ory management. The previously cited article by Zhou et al. (2013)
ddresses the issue, since the author’s work is focused on a inventory
ontrol with a joint replenishment strategy.

.1.3. Optimization for decision support
Results from a single-objective optimization algorithm are useful for

ecision-making, but the process is uncomplicated — only one optimal
olution exists, therefore conclusions can be directly extracted from the
esults.

For multi-objective optimization with two objective functions, the
rocess complicates and a decision-maker with field expertise is often
equired, to evaluate the results and decide which optimal scenario on
he Pareto front best fits the company’s necessities. While all optimal
olutions to the problem, the objective functions values are often a com-
romise — choosing a solution with a small objective value in the first
ariable may have a larger value on the second, and vice-versa. Several
ublications address the usage of the Pareto fronts for decision sup-
ort (Burger et al., 2014; Stummer, Kiesling, & Gutjahr, 2009; Wang,
ai, & Shi, 2011; Wierzbicki, Kruś, & Makowski, 1993). Bänsch et al.
2021) review decision support models in production environments,
ith a component of energy awareness.

Finally, for many-objective optimization with more than two ob-
ectives, while its usefulness on supporting decision is basically the
ame as for multi-objective optimization (with increased levels of in-
ormation), it starts to suffer from a difficulty to convey which optimal
olutions should be chosen. While for three objective functions it is
till possible to show the results in a Pareto ‘‘surface’’, it is difficult to
onvey information in three-dimensional graphs on paper; furthermore,
his representation becomes worthless for four or more objective func-
ions. Two approaches to display how the objective functions values
elate between each other are by parallel plots or by showing the
airwise Pareto fronts of objective functions (Fleming, Purshouse, &
ygoe, 2005; Fonseca & Fleming, 1998; Ibrahim, Rahnamayan, Martin,

Deb, 2016). These representation methods are only viable options
or a maximum of around 10 objective functions, and for a limited
opulation of optimal solutions. Nevertheless, both conditions are met
n the scope of this work.

Coelho et al. (2014) state that a challenge in inventory routing
roblems is that they are typically very hard to solve. Regarding the
tudy of replenishment policies, the main challenge has to do with the
act that no single type of policy can be used for every company, and
ften not even in the same company. Different materials may require

ifferent policies, either because of their urgency or their validity.
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Complicated strategies may be able to account for these issues, but
at the expense of complexity in the algorithms and modelling. Many-
objective optimization also faces some challenges. While formulating
multi and many-objective problems can simplify the models, as they of-
ten offer greater leeway for the optimization procedure, the algorithms
that solve these problems tend to be more complex. Additionally, for
many-objectives problems with a considerable amount of objectives,
the decision making process becomes more complex.

A further challenge that these ever more data driven problems and
models have is the requirement large amounts of accurate data. Addi-
tionally, optimization problems that consider many decision variables
become increasingly lengthier, up to the point of not being able to
generate solution in useful time, e.g. when an algorithm takes longer
to obtain solutions than the period it is trying to optimize.

1.2. Proposed approach

This work provides a real-world application of a many-objective
genetic algorithm to solve the combined problem of raw material
replenishment and inventory routing, applied to a three-echelon supply
chain of a pharmaceutical company. Due to the complex manufacturing
portfolio of pharmaceutical enterprises, an OUT replenishment policy
was chosen, with the formulation of the problem done in such a
way that considers as optimization variables the batches to be or-
dered of each raw material, from each supplier, at each optimization
day. This represents the interactions between the suppliers and sup-
port warehouses echelons on the proposed problem. Furthermore, the
formulation integrates inventory routing optimization through an inter-
action between the support warehouses and main warehouse echelons.
The quantities of each raw material to be transported on each day
and from each support warehouse are the second set of optimization
variables.

To optimize this problem a genetic algorithm (GA) was selected.
While the genetic algorithm is one of the most common metaheuristic
algorithms, its choice versus e.g. a particle swarm algorithm (PSO)
was supported by the research by Alejo-Reyes, Mendoza, and Olivares-
Benitez (2020), where the authors concluded for an inventory replen-
ishment decision model the GA offered slightly better results with a
considerable reduction in computational time. The authors also evalu-
ate differential evolution algorithms, but while these offered a virtually
nonexistent advantage in performance (0.02%), the computational time
was smaller on the GA.

The optimization process chosen was a many-objective optimiza-
tion. By considering several objective functions and arriving at multiple
optimal solutions, this approach gives greater control to highly trained
executives and decision makers, which can make their decisions based
on the scenarios supplied by the algorithm and on their sensitivity to
the relative weight that the different objectives have, which are often
extremely complex and dependent on not easily quantifiable factors.
Ultimately, the solution which minimizes the total cost may not be the
most beneficial to a specific enterprise, given its characteristics and
intricacies, hence the advantage of this type of algorithms.

The presented approach sets out to adhere to the key foundations
of the industry 5.0, namely to be:

• Human-centric — decision-makers are paramount in evaluating
the results of the many-objective optimization and using their
field expertise decide on which solution best fits the company’s
goals.

• Resilient — based on actual historical and planned data, allows
the optimization to be self-correcting and easily adapt to the
future.

• Sustainable — costs with a direct impact on the environment
3

(e.g. transportation costs) can be prioritized.
Additionally, the usage of the GA (an artificial intelligence-based al-
gorithm) for the many-objective optimization is also set within the con-
text of industry 5.0, since it leverages the power of these state-of-the-art
algorithms.

The modelling done and the methodology followed differ from what
was found in the literature. The most similar research was on Zhou
et al. (2013); while the authors model similar costs, their research is
focused multi-echelon supply chain, with n echelons upstream from the
core enterprise and m echelons downstream, and the costs are analysed
summed together, as a single-objective formulation. The majority of
publications that address the joint problem of inventory routing and
replenishment deal with the downstream supply chain, i.e. the replen-
ishment of final product to retailers. An example of this type of research
is the work by Wu, Zhou, Lin, Xie, and Jin (2021), which addresses
the inventory routing of a two-echelon supply chain with time cycles
and fuel consumption. In contrast, the approach proposed in this paper
tackles the upstream supply chain, considering a time window and with
a many-objective model, solved through a genetic algorithm.

2. Three-echelon supply chain

The problem in study intends on optimizing a three-echelon supply
chain, organized in such a way as in shown in Fig. 1.

A simple description of how the supply chain operates is: at a
production plant, several products can be manufactured, according
to a given schedule; to produce a batch of each of those products,
a certain quantity of raw materials is required. For manufacturing
operations, the raw materials must be at the production plant’s ware-
house when the manufacturing starts. However, since keeping stock
in such an in-demand warehouse is extremely expensive, a series of
3 support warehouses are used to refill the main warehouse when
needed. These warehouses vary on size, location and stock keeping
costs; as a general rule, the closer the support warehouse is to the main
warehouse, the smaller and more expensive it is, but quicker and with
smaller transportation costs to supply the main warehouse. Lastly, the
support warehouses receive their stocks directly from the raw material
suppliers. Each supplier can supply more than one product, and each
product may be supplied by more than one supplier. Each combination
of product and supplier has an associated cost and lead time; generally
speaking, for a given product available by multiple suppliers, the lower
the lead time, the higher the cost.

For simplicity, the units used are Inventory Units, IU, for both
production orders and for storage keeping. Additionally, and since the
data used for this optimization is sensitive corporate information, the
data was anonymized, with the results bearing no physical meaning in
the absolute sense, but maintaining the relative patterns between the
objectives.

3. Formulation

The problem was formulated as a many-objective optimization, with
6 objective functions:

• 𝐶𝑂𝑟𝑑𝑒𝑟 ≡ Order cost: corresponds to the direct costs of ordering
and transporting raw materials from the suppliers.

• 𝐶𝐻𝑜𝑙𝑑 ≡ Holding cost: corresponds to the cost of keeping stock
in the warehouse. Every warehouse has an holding cost, but
the holding cost of the main warehouse is much higher than
the support warehouses. This incentivizes stock to be kept on
the support warehouses for as long as possible. This is a com-
mon practice, since these support warehouses can be bought on
cheaper geographical regions, with a smaller rent, leading to
smaller holding costs.

• 𝐶𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 ≡ Transportation cost: corresponds to the costs of
transporting the materials from the support warehouses to the
main warehouse. For simplicity, the transportation of raw materi-
als from the suppliers to the support warehouses is neglected here

and is included in the order costs.
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Fig. 1. Graphical representation of the three-echelon supply network in study.
• 𝐶𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 ≡ Main Warehouse Shortage cost: corresponds to the
costs of not having sufficient raw-materials for the production
orders at the main warehouse. In such cases, the production
orders may have to be postponed, leading to obvious and often
hefty costs.

• 𝐶𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 ≡ Overflow cost: corresponds to additional penalty
costs when the warehouses’ capacities have been surpassed. This
is done to allow (but discourage) stock overflow, instead of
constraining the optimization to disallow such behaviour.

• 𝐶𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝐼𝑛𝑡 ≡ Support Warehouses Shortage cost: costs of not
having sufficient raw-materials on the support warehouses to
timely restock the main warehouse. It is separated from the
shortage cost since while a shortage of raw materials at the main
warehouse can lead to halting manufacturing processes, shortages
of raw materials in the support warehouses may only affect the
restocking of the main warehouse.

Each of the aforementioned individual costs can be mathematically
formulated. Due to the complexity of the problem, the optimization will
have a 15-day scope, with daily decisions, meaning that the algorithm
evaluates for a 15-day period, optimizing decision variables with a
daily precision. To do so, notation regarding each element has to be
presented. This is shown in Table 1. Furthermore, the nomenclature
used for the formulation of this problem consider five indices: i, j, k, g
and t. Each of these indices refer to a dimension of the problem. Index i
refers to the materials (if a variable has i as one of its indices, it means
that it has values for all the 𝑚𝑖 materials); index j refers to the suppliers
(if a variable has j as one of its indices, it means that it has values
for all the 𝑚𝑗 suppliers); index k refers to the warehouses — when
𝑘 = 0 the warehouse is always defined as the main warehouse, with
the remaining 𝑚𝑘 warehouses corresponding to the support warehouses;
index g corresponds to the manufactured products, with 𝑚𝑔 being the
total number of products considered; finally, index t corresponds to the
day, with values ranging from 0 to 15.

Considering the notation, each individual cost can be formulated.
This formulation was mostly influenced by the work by Zhou et al.
(2013), considering only the supply network side of the multi-echelon
schematic proposed by the authors.

3.1. Costs formulation

𝐶𝑂𝑟𝑑𝑒𝑟 =
15
∑

𝑚𝑖
∑

𝑚𝑗
∑

[

𝑁𝑇(𝑖,𝑗,𝑡) ⋅ 𝐴(𝑖,𝑗)
]

(1)
4

𝑡=0 𝑖=1 𝑗=1
Summarily, the order costs can be calculated as the total number of
batches ordered throughout 15 days multiplied by their respective cost.

The costs of holding stock are generally not as straightforward as the
order costs. Instead, the holding cost can be seen as an opportunity cost,
since it is the indirect cost of unnecessarily occupying storage space.
These costs are directly related to the inventory level of a warehouse
at a given time and to the storage cost of each warehouse.

𝐶𝐻𝑜𝑙𝑑 =
𝑚𝑘
∑

𝑘=0

[( 15
∑

𝑡=0

𝑚𝑖
∑

𝑖=1
𝑚𝑎𝑥

(

0, 𝑆(𝑖,𝑘,𝑡)
)

)

⋅𝐻(𝑘)

]

(2)

Simply put, the holding costs correspond to the total stock of
materials in each warehouse (per month) multiplied by each respec-
tive storage cost, which depends on which warehouse the products
are being stored. The maximum function used simply tries to avoid
negative values of 𝑆(𝑖,𝑘,𝑡), which are possible for the main warehouse,
when the required materials for production orders are smaller than the
warehouse’s stock. On such occasion, there are no inherent holding
costs (since there is no stock to be held), and the consequences of the
lack of materials will come from the shortage costs.

𝐶𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =
15
∑

𝑡=0

[ 𝑚𝑘
∑

𝑘=1
𝐷𝑇(𝑘,𝑡) ⋅ 𝑓(𝑘)

]

(3)

The expression shows that the transportation costs are simply the
sum of fixed transportation costs of all trips made.

𝐶𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 =
15
∑

𝑡=0

[ 𝑚𝑖
∑

𝑖=1
𝑀(𝑖,𝑡) ⋅ 𝜌(𝑖)

]

(4)

Since order cycles are not considered on this problem and raw
materials are considered to be ordered only when necessary (minding
the suppliers lead times), shortage costs are modelled as the unavailable
quantity on each day and for every material multiplied by a shortage
penalty and summed. If no raw material shortage takes place than this
cost will be null. Note that this expression only evaluates unavailable
quantities on the main warehouse; if a given material exists on a
support warehouse but is lacking on the main warehouse then it is
considered as unavailable stock. The shortage penalties of the materials
will be heavily inflated to translate the importance of having the
minimum amount of shortage costs possible.

𝐶𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 =
𝑚𝑘
∑

[( 15
∑

𝑆𝑂(𝑘,𝑡)

)

⋅ 𝑂(𝑘)

]

(5)

𝑘=0 𝑡=0
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Table 1
Nomenclature used in the problem’s formulation.

Order costs

𝐴(𝑖,𝑗) Individual material cost of raw material 𝑖 (𝑖 ∈ 1,… , 𝑚𝑖) from supplier 𝑗 (𝑗 ∈ 1,… , 𝑚𝑗 ), for one batch with quantity 𝐵(𝑖,𝑗)
𝐵(𝑖,𝑗) Standard batch size of material 𝑖 from supplier 𝑗
𝑁(𝑖,𝑗,𝑡,𝑘) Number of batches ordered of material 𝑖 from supplier 𝑗 at time 𝑡 (𝑡 ∈ 0,… , 15), to be delivered to support warehouse 𝑘 (𝑘 ∈ {1, 2, 3})
𝑇(𝑖,𝑗) Average lead time of ordering material 𝑖 from supplier 𝑗

Holding costs

𝐻(𝑘) Storage cost per day per IU of warehouse 𝑘. This cost will be substantially higher for the main warehouse (𝑘 = 0).

Transportation costs

𝑑(𝑘) Transportation distance between the support warehouse 𝑘 (𝑘 ∈ 1,… , 𝑚𝑘) and the main warehouse (𝑘 = 0)
𝐷𝑇(𝑘,𝑡) Number of trucks required for the transportation of goods between the support warehouse 𝑘 (𝑘 ∈ 1,… , 𝑚𝑘) and the main warehouse on day 𝑡

𝑓(𝑘) Transportation costs between the support warehouse 𝑘 (𝑘 ∈ 1,… , 𝑚𝑘) and the main warehouse (𝑘 = 0). This includes all costs inherent to the
transportation process

𝑄(𝑘,𝑖,𝑡) Quantity of product 𝑖 transported between warehouse 𝑘 and the main warehouse, on day 𝑡

Shortage costs

𝑀(𝑖,𝑡) Quantity of unavailable raw material 𝑖 on the main warehouse on day 𝑡
𝜌(𝑖) Shortage penalty per day and per IU of missing raw material 𝑖 on the main warehouse

𝑠ℎ(𝑘) Shortage penalty depreciating factor for each support warehouse 𝑘 (𝑘 ∈ 1,… , 𝑚𝑘). Factor applied to the shortage penalty to decrease the shortage cost on
support warehouses — the cheaper the warehouse, the less costly it is to have stock shortage.

Overflow costs

𝑂(𝑘) Overflow costs per IU of material over the warehouse capacity of warehouse 𝑘
𝑆𝑂(𝑘,𝑡) Overflown total stock on warehouse 𝑘 and on day 𝑡

Additional variables

𝑅𝑀(𝑖,𝑔) Quantity required of raw material 𝑖 for the production of a batch of product 𝑔
𝐼(𝑖,𝑘) Initial stock of raw material 𝑖 on warehouse 𝑘 (𝑡 = 0)
𝑁𝑇(𝑖,𝑗,𝑡) Total number of batches ordered of material 𝑖 from supplier 𝑗 at time 𝑡 (𝑡 ∈ 0,… , 15), agnostic to which support warehouse it is supposed to be delivered
𝑃 𝑖𝑛𝑖𝑡(𝑖,𝑘,𝑡) Amount of purchased raw material 𝑖 that arrived at support warehouse 𝑘 on day 𝑡 for orders placed before 𝑡 = 0
𝑃𝑊(𝑖,𝑘,𝑡) Amount of purchased raw material 𝑖 that arrived at warehouse 𝑘 on day 𝑡
𝑃(𝑖,𝑡) Amount of purchased raw material 𝑖 that arrived at any support warehouse on day 𝑡

𝑃𝑂(𝑔,𝑡) Production schedule for product 𝑔 (𝑔 ∈ 1,… , 𝑚𝑔) on day 𝑡. Each value can take either 1 or 0, with 1 corresponding to a production order of product 𝑔
taking place on day 𝑡 and 0 otherwise

𝑅(𝑖,𝑡) Requirements of raw material 𝑖 at day 𝑡
𝑆(𝑖,𝑘,𝑡) Stock of raw-material 𝑖 at warehouse 𝑘 and day 𝑡. Consider 𝑘 = 0 for the main warehouse and 𝑘 ∈ {1, 2, 3} for the support warehouses
𝑇 𝑟 Truck capacity in IU
𝑊(𝑘) Maximum capacity of warehouse 𝑘 measured in IU
+

𝑃

m
s

The overflow costs are calculated simply by multiplying the stock
bove warehouse levels by an overflow factor. To avoid unfeasible and
nrealistic scenarios, the overflown stock can only be up to 20% above
ach warehouses’ capacity. This is enforced via a constraint, described
head.

𝐶𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑖𝑛𝑡 =
15
∑

𝑡=0

( 𝑚𝑖
∑

𝑖=1

[ 3
∑

𝑘=1
𝑚𝑎𝑥

(

0,−𝑆(𝑖,𝑘,𝑡)
)

⋅ 𝑠ℎ(𝑘)

]

⋅ 𝜌(𝑖)
)

(6)

The shortage cost of the support warehouses 𝐶𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝑖𝑛𝑡 presented
in (6) is an extension on the shortage costs shown in (4). Instead
of calculating a penalty cost for lack of raw materials for production
(at the main warehouse), the shortage cost of the support warehouses
calculates a penalty cost for lack of raw materials to transport to the
main warehouse. The formulation only differs on the application of
𝑠ℎ(𝑘), a warehouse-specific depreciating factor, used to give less impact
to the shortage costs of the support warehouses than to those of the
main warehouse.

3.2. Additional expressions

A few additional expressions are used to obtain the variables used
for the objective functions. The first is the calculation of the amount
of purchased raw material that arrived at each support warehouse on
each day, the variable 𝑃𝑊(𝑖,𝑘,𝑡). This is shown in (7). Additionally,
(8) shows the amount of purchased raw material that arrived at any
support warehouse, as the sum of the quantities that arrived on each
5

support warehouse.

𝑃𝑊(𝑖,𝑘,𝑡) = 𝑃 𝑖𝑛𝑖𝑡(𝑖,𝑘,𝑡)+
𝑚𝑗
∑

𝑗=1

(

𝑁(𝑖,𝑗,𝑡−𝑇 (𝑖,𝑗) ,𝑘) ⋅ 𝐵(𝑖,𝑗) ⋅

{

1, 𝑡 − 𝑇(𝑖,𝑗) ≥ 0

0, 𝑡 − 𝑇(𝑖,𝑗) < 0

)

(7)

(𝑖,𝑡) =
3
∑

𝑘=1
𝑃𝑊(𝑖,𝑘,𝑡) (8)

The calculation of the total number of batches ordered of each raw
aterial, from each supplier and at each day can be calculated as a

imple aggregation of variable 𝑁(𝑖,𝑗,𝑡,𝑘). This is shown in (9)

𝑁𝑇(𝑖,𝑗,𝑡) =
3
∑

𝑘=1
𝑁(𝑖,𝑗,𝑡,𝑘) (9)

The calculation of the daily raw material requirements should also
be done, based on the production orders scheduled for the day. This
can be done using the production orders schedule (𝑃𝑂(𝑔,𝑡)) and the
bill-of-materials of each raw material for each type of production order
(𝑅𝑀(𝑖,𝑔)). It is considered that each type of production is of fixed batch
size, meaning that the raw material requirements will also be fixed. The
calculation of the raw material requirements will then be calculated as
shown in (10). This calculation only has to be done once, since both
variables 𝑃𝑂(𝑔,𝑡) and 𝑅𝑀(𝑖,𝑔) have to be supplied, and are therefore
immutable during the optimization.

𝑅(𝑖,𝑡) =
𝑚𝑔
∑

𝑔=1
𝑃𝑂(𝑔,𝑡) ⋅ 𝑅𝑀(𝑖,𝑔) (10)

Using these previous expressions, the stock of raw-materials (𝑆(𝑖,𝑘,𝑡))
can be calculated. This expression is useful to translate a schedule
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of purchases of raw-materials, transportation of materials between
warehouses and consumption of materials into a daily status of stock
in each warehouse. The expression is shown in (11).

⎧

⎪

⎨

⎪

⎩

𝑆(𝑖,𝑘=0,𝑡) = 𝑆(𝑖,𝑘=0,𝑡−1) +
𝑚𝑘
∑

𝑘=1

[

𝑄(𝑘,𝑖,𝑡)
]

− 𝑅(𝑖,𝑡), 𝑘 = 0

𝑆(𝑖,𝑘,𝑡) = 𝑆(𝑖,𝑘,𝑡−1) −𝑄(𝑘,𝑖,𝑡) + 𝑃𝑊(𝑖,𝑘,𝑡), 𝑘 ≠ 0

(11)

The expression shown also implies that the initial stock levels of
ach warehouse at 𝑡 = 0 have to be supplied (𝐼(𝑖,𝑘)).

The calculation of the quantity of unavailable material on the main
arehouse for the daily production requirements (𝑀(𝑖,𝑡)) is shown in

12)

(𝑖,𝑡) = 𝑚𝑎𝑥
(

0,−𝑆(𝑖,𝑘,𝑡)
)

, 𝑘 = 0 (12)

This expression takes into account the formulation of 𝑆(𝑖,𝑘,𝑡) as
shown in (11), observing the stock for the main warehouse (𝑘 = 0). If
he stock of a given material on a given day is smaller than 0, it means
hat the required material for the day was higher than the available.
uch values are stored in variable 𝑀(𝑖,𝑡); when the requirements are
ulfilled 𝑀(𝑖,𝑡) is null.

The following expression deals with the calculation of the required
umber of trucks for a given day 𝑡, between the support warehouse 𝑘
nd the main warehouse, shown in (13).

𝑇(𝑘,𝑡) = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔

(
∑𝑚𝑖

𝑖=1 𝑄(𝑘,𝑖,𝑡)

𝑇 𝑟

)

=

⌈
∑𝑚𝑖

𝑖=1 𝑄(𝑘,𝑖,𝑡)

𝑇 𝑟

⌉

(13)

The ceiling operator is used in the calculation of the required
number of trucks since the value must be an integer, and if the capacity
of the truck is exceed in a single IU, then a new truck has to be used.

Finally, the calculation of the overflown stock per warehouse 𝑘 and
ay 𝑡 is shown in (14).

𝑂(𝑘,𝑡) = 𝑚𝑎𝑥

(

0,
𝑚𝑖
∑

𝑖=1
𝑚𝑎𝑥(0, 𝑆(𝑖,𝑘,𝑡)) −𝑊(𝑘)

)

𝑘 ∈ {0, 1, 2, 3}

(14)

On the above expression, the inner maximum function is used to
iscard negative stock values, which derive from unfulfilled production
tock requirements (only when 𝑘 = 0) and should not decrease the
otal warehouse stock. On the other hand, the outer maximum function
imply discards negative 𝑆𝑂(𝑘,𝑡) values, which regard warehouse stocks
hat have not overflown.

Two constraints are applied to the formulation in study. The first
imply requires all variables to be non-negative. The second constraint
s shown in (15).
𝑚𝑖

𝑖=1
𝑆(𝑖,𝑘,𝑡) ≤ 𝑊(𝑘) ⋅ 1.2, 𝑘 ∈ {0, 1, 2, 3}, 𝑡 ∈ {0,… , 15} (15)

The constraint formulated simply establishes that the total stock
t each warehouse and for each day must not be larger than 20%
bove the warehouse’s capacity. This is employed to constrain the
ptimization from unrealistically filling the warehouses above their
imit. As previously mentioned, this limit can be surpassed at the
xpense of the overflow cost.

The complete formulation of the problem is shown in (16).

in
𝛺

𝐹1 = 𝐶𝑂𝑟𝑑𝑒𝑟

𝐹2 = 𝐶𝐻𝑜𝑙𝑑

𝐹3 = 𝐶𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

𝐹4 = 𝐶𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒

𝐹5 = 𝐶𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤

𝐹6 = 𝐶𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝐼𝑛𝑡

.𝑡. 𝛺 ≥ 0
𝑚𝑖
∑

𝑖=1
𝑆(𝑖,𝑘,𝑡) ≤ 𝑊(𝑘) ⋅ 1.2,

(16)
6

𝑘 ∈ {0, 1, 2, 3}, 𝑡 ∈ {0,… , 15} c
Table 2
Hyperparameters and dataset settings.

Parameter Value

𝑚𝑖 15
𝑚𝑗 17
# product types 30
𝑡𝑚𝑎𝑥 15
Max generations 200
Crossover fraction 0.75
Population size 250
Function tolerance 10−12

Constraint tolerance 2 ⋅ 106

It is important to mention that the formulation does not resort
intensively to constraints. This happens in part due to the fact that
the optimization is a many-objective optimization, allowing for greater
freedom within the optimization. An example of this is the use of short-
age costs. Instead of calculating shortage costs, the optimization could
simply enforce that the stock would always have to be in sufficient
amounts for production. Alternatively, by using the shortage costs, the
optimization can be run and the resulting shortage costs have to be then
considered.

The set of decision variables 𝛺 and the variables that must be
upplied 𝛷 can be seen in (17) and (18).

= {𝑁(𝑖,𝑗,𝑡,𝑘), 𝑄(𝑘,𝑖,𝑡)} (17)

= {𝐴(𝑖,𝑗), 𝐵(𝑖,𝑗), 𝑇(𝑖,𝑗),𝐻(𝑘), 𝑑(𝑘), 𝑓(𝑘),

𝑊(𝑘), 𝑇 𝑟, 𝜌(𝑖), 𝑃 𝑖𝑛𝑖𝑡(𝑖,𝑘,𝑡), 𝐼(𝑖,𝑘), 𝑃𝑂(𝑔,𝑡),

𝑅𝑀(𝑖,𝑔), 𝑂(𝑘)}

(18)

. Results analysis

Table 2 shows the hyperparameters for the optimization ran, as
ell as the dataset settings, namely, the number of raw materials or

uppliers considered. The total number of decision variables is 12 960.
dditionally, the production schedule considered (encompassed in vari-
ble 𝑃𝑂(𝑔,𝑡)) included a total of 55 production orders, for the baseline
ptimization ran. The algorithm used for the optimization was the Mat-
ab’s gamultiobj, a variant of NSGA-II. An initial optimization was ran,
nd the results are shown in the parallel plot of Fig. 2. Each connected
ine corresponds to the objective function values of the corresponding
olution. The colour coding used simply compares the total cost of
he solution, and it is mostly useful to distinguish between scenarios.
urthermore, Fig. 3 shows every pair of Pareto fronts between the
bjectives.

The grey line from Fig. 2 corresponds to the result from a single-
bjective optimization, optimizing the total cost as the sum of the 6
ther costs (𝐶𝑇 𝑜𝑡𝑎𝑙 = 𝐶𝑂𝑟𝑑𝑒𝑟 + 𝐶𝐻𝑜𝑙𝑑 + 𝐶𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + 𝐶𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 + 𝐶𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 +
𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒𝐼𝑛𝑡 ), with weights considered all at value 1. The results show

hat while the total cost is indeed lower than the lowest scenario
rom the many-objective optimization (837 414.0 vs. 874 582.9), it may
ot always be the optimal solution, and it is safer for a decision-
aker to decide based its professional judgment. While the holding

nd overflow costs are lower than the results from the many-objective
ptimization, the order cost is only average and the support shortage
ost is much higher. It is important to mention that possibly the many-
bjective optimization would evolve into having solutions similar to the
ingle objective one, given enough computational time. Since the many-
bjective optimization is a more computationally complex process than
he single-objective optimization, it makes sense that it would require
dditional time to achieve comparable results.

Regarding the results from the many-objective optimization, a few
onclusions can be taken from the figures shown:
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Fig. 2. Parallel plot of the different objectives for the different optimal solutions of the baseline scenario. Each line corresponds to a single optimal solution.
• Order and holding costs are approximately proportional. This
makes sense: purchasing more raw materials will require addi-
tional costs of holding said stock.

• Larger order costs lead to slightly smaller transportation costs.
This simply means that if stock is not bought in such large
quantities, it is instead transported from the support warehouses.
This can have additional consequences, namely

– Overflow costs increase, as expected. Since stock bought on
lower order costs solutions is sufficient for the production
orders (seeing as the shortage costs are always null), pur-
chasing larger quantities of it will lead to higher overflow
costs.

– Support shortage costs appear to be less predictable, since
while most high order cost scenarios have a higher value,
there are instances of high order cost with lower support
shortage cost, and with lower order cost and higher support
shortage cost. This derives from when the increased support
shortage costs take place. For example, a scenario may order
large amounts of raw materials on the second week of the
optimization, but during the first there may not be sufficient
amounts of it in the support warehouses, leading to an
increase in support shortage costs.

• Transportation costs tend to concentrate at certain values, due to
the fact that these costs are proportional to the number of trucks
that move between the warehouses. This means that there is a
finite and discrete number of possible transportation costs, hence
the banding that appears to take place.

• A very well defined proportionality can be seen between holding
and overflow costs — all solutions have non-null overflow costs,
and the holding costs are applicable to the overflown stock as
well.

• Optimal solutions with high total costs (represented by the yellow
and light green points) appear to have high values on almost all
types of costs. The exception to this is the transportation costs,
having the smallest cost of all solutions. This means that while
obviously not the best solution to the problem, if a decision-maker
really prioritizes small transportation costs (and all it entails),
then those solutions may be the best choices.

Shortage costs are always null in all optimal scenarios — this means
7

that for this scenario there is no possible outcome that extracts any
advantage in increasing the shortage costs in favour of any other cost.
This may also derive from the fact that the shortage costs are extremely
inflated, compared with other costs, since they are some of the most
catastrophic types of costs, as they may lead to halting manufacturing
processes. While this cost may be redundant, keeping it as an objective
function shows that the optimization performs as expected.

Even though the optimal scenarios appear to vary considerably, it
is important to note that the total cost of the optimal scenarios does
not vary much, with the maximum total cost being only 12.7% larger
than the minimum. The figures show that there are multiple scenario
worthy of consideration, given their overall performance. By using such
results, decision-makers could make data-driven decisions, knowing the
expected costs of each solution and combining their expertise to arrive
at an adequate choice according to their industry and company goals.

4.1. Additional scenarios

To further validate the models, two additional scenario were opti-
mized. These scenarios kept the exact same parameters and dataset as
the one shown on the previous section and on Table 2, with only a
difference: the total number of production orders per month increased
from 55 in the baseline scenario, to 107 in the first variation and to
171 in the second. This intends on testing a scenario where the same
company and for the same period is faced with a different production
schedule with varying degrees of complexity. The parallel plots for
these two scenarios are shown in Figs. 4 and 5.

The results show some similarities and differences with the baseline
scenario. The clearest similarity is the overall distribution of the solu-
tion. On both variations, the highest total-cost solutions (shown as the
yellow/light green lines) have high order costs, low transportation costs
and higher overflow costs. Both variations are able to obtain solutions
with null or almost null overflow cost.

A very important difference found in both variations is the fact that
the single objective solution is not the best out of all the summed many-
objective solutions. This means that the single-objective optimization
does not bring any advantage. While it is not possible to know definitely
the reasons for this, it can be assumed that the larger flexibility pro-
vided by the many-objective optimization allows for better and more

variate results.
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Fig. 3. Matrix representation of the Pareto fronts between the objectives of the optimization.
5. Conclusions

On dynamic industries, such as the pharmaceutical one, and on
enterprises with large product portfolios and consequent complex raw
material requirements, establishing a replenishment policy based on
planned manufacturing operations is crucial. Furthermore, obtaining
the quantities of raw materials to order from each supplier in tandem
with the quantities to transport between warehouses (as a typical
inventory routing problem) from a combined optimization process
proved to be a powerful method. While this method was tested for
the pharmaceutical industry, it could be applied to many other man-
ufacturing industries, and especially useful for industries with dynamic
raw material requirements and internally organized within warehouse
levels.

This paper showed how companies can use and extract real value
from the results of multi/many-objective optimization. Two major ben-
efits of the many-objective optimization can be highlighted. The first
has to do with the active necessity of a human decision-maker. While
this may seem like a disadvantage, it is actually extremely important
8

since it increases accountability, simplifies the modelling of the prob-
lem, actively exploits the expertise of highly-trained professionals, and
generates multiple optimal solutions that prioritize different objectives
of the problem. This is very much in accordance with one of the pillars
of the Industry 5.0: human-centric. The second benefit of using many-
objective optimization is its capacity to frequently provide better results
than the single objective optimization, even when comparing the results
converted to a single-objective analogue. This behaviour was also
verified in the scientific literature, see e.g. Mahrach, Miranda, León,
and Segredo (2020). Some possible explanations for this phenomena
may have to do with the algorithm’s tendency to better avoid local
minima, as more scenarios are tested, to provide solutions that have
better performance with different objectives. In Mahrach et al. (2020)
it is also indicated that the multi-objective optimization algorithms
perform better that single-objective ones (especially in large problems
or when the objectives are strongly correlated) due to its ‘‘intrinsic
capacity to maintain diversity within a population’’.

The adoption of a joint inventory routing/replenishment policy as
a many-objective optimization was shown to provide useful results.
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Fig. 4. Parallel plot of the solutions obtained for the first variation of the problem (107 production orders). Grey line corresponds to a single-objective solution.
Fig. 5. Parallel plot of the solutions obtained for the second variation of the problem (171 production orders). Grey line corresponds to a single-objective solution.
hese results are especially practical for pharmaceutical management,
o make more data-driven decisions, more eclectic than other method-
logies, as the replenishment policies take into account the inventory
outing between support and main warehouse and vice-versa — all
hile providing multiple scenarios for the decision-makers to choose

rom, therefore increasing visibility and accountability.
The key issues found have to do mostly with how well the reality

s modelled. While the models are fairly simple, the parameters used
n them are usually difficult to accurately estimate (e.g. how much

does each inventory unit cost in a warehouse), leading to errors in
the calculated values. The effects of this are generally mitigated with
many-objective but paramount in single-objective optimization. The
reason for these effects are that in many-objective optimization the
parameters have only to be correct in relation to each other, e.g. the
relation between the holding cost (per inventory unit) at the main
9

warehouse and at one of the support warehouses should be correct,
but the actual holding costs are not important. In contrast, in single-
objective optimization, the over or underestimation of a parameter may
deeply affect the final results in an unintentional way.

Another issue found is the computational demand that the optimiza-
tions ran took. An optimization such as the ones shown (with more
than 12 000 decision variables) can take almost 24 h to run. This value
seems to be reasonable for an optimization that deals with a 15-day
horizon, but it is important to note that only 15 raw materials and 17
suppliers were considered and that the optimization was only ran for
200 generations. This issue is, however, expected to be less present in
the future, as the computational capacity improves and the algorithms
are often simplified.

One final issue that may be the most important of all is the fact
that the decision-making process can start to become overwhelming for
decision-makers, when a large number of objectives – and consequently
solutions – is reached. Making decisions based on six objectives may be

difficult. Further research on this topic may be explored, namely on the
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development of decision support tools for many-objective optimization
results.
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