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ARTICLE INFO ABSTRACT

Keywords: Energy storage systems (ESSs) are useful devices to ensure the reliable operation of microgrids especially those
Erfergy storage systems with high penetration of renewable energies. The microgrid operation is highly associated with scheduling of ESS
Microgrid units. Therefore, in this paper, a new algorithm for ESS scheduling has been suggested in order to manage MG in
gslti;mbl;;;on a reliable manner. Because reliability considering and cost minimization are conflicting objectives in ESS

scheduling, the multi-objective optimization problem should be solved for optimal scheduling of ESS. Different
operating strategy have been considered and their impact on ESS scheduling in the microgrid has been inves-
tigated. In order to properly consider the uncertainties associated with the multi-objective scheduling problem,
probabilistic models have been presented for the parameters in the network and they are expressed as mixed
integer linear programming (MILP) problems. Non-dominated sorting teaching learning-based optimization
(NSTLBO) algorithm is employed to solve the MO problem. Scheduling plan is performed on both weekly and
daily horizons in connected/islanding microgrid modes. By implementing this method on a modified 33-bus IEEE
test system, the results endorse the effectiveness of the proposed scheme for enhancing the reliability of MGs.

1. Introduction

Nowadays, new communication technologies enable power systems
to be improved to smart grids. One of the main components of smart
grids is microgrids [1]. Microgrids supply their loads using their power
generation sources or by the power received from the main grid,
therefore they can provide sustainable and reliable power for the cus-
tomers [2]. There are different resources in a microgrid to produce
power including renewable energies and conventional generation units.
High penetration of renewable energy sources can make some problems.
Due to the intermittency of their input power, there is always the pos-
sibility that their forecasted power could not be realized. It means that
there is insufficient power to meet load demand and increases the risk of
customer interruptions in microgrids, especially in the islanding mode.
These uncertainties can cause some difficulties in energy management
and energy planning. Energy storage systems (ESSs) are employed in
microgrids to overcome this problem. ESSs can save energy and give it
back to microgrids when it was necessary.

ESS has multiple applications in microgrids such as load shifting [3],
energy arbitrage [4], power quality improvement [5], reliability
enhancement [6-7], cost minimization [8-9], loss reduction [10-11],
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and peak shaving [12]. Their main role in microgrids is energy arbitrage
and cost minimization. To select the best usage of ESS in a microgrid,
first, these units must be planned efficiently and optimally. A suitable
implementation of ESS along with distributed energy resources (DERSs)
could increase the power generation of these intermittent resources. It
enjoys the advantages of reducing costs and emissions of fossil fuel
generation and maximizes the economic attractiveness of renewable
technologies such as wind power and photovoltaics. Scheduling of the
available resources is essential to achieve optimal performance of the
grid and successfully satisfy the load requirements, reduce cost and
emissions, and improve the reliability of MGs.

Various studies have been performed in the case of scheduling and
planning of ESSs to enhance microgrid operation and management.
Reliability evaluation of distribution systems with ESSs was firstly
addressed to develop a method for modeling ESS units in reliability
problems [13-14]. Some other research has investigated the optimal
planning and scheduling of ESS units over the past decade. In [15], the
authors proposed a model to determine the size of ESS with reliability
constraints. Authors in [16] developed a tool for assessing different
factors such as penetration level, operation strategies, and ESS capacities
on operational reliability of MGs. They assessed the operational reli-
ability of microgrids with wind turbines. Authors in [17-18], proposed a
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Nomenclature

Peh,e Power injected to ESS

Pisc,t Power drawn from ESS

Pwe,t Power output of wind farm

Vi Cut in speed

V; Rated speed

Vout Cut out Speed

Gy solar irradiance prediction

Gstd standard solar irradiance

Nch Charge efficiency of energy storage system
Ndch Discharge efficiency of energy storage system
H Timeslot index in island mode

Sen charge binary indicators of ESSs

Sdch discharge binary indicators of ESSs

X Vector of optimization variables

T total number of hours

N; total number of renewable energy units
Ng total number of distributed generating units
Ns total number of storage units

Niter Number of interruption

F() Cost-function of distributed generation
SAve average SOC

L load consumed in load point i

SOCy The initial level of SOC (%)

SOC™®*  The maximum level of SOC (%)

SOC™™  The minimum level of SOC (%)
SOC State of charge

WTG Wind turbine generator

DER Distributed energy resources
DG Distributed generator

MT Microturbine

ESS Energy storage system

PV Photovoltaic

RES Renewable energy Source
Psmax Maximum import power (kW)
Psmin Allowable export power (kW)
En Rated ESS Capacity (kWh)

WS Wind speed

DU Diesel Unit

MTTR  Mean Time To Repair

MTTF Mean Time To Failure

LOLP loss of load probability

LOLE Loss of load expectation

EENS expected energy not supplied
MCS Monte Carlo Simulation

DoD Depth of discharge

PDF Probability distribution Function
MG Microgrid

AC Aging Cost

oC Operation Cost

TLBO Teaching learning-based optimization

stochastic framework to optimize ESS scheduling in microgrids. In this
framework they optimize ESS scheduling in order to reducing MG cost
and enhancing reliability. Ref. [19] proposed a protective model control
for different strategies in microgrids and assessed the reliability of
microgrids regarding the operation strategy and ESS units. In [20], an
analytical approach is applied to determining the size, in terms of both
power and energy capacity, of an ESS in such a way that meet a specified
reliability target.

ESS scheduling has attracted much attention for energy management
in microgrids in recent years. Optimal scheduling strategy broadly
developed in literature [21-26]. Authors in [21] discussed that ESS
scheduling in daily and weekly mode can enhance the operation per-
formance of microgrid. Reference [22], authors proposed a framework
which calculate the optimal size of ESS, while determining the optimal
operation schedule of controllable components in a microgrid. In [23]
scheduling of energy storage systems is considered in presence of
renewable energy resources. Authors in [24] suggested a method that
optimally schedule ESS to minimize operation cost of microgrid. In this
method load requirements of cold, heat and electricity is satisfied in
microgrids. In [25], a fundamental model is proposed by authors for
scheduling of ESS in day-ahead power market. Authors in [26] devel-
oped a model of ESS considering economic and environmental per-
spectives. In that model, two objective functions were established to
determine the optimal operation of ESS from the economic and envi-
ronmental aspects. In [27] participation of the ESS unit in demand
management and its application to the reliability evaluation. Authors in
[28] developed a new reliability contribution function of BESS in wind
farms. Ref. [29-30] explain some statistical methods

Increasing cycles and depth of discharge of a battery can cause
degradation and reduce its lifetime [31]. Consequently, batteries with
capacities of less than a specific value must be replaced, and this will
impose huge investment costs on the microgrid. As a result, it’s really
important to take into account aging costs in the scheduling of ESSs.
Batteries’ lifetime and cycling have not been formulated explicitly in
optimal scheduling for ESSs. In [32] an optimal BESS scheduling for MGs
is proposed to solve the unit commitment problem stochastically,

considering the aging cost of ESS units and the uncertainties in renew-
ables and load. On the other hand, most studies carried out a day-ahead
scheduling program for scheduling ESS in microgrids [33]. This sched-
uling horizon forces ESS units to have the same state of charge (SOC) at
the start and end of the day even when it has high levels of SOC. This
process can accelerate the aging of batteries and impose costs on the
microgrid. Ignoring the aging cost of ESS as well as restricting the
scheduling horizon to just in daily mode make big challenges. To
overcome these challenges and problems we proposed a stochastic
optimal scheduling method that includes degradation of ESS and depth
of discharge is considered in both daily and weekly mode to optimally
manage the microgrid. We concentrate on the optimal scheduling of
ESSs in microgrids by using Teaching-Learning Based Optimization
(TLBO) algorithm [34]. TLBO is a suitable method for finding optimal
solutions to such problems since it does not require any
algorithm-specific parameters. The contributions of this paper can be
expressed as follows:

e Proposing a comprehensive model for optimal ESS scheduling,
including a scheduling framework in a day-ahead and weekly time
horizon.

Modeling the aging cost of ESS units concerning both cycling and
calendar factors. Dod and number of cycles of ESS are limited to a
certain value to maximize battery energy throughput and reduce MG
operation costs.

e Taking into account intrinsic uncertainty characteristics of all
microgrid variables, including all uncertainties related to loads,
electric price, renewable energy (PVs and WTs) outputs, and the
duration of unscheduled islanding events.

Studying microgrids in different operating modes (islanding and
grid-connected mode) to maintain an appropriate trade-off between
cost and reliability objective functions by the scheduling of ESS units
considering the degradation cost of ESS.

The remainder of this paper is organized as follows: In section 2, the
formulation of scheduling and planning problems are discussed. The
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proposed model of ESS and Microgrid reliability are explained in this
section. In section 3 the scheduling optimization problem is broadly
described and the suggested algorithm is presented. In section 4 the
algorithm is implemented on the typical test system and simulation re-
sults are derived. The conclusions are drawn in section 5.

2. Problem formulation
2.1. General architecture of microgrid under study

The microgrid under study includes loads, local generation re-
sources, and energy storage systems. Loads in microgrids also can be
divided into two main groups: adjustable loads and fixed loads.
Adjustable loads can be controlled by operators and can be shifted or
curtailed whole or part of them when it’s necessary from a microgrids
operator point of view. In contrast, fixed loads cannot be controlled or
shifted by the operator and he doesn’t have any control over these loads
and they must be supplied under all conditions. Power generation re-
sources in microgrids are classified into two main categories. The first
group includes dispatchable resources whose output power can be
controlled by system operators. Microgrid operators can control the
output of dispatchable resources and the amount of power they
generate. On the other hand, generated power of non-dispatchable re-
sources could not be under control and depended on factors out of
control. In this paper, photovoltaic cells and wind turbines are consid-
ered non-dispatchable power resources and Microturbines acted as dis-
patchable ones. A schematic diagram of a typical microgrid under study
is depicted in Fig. 1.

Microgrids can operate in two different modes: islanding mode and
grid-connected mode. In grid-connected mode, ESSs store energy in low-
price periods and give back that energy to the microgrid during the high-
price time. In this mode, the microgrid can supply its consumers with
energy they import from the main grid. Microgrid operation is based on
the assumption that they must satisfy their load with minimum cost and
maximum reliability at all times. In disturbances, a microgrid must be
able to isolate itself from the main grid and meet its load requirements
with help of its resources. ESSs play an important role in islanding mode
to satisfy more loads and increase the reliability of microgrids.

2.2. Microgrid modelling

In this section, the optimal scheduling of ESSs in microgrids con-
strained to reliability requirements is presented. Two objective functions
are used in this study, where minimizing microgrid costs and Energy not
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supplied are considered to fulfill the economic and reliability re-
quirements of microgrids. To have an accurate and acceptable analysis
of microgrid operation it is necessary to precisely model the problem
parameters.

In the proposed method, the uncertainty of network parameters such
as load, energy price, and the failure rate of microgrid equipment such as
lines and substations has been considered. First, according to Monte
Carlo Simulation (MCS), some scenarios have been generated. In each
scenario, parameter values are selected randomly based on their mean
and standard deviation values. Then after the generation of sufficient
scenarios, a proper scenario reduction technique is applied to reduce the
number of scenarios to acceptable sets.

2.2.1. ESS modeling

ESS units, in general, are modeled by their characteristic properties
such as power and energy capacity, location, charging and discharging
cycles, and implementation requirements. Their main limitations are
maximum and minimum state of charge (SOC); charging and discharg-
ing efficiency and ESS charging/discharging power limitation.

The two main parameters of ESSs are rated capacity and rated power.
Rated power will determine the energy charging/ discharging rate of
storage energy systems. On the other hand, rated capacity is the amount
of energy that a storage system can store. High-capacity ESSs are capable
to store high power but they don’t have efficient charging-discharging
power. On contrary, low-capacity ESSs have suitable charging/ dis-
charging power. State of Charge (SOC) of ESS is expressed as a per-
centage of energy that is available at time t Eq (1):

E@)
SOC() = ==

n

€5)

SOC is the state of charge of ESS and it changes during charging/
discharging process. The amount of SOC will increase when the ESS
charging and it will decrease when ESS discharging. Instead of SOC
sometimes the energy of ESS is expressed as the depth of discharge
(DOD). It is defined as an amount of energy (charge) that is eliminated at
a given time. It determines the total amount of charge that can be stored
in the battery at a certain state and is expressed in Eq. (2).

DoD(t) = 1 — SOC(t) (2)

ESS can operate in three different modes: charging, discharging, and
idle. The SoC of ESS unit during discharging and charging of the battery
is respectively defined as Egs. (3) and (4). In Charging mode, SOC of
battery depends on battery charging efficiency (1), battery charging
power (PCh) and battery self-discharge rate ().

Main grid

A
Power from/to main grid

B

Adjustabl
Loads

Fixed
Loads

MG operator

Renewable Dispatchabl Energy Storage
Generation Generation

discharging

unit

Fig. 1. the schematic diagram of the structure of Microgrid understudy.



E. Rahmani et al.

we A1
SOC(t+ At) = SOC(1)(1 = &) + k.Plse —— 3)
Naise-Crss

At

— 4
CESS ( )

SOC(t+ Ar) = SOC(t)(1 = &) + k. (n,,,-Pils)

ESS installation imposes huge costs on microgrids. Therefore, from
both economic and security viewpoints, an accurate and practical ESS
cost model would enhance the modeling of system operation. In order to
schedule ESS operation, it is essential to obtain the exact ESS cost model.
ESS cost is composed of ESS capital cost and ESS operation cost. Batte-
ries don’t use any fuel, thus their operation cost is mainly due to their
degradation and their aging cost.

The aging cost of ESS is correlated with its degradation. ESS degra-
dation depends on cycling and calendar aging of the battery. The cyclic
aging comes from the C-rate, temperature, DOD usage, and number of
cycles, while calendar aging depends on the SOC, temperature, and
time. The ESS aging cost is dependent on the degradation ratio of the life
(no) and installation cost (IC) as it is shown in Eq. (5):

AC, =, * IC"S (5)

The aging ratio of battery per cycle can be obtained by the following
equation and use for aging cost calculation. Aging cost will be added to
cost minimization problem. [35]

0.5

[ — 6
NCESS ( S5W S;\vg) (6)

Ny

In this equation aging ratio is related to number of cycles (NC) which
is function of both average SOC level and changes of SOC during one
cycle.

2.2.2. Wind power modeling

Generated power of wind turbines is dependent on wind velocity
modeling of wind power should perform considering its forecast un-
certainties. Previous studies have shown that wind speed can be suc-
cessfully modeled by Weibull distribution:

k
k—1 v
-0 .
v/ \r

When the cut-in wind speed is reached, the turbine starts to produce
its power. As the wind speed increases, the turbine output will also in-
crease. When the wind speed is too high, to protect the turbine, the
turbine equipment will be automatically removed. Therefore, the output
power of the turbine can generally be expressed by a piecewise function,
as shown in Eq. (8). Output power of wind turbines in terms of their
wind speed is dependent on the wind turbine characteristic curve and is
given by the following equation:

0 0.<SW, <V,
) (A+B*SW,+CxSW}) %P, v, < SW, <V, ®
b= P, V, SSW <V,
0 Voo < SW,

Where P is generated power of wind turbine and A, B, and C are
shape parameters of WT. Fig. 2 demonstrates the typical power curve of
the wind turbine generator.

A two-state up and down Markov model is used as the probabilistic
model to demonstrate wind turbines in reliability studies. In this model
availability of WTG with probability equals 1-qwrs and rated capacity of
PWTS.rated> OF unavailable with probability equals to qwrs. qwrs is defined
as follows:

MTTRyrs

=B ©
MTTF s + MTTRyrg

qwrs
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A Power output

C WIG

Wind speed

>

v(‘ v R Vv r
Fig. 2. Power output of wind turbine generator.

2.2.3. Solar power modeling

The generation of solar power systems depends on solar irradiance
and solar cells features and ambient temperature. Reference [36]
compared different probability density distributions with random
behavior of solar irradiance and result that Beta pdf could be used to
model the solar irradiance well. Thus, in this paper the beta distribution
is used to show the uncertainty of solar irradiance as follows:

2v M 2
flv) = <6—2> exp{ — (E) } 10)
When solar irradiance is known, generated power of PV cell will
obtain by the Eq. (11). In this equation, generated power of photovoltaic

cell (Ppy) is related to forecast solar radiation (Gy) and the certain radi-
ation point (Ry).

1 2
(G 0< G, <R,
Pp\y = K(( ’) ' (11)

n.G. G >R,

As for wind power, the reliability of solar power is modeled with two-
state markov model:

MTTRpys

—_— (12)
MTTFpys + MTTRpyg

qrvs =

2.2.4. Load modeling

Microgrid load consumption is affected by its consumer type and
depends on the day of the week, the week of the month, and the month
of the year. The probabilistic behavior of microgrid load is modeled by
normal distribution function as follows:

flx) = Vlﬁe(*) (13)

3. The proposed method

Some objectives are conflicting and it is necessary to make a trade-off
between them. Multi-objective algorithms can act efficiently with
problems with conflicting or mathematically unrelated objective func-
tions. In the proposed method first, some scenarios are generated based
on standard deviation and mean value of equipment and their proba-
bility distribution factor as explained in the previous section. Then
scenarios will reduce to accelerate the speed of the method.

3.1. Objective functions

3.1.1. Cost objective function

The first objective function of the proposed algorithm is cost mini-
mization of the microgrid. Microgrid costs consist of operation cost (OC)
as well as aging cost (AC) and can be formulated as follows:

minCost, = OC + AC a4
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Input basic data including the load series, the
parameters of energy storage device, the RES, and
the conventional generation data, etc., and generate

initial values for them

v

generate scenarios based on input data using Monte
Carlo simulation method

v

reduce the number of scenarios by scenario reduction
technique.

in each scenario determine SOC using TLBO
algorithm and cost function

in each scenario determine SOC using TLBO

Electric Power Systems Research 214 (2023) 108891

is'the contingent
lead to an
interruption?

Perform corrective action to prevent interruption.

i

day< max day

year< max year

A

algorithm and cost function

is there any
contingency and/or
islanding

Calculate reliability indices

Fig. 3. Flowchart of proposed method.

Ns NrES Nag
oC,, = Z(PESSi * COStESS,i) + Z(PRESJ * COStRES.,i) + Z Fogi (Pdg.,i) + Pyia
=1 =1 =1
* COSlgria
(15)

Operation cost includes all the possible scenarios of load and
renewable energies power output (15). The first term in the operation
cost function corresponds to the cost of ESS units and the second term
shows the cost of renewable energy resources. The operation cost of
dispatchable units is represented in the third term. Finally, the last
expression models power imported from (exported to) the main grid to
(from) the microgrid. Therefore the objective function for the cost of the
microgrid will be as follows:

Ns Nres Nag

minCost, = Z(Ps,' * COSTEss,i ) + Z(PRESJ * COSRgs, i) + Z Fuei(Pagi)

i=1 i=1 i=1
+ Pgrid * COStgrid JFACI
(16)

3.1.2. Reliability objective function

One of the main purposes of microgrid scheduling is reliability
enhancement, but it is considered simultaneously with cost minimiza-
tion. Energy Not Supplied (ENS) has been chosen as an objective and
objective function can be obtained by (17):

Ninter
ENS = Z LPr;

i=1

@a7)

3.2. Constraints

All variables must be within their boundaries. Constraints of the
suggested optimization problem are listed as follows:

3.2.1. ESS constraints

There are some limitations on the charge and discharge rate of
storage devices during each time interval, the following equation and
constraints can be considered:

ch sch
P;?SS < PESS.max

(18)
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isc disc
Pigss < Piigsmax a9

SOC™" < SOC(t) < SOC™™ (20)

Egs. (18) and (19) specify that the charging and discharging rate of
ESSs don’t exceed their limitations. To have high efficiency, the State of
Charge of the battery should be in predefined ranges. Constraint (20)
ensures that the SOC of ESS doesn’t exceed its boundaries. During the
discharging period, SoC must not go below the SoCp;, and in charging
mode it must not go upper than SOCpax.

3.2.2. Renewable energy resources constraints

Output power of renewable energies (PV units and wind turbines)
are limited by their maximum power that they can produce. Egs. (21)
and (22) present PV and wind turbine limitations respectively.
Constraint in Eq. (21) ensure that PV generated power is lower than PV
maximum power and Eq. (22) confirm that wind power doesn’t exceed
its maximum.

0< PKPV < P;’V.max (21)

0< Piuind < Pivind.max (22)
3.2.3. The balance between load and generation

It is necessary to exist a balance between load and generation in the
microgrid and powers generated by microgrid resources can meet the
demand of microgrid consumers. If resources could not satisfy the load
in a microgrid, the main grid can provide loads for a microgrid. In the
grid-connected mode, the microgrid can send or receive electrical en-
ergy from the main grid and other microgrids. If available resources in
the microgrid can’t generate enough power to meet microgrid demands,
load shedding must be applied to maintain microgrid stability. Load and
generation balance limitation is expressed in Eq. (23):

Ps + PpG + Pres + Poria = Pioaa (23)
3.3. Dispatchable units’ constraints

Dispatchable DG units have startup and shutdown times that must be
considered in the computations. They also have limitations such as Min-
max capacity and ramp-up rates. Egs. (24)-(28) demonstrate these
limitations:

Ppg < Pp < Ppet 24
P;)G‘r - Pbam < URpg (25)
P;)G‘r—l - P;)G,r < DRpg (26)
SUpgs > CU(Ipg — Ipgy) 27)
SDpg, > CD(Ipg; — Ipc,) (28)

Eq. (24) ensures that generated power of DG is between its maximum
and minimum allowable amount. Ramp up and down rate of DG impose
some restrictions on its operation that expressed in equations(25) and
(26). Start-up and shot-down costs are calculated based on cost con-
stants and their operating time. Eqgs. (27)-(28) show these calculations.

3.4. Optimization method

The optimization problem described in the previous sections is in
MINLP format. Here, we employ the TLBO algorithm to obtain optimal
solutions. TLBO is an effective and fast evolutionary algorithm that is
inspired by a learning mechanism in a class [37]. In the algorithm, the
population is assumed to be learners of a class. The general process of
TLBO is divided into two main phases: teacher phase and learner phase.

Electric Power Systems Research 214 (2023) 108891

Teacher is considered as best solution obtained so far. Learners can
enhance their knowledge by either learning from teacher or by learning
through the interactions between themselves. In teacher phase, a good
teacher brings up knowledge of students and improves the mean of class
(Eq. (29)). In learner’s interaction between students in class can enhance
their knowledge (Eq. (30)). The students can also gain knowledge by
discussing and interacting with other students. Students can enhance
their knowledge if the other students have more knowledge about that
subject.

Xinew = Xi + r(XP" = Tf « M) (29)
Xipew = Xi +1(X; — X;) (30)
Xim'w = Xi + 7‘(}(/ 7Xt) (31)

There are two approaches to adding reliability to the optimization
problem: The first approach is to add reliability to the objective function
that was considered before. The other approach is to use a multi-
objective optimization problem. In the second approach, we had a
front of non-dominated solutions instead of a single solution.

3.5. Operation strategies

Microgrid operation is scheduled based on different horizons and
various strategies. In this paper, we develop a method to schedule ESS
and microgrid in both daily and weekly mode time horizons. The
scheduling method regarded reliability and cost-driven operating
strategies.

A Daily mode: In daily mode, the ESS operate on a daily basis and
energy output of ESS must be same at the beginning and end of day.
In other words, net change of energy in ESS in a day must be equal to
zero. ESS will operate in day-ahead power market and all variables
must be forecasted for next day.

B Weekly mode: In weekly mode, energy output of must be same at the
beginning and end of week. In this strategy, SOC is not forced to be
same at the end and beginning of each day, and continuity between
days is acceptable in this mode. Therefore, it can use in operating
methods which need less charging/discharging cycles.

In cost-driven operation strategy, overall system operating costs are
chosen to enhance through energy arbitrage. In this strategy ESS save
MG extra energy in non-peak hours and fulfill load demand in peak
hours that market price is higher.

In reliability-driven mode, it is essential to maintain system ade-
quacy level in certain level even in islanding operation. So, the main
goal of this strategy is satisfying system load demand.

If ESS is used for reliability enhancing, its SoC must be at higher
levels. On the other hand, in cost-driven mode ESS can discharge to the
lower levels to satisfy more loads in peak hour (when price is higher).
This strategy would lead to the larger amount of Depth of discharge if
ESS aging cost does not involved in scheduling plan.

It is assumed that in grid-connected mode, microgrid’s power de-
mand can completely supplied by the main grid and therefore there
would not be any load interruption in that mode and adequacy assess-
ment of generating units does not calculate. In contrast, in the islanding
mode, reliability concerns (adequacy and security) are of high impor-
tance. While MG operates in islanding mode ESS activity would become
more important because main grid can’t supply energy and the whole
load must be supplied by generation and ESS units in MG. Hence, ESS
will operate in reliability-driven mode in this situation.

3.6. The proposed algorithm

The proposed algorithm is a optimization approach based on
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Teaching-Learning Based Optimization algorithm. The algorithm for
solving formulated optimization problem described before is repre-
sented as follows:

In the proposed method charging/discharging status of ESS is
selected as decision variables. Different scenarios are generated based
on input data using MCS method. In this section, for each hour fore-
casted value of each parameter is calculated by standard deviation and
mean of that parameter and its probability distribution function. Based
on the generated scenarios of charging/discharging schedule, a proba-
bilistic optimization problem is solved and MG’s operation cost will be
calculated. In each hour, probabilistic TLBO-based optimization algo-
rithm is used to determine charging behavior and SOC of ESS in the
microgrid. This optimization in the normal operation is performed just
by cost function. When the optimal scheduling of DERs and power flow
in different scenarios are obtained, the ENS can be calculated. For
calculating ENS in each islanding scenario, the amount of energy not
supplied is calculated.

4. Case study

The proposed formulation has been implemented on IEEE 33 bus
standard test system[38]. The original test system is supplied just with
the main grid. This test system is modified and add some DGs, RESs, and
ESSs to become suitable for studying scheduling problem. Fig. 4 dem-
onstrates a schematic diagram of this network. Also, a daily time horizon
consisting of 24-h periods is considered for DM and 168-h for weekly
mode scheduling.

A new method based on TLBO has been used for minimizing cost of
Energy in the microgrids. To test the proposed method we choose a
standard system to show the performance of the method. In each hour
SOC of ESS will be determined based on load level and consumer re-
quirements. Choosing an operation mode strategy can influence the
scheduling of Energy Storage system charging/discharging behavior.
The characteristic of DERs used in the simulation is presented in Table 1.
It is noteworthy that the output power of PV and WTG in each hour is
equal to the product of their capacity to its power daily curve, which is
depicted in Fig. 2. ESS technology used as a test case in this study is

The FOR of network equipment is assumed to be 0.1 (occ/yr) and the
failure rate of equipment is 10 days/year. Islanding duration is assumed
to have normal distribution function with mean of 5 h and standard
deviation of one hour [38]. It is also assumed that the investment cost of
ESS is 200,000 $. Finally, the standard deviation of uncertain parame-
ters is set at 10% and MCS generates 1000 scenario at first and then
reduce them to 100 scenarios.

Forecasted load and renewable energy output for a day and one are
illustrated in Fig. 5. These data are used in daily and weekly mode
scheduling.

The proposed method is coded in MATLAB 2018a software and the
numerical results are derived as follows:

26 27 28 29 30 31 32 3
L]

S o o o o o o

19 20 21 2

Fig. 4. Modified 33 bus system.
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Table 1
DGs characteristic [17].

Type Operation cost Min max capacity Ramp Up/down
MT 51.86 0-0.12 0.06

Table 2

The hourly electricity price in the open market [39].
Hour Price Hour Price
1 0.033 13 0.215
2 0.027 14 0.572
3 0.020 15 0.286
4 0.017 16 0.279
5 0.017 17 0.086
6 0.017 18 0.059
7 0.033 19 0.050
8 0.054 20 0.061
9 0.215 21 0.181
10 0.572 22 0.077
11 0.572 23 0.043
12 0.572 24 0.037

4.1. Scheduling results of energy storage systems in the microgrid

Scheduling of Energy storage has been performed based on the
proposed method and the results are illustrated in Table 3. For evalu-
ating the effectiveness of the proposed method both daily mode (DM)
and weekly mode (WM). Referring to this table, the highest SOC of ESS is
at 6:00 and the lowest SOC is at 19:00.

The charging/discharging process of ESS in weekly mode scheduling
is shown in Fig. 6 and Fig. 7. The average SoC is higher in WM sched-
uling so the average DOD is lower than DM which can help to prevent
battery wearing out. On two days of week, energy storage capacity stays
constant and it doesn’t use for all day long because of its operation cost
(aging cost).

4.2. Assessing the ability of the proposed method

The results from the proposed algorithm for reliability and cost data
are presented in Table 4. The problem solved by TLBO and it is
compared with other Solvers in order to see the efficiency of proposed
method. This results confirms the ability of suggested method to deter-
mine operation scheduling of ESS in MGs.

4.3. Evaluating reliability indices of microgrids

Reliability of microgrids can be calculated based on the proposed
methodology. To demonstrate the effectiveness of the proposed method
4 different cases are deployed in the test system. In each scenario, both
islanding and grid-connected modes are taken into consideration in 168
h scheduling horizons.

Case 1: ESS scheduling daily mode-cost minimization

Case 2: ESS scheduling daily mode-reliability enhancement
Case 3: ESS scheduling weekly mode-cost minimization

Case 4: ESS scheduling weekly mode- reliability-driven mode

The proposed algorithm is all four cases has been performed and the
obtained results is presented in Fig. 8.

At first in case 1, between 00:00 and 5:00 in the morning battery will
be charged because energy price is low. Then between 5 and 17, the
battery will remain in idle form and energy will import from the main
grid if the microgrid generation units couldn’t satisfy load. At the end of
the day, in peak hours between 17 and 00 battery energy is discharged
because the electric price is high and it’s better to not receive energy
from the main grid. Case 2 is based on reliability enhancement so ESS
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Fig. 5. forecasted value of load and renewable energy for a day (a) and a week (b).

Table 3

Scheduling of ESS in DM scheduling strategy.
hour SoC Hour SoC Hour SoC Hour SoC
1 0.2 7 0.6 13 0.5 19 0.6
2 0.4 8 0.5 14 0.6 20 0.6
3 0.6 9 0.5 15 0.7 21 0.4
4 0.6 10 0.5 16 0.7 22 0.3
5 0.6 11 0.5 17 0.75 23 0.2
6 0.7 12 0.6 18 0.68 24 0

soC

0 24 48 72 96 120 144 168
Time (h)

Fig. 6. Soc scheduling of ESS in a weekly mode (WM).

will charge at 00 to 5 just like case 1. But in the peak hours, it will not be
discharged completely because it is necessary to be ready for providing
load in islanding situations. In case 3 on the first day of ESS charging
strategy battery is charged in 00:00 and 5:00 like in case 1 and in peak
hours it will be discharged almost completely but on the 3rd day,
because the load is not high in comparison with PV and wind, ESS would
not discharge completely. The scheduling process in case 4 shows fewer
charge and discharge cycles because operation policy is based on reli-
ability and on all days except for day 1 ESS will remain with high SOC
level. In this case, ESS doesn’t help microgrid economy.

o
(3,
T
T

chargel/discharge
o
1
1
1
1
1
1

1

ot

(3}
T

-1 1 1 L
0 24 48 72 96 120 144 168

Time (h)

Fig. 7. Charging status of ESS in WM.

Table 4

Result of different algorithms.
Solver oC EENS
PSO 639.5 7.17
GA 651.5 6.9
TLBO 602.4 6.84

Operation cost and ENS of each case are illustrated in Figs. 9 and 10
respectively. One can observe in Fig. 10 that weekly mode scheduling
has better performance in reliability-driven mode. In case 3 DOD is
reduced in comparison with case 1. It is due to the fact that in weekly
mode the condition of equal SOC at the beginning of the day is removed.
Case 4 has more stable charging state because it is scheduled to be of
high capacity in peak hours.

4.4. Effects of different factors on the reliability of microgrid

4.4.1. Influence of parameters of ESS on reliability
In order to assess the effect of ESS scheduling on microgrid operation
and reliability, we analyze ESS parameters on the test system. ESS
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Fig. 8. ESS SOC of different cases in one week.
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Fig. 9. Operation Cost of scenarios.

0.8

cases

Fig. 10. Energy Not Supplied (ENS) of each cases.

capacity can change its management strategy, therefore figure demon-
strates ENS and costs in the operating mode. Higher ESS capacity can
reduce the operating cost of MG and also decrease its discharge depth of
it. ESS power is also one of the main parameters for enhancing reliability
because higher discharge power can be helpful in reliability-driven
strategy. It can be observed that EENS value is decreasing as ESS ca-
pacity and power are reduced.

4.4.2. Effect of peak load on reliability

ESS units are designed to help MGs to decrease operation costs by
delivering power to loads during high-price hours or peak hours. But if
MG has been forced to work in islanding mode in this period, ESS must
provide some part of the load if generated power of RESs and DGs cannot
completely satisfy the load requirement. Excessive discharge of ESS and
low SOC value may result in load interruption in the microgrid. The
effect of the peak load of MG on reliability indices is depicted in Fig. 12.
One can observed that in Fig. 12 EENS grows gradually with increasing
peak load.

5. Conclusion

This paper presented a probabilistic model for optimal scheduling of
energy storage systems in a microgrid based on MCS simulation in both
grid-connected and islanding situations and also, modeling the aging
cost of ESS units concerning both cycling and calendar factors. We first
investigated the scheduling and reliability problems of MGs and the
associated constraints. Then we proposed a new technique to schedule
ESSs in MGs in both daily and weekly modes. This technique is a multi-
objective optimization problem that minimizes costs and enhances the
reliability of the microgrid that is solved by the TLBO algorithm. Using
the simulation conducted on the modified 33 bus test system, it could be
observed that the reliability scheduling of ESS operation in microgrid
will help to meet the microgrid requirements more efficiently. Results
illustrate this point clearly that charging-discharging of ESS can effec-
tively reduce the cost of microgrids while it can improve reliability
performance of the system. The results from daily and weekly mode are
compared and the advantages and disadvantages of each mode are
discussed. It is observed that aging cost and reliability can enhance by
weekly mode scheduling while total cost is better managed in daily
mode scheduling. A further study could assess the effects of selecting
other types of ESS to determine differences between weekly and daily
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Fig. 11. Effect of ESS capacity (a) and discharge power (b) on EENS.
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Fig. 12. EENS variations versus Peak Load.

mode operating strategies. Also, further studies need to be carried out in
order to determine the impact of ESS scheduling on more reliability
indices in microgrid.
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