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a b s t r a c t

Population growth and recent disruptions caused by COVID-19 and many other man-made or natural
disasters all around the world have considerably increased the demand for medical services, which
has led to a rise in medical waste generation. The improper management of these wastes can result in
a serious threat to living organisms and the environment. Designing a reverse logistics network using
mathematical programming tools is an efficient and effective way to manage healthcare waste. In this
regard, this paper formulates a bi-objective mixed-integer linear programming model for designing
a reverse logistics network to manage healthcare waste under uncertainty and epidemic disruptions.
The concept of epidemic disruptions is employed to determine the amount of waste generated in
network facilities; and a Monte Carlo-based simulation approach is used for this end. The proposed
model minimizes total costs and population risk, simultaneously. A fuzzy goal programming method
is developed to deal with the uncertainty of the model. A simulation algorithm is developed using
probabilistic distribution functions for generating data with different sizes; and then used for the
evaluation of the proposed model. Finally, the efficiency of the proposed model and solution approach
is confirmed using the sensitivity analysis process on the objective functions’ coefficients.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Among the numerous challenges ahead of humans, medical
aste management is crucial as the increasing rate of the world-
ide population, wars and infectious diseases has brought about
growing call for the receipt of medical services. World Health
rganization (WHO) refers to medical waste as ‘‘the waste which
s produced during the treatment, diagnosis, or immunization
f humans or animals’’ [1]. As stated by Aung et al. [2], dif-
erent problematic issues like environmental protection against
ontagious diseases, reduction of undesirable emissions, and the
ffective management of medical waste have arisen in this area
hroughout the world. The vast majority of such medical waste is
enerated by hospitals, while the rest of this waste is attributed
o research centers, autopsy and mortuary centers, laboratories,
nd blood banks [3]. About 75 to 90 percent of the entire med-
cal waste is claimed to be non-hazardous, and the remainder
i.e., 10 to 25 percent) is categorized as hazardous [4]. That part
f medical waste that is not managed effectively brings a high
robability of infection and injury for the working staff in this
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domain and even for common people. In addition, the spread
of micro-organisms in this area has exposed the public to some
risks, as well [5]. This phenomenon requires special attention to
the network of hazardous materials in their lifecycle. So, infec-
tious medical waste management is a vital part of controlling the
epidemic disruptions that improper collection and treatment can
boost the spread of disruption, leading to extra pressure on the
community [6].

To this extent, the infectious waste management problems
are categorized in reverse logistics networks that should be ad-
equately designed to optimally reduce the potential harms to
the people and extra cost to the managers [7]. Considering these
challenges in real-world problems (regulations imposed by WHO
for the collection and treatment) can lead to stochastic multi-
objective mathematical models. Although several studies have
been conducted on healthcare waste management in the context
of supply chains, a few of them have considered its network
design in case of disruptions and especially epidemic disruptions.
In recent years, due to unpredictable disruptive events, designing
supply chain networks has become a complex decision-making
issue [8]. This process is vital for managing the waste flows
and at the strategic level, it is important to build an integrated
model that considers a wide range of decisions to find optimum
solutions. To the best of the authors’ knowledge, designing a
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reverse network of healthcare waste in the presence of epidemic
disruptions has not been addressed in the literature. Therefore,
the contributions of this research are as follows.

• Conceptualizing effect of an epidemic disruption on the
waste management;

• Developing a bi-objective mixed-integer linear program-
ming (MILP) model for healthcare waste management under
uncertainty and epidemic disruptions;

• Applying a Monte Carlo-based simulation approach to de-
termine the amount of waste generated;

• Employing a fuzzy goal programming method to solve the
proposed bi-objective model;

The rest of this paper is structured as follows. Section 2 reviews
the related literature. The proposed model is formulated in Sec-
tion 3. Modeling the epidemic disruption process is presented in
Section 4. Sections 5 and 6 are allocated to the multi-objective
solution approach and experimental results, respectively. Sec-
tions 7 and 8 present the managerial implications and conclusion,
respectively.

2. Literature review

Designing a reverse logistics network seems to be the desired
olution for proper healthcare waste management and as such,
ecent related papers, with an explicit focus on modeling features
re investigated in this section to position the contribution of the
esearch.

A MILP model was proposed in this area by Shi et al. [9] for
he healthcare waste reverse logistics network. Its focus was on
he minimization of the network costs using an improved genetic
lgorithm (GA) to solve the problem. In this regard, Budak and
stundag [10] presented a MILP model while focusing on two
lements including the optimization of the number and location
f facilities by minimizing costs. Nolz et al. [11] worked on
he development of an inventory routing problem for the bet-
er management of healthcare wastes. Two solution approaches
ere proposed for the best possible management of both visiting
chedules and vehicle routing. In the same way, Windfeld and
rooks [1] analyzed how to manage medical waste in another
rea by assigning high importance to how to optimally manage
edical waste as this type of waste was highly increasing in

erms of quantity. Indeed, they addressed the issues pertaining
o the transportation, collection, production, and disposal of such
aste. They enumerated the status of medical waste in some
eveloping countries. Makajic-Nikolic et al. [12] embarked on de-
eloping Fault Tree Analysis (FTA). It was an application program
hat aimed to evaluate the inherent risks in the management of
nfectious medical waste at the Serbian Clinical Center. All the
xisting risks in the management process of medical waste have
een revealed. They reported that the wrong separation of trash
nd waste collection by hand was a highly risky issue in tackling
his challenge.

Gergin et al. [13] developed an artificial bee colony algorithm
o solve the facility location problem for disposing of health-
are waste. A novel pharmaceutical distribution and healthcare
aste collection system was suggested by Osaba et al. [14]. They

ormulated a mixed-integer programming model to structure a
eterogeneous vehicle routing problemwith simultaneous pickup
nd delivery, taking into account the non-crossing routes. A meta-
euristic algorithm was developed based on the bat algorithm
o solve the problem. Kargar et al. [15] applied a multi-objective
ILP model to design a reverse logistic network to manage med-

cal waste under uncertainty. They controlled the uncertain pa-
ameters of the proposed model by a stochastic robust opti-
ization approach. The goal of their model is to minimize total
2

costs and uncollected infectious waste; and to select the best
treatment technology. They employed a fuzzy goal programming
method to solve the multi-objective model. In another research
by Kargar et al. [16], a multi-objective MILP model was proposed
for healthcare waste management during the outbreak of COVID-
19. Their model minimizes population risk, total costs, and the
maximum amount of uncollected infectious waste, simultane-
ously. They employed a goal programming-based approach to
solve the multi-objective model.

To collect and dispose of hazardous healthcare waste, Homay-
ouni and Pishvaee [17] formulated a bi-objective MILP model
under uncertainty to minimize total network costs, and trans-
portation and operational risks. They used a robust optimization
approach to deal with uncertainty, and the augmented epsilon-
constraint method was applied to solve their bi-objective model.
Yu et al. [18] designed a reverse logistic network to manage
healthcare waste during the COVID-19 epidemic by a multi-
objective MILP model. They employed a fuzzy compromise pro-
gramming method to solve their multi-objective model. In an-
other paper by Yu et al. [19], a bi-objective stochastic MILP
model was suggested to minimize ‘‘total costs’’ and ‘‘population
risk’’ for healthcare waste management. A bi-level MILP model
aimed at minimizing total costs and population risk for hazardous
healthcare waste management by Saeidi-Mobarakeh et al. [20]
was developed. They used a robust optimization approach to
cope with uncertainty. Furthermore, by combining the particle
swarm optimization (PSO) and GA, Saeidi-Mobarakeh et al. [21]
proposed an efficient metaheuristic algorithm to solve the health-
care waste management problem to minimize environmental risk
and total costs. A bi-objective MILP model to manage healthcare
waste considering the location-routing problem was developed
by Nikzamir and Baradaran [22]. Their model minimizes total
costs of network and emissions, simultaneously. They engaged a
new meta-heuristic algorithm to solve the large-scale problem.

Shadkam [23] designed a reverse logistic network using a MILP
model considering both forward and reverse flows to manage
COVID-19 wastes, especially vaccine wastes. In this vein, Govin-
dan et al. [24] developed a bi-objective MILP model for collecting
healthcare wastes during the outbreak of COVID-19. The multi-
item, multi-period model has two-echelon including waste gen-
eration nodes and collection centers focused on minimizing total
cost and population risk. They used a fuzzy goal programming
method to deal with the multi-objective model. A multi-objective
MILP model for designing a sustainable healthcare waste man-
agement network was proposed by Torkayesh et al. [25] with
three objectives including minimizing total cost (economic as-
pect), maximizing job creation (social aspect), and minimizing
environmental risks (environmental aspect). They used an ‘‘im-
proved multi-choice goal programming approach’’ to solve the
multi-objective model. Similarly, Tirkolaee and Aydin [26] pro-
posed a bi-objective MILP model for transportation planning and
outsourcing services during the COVID-19 pandemic outbreak
with a sustainable perspective. A bi-objective MILP model to
design a green reverse logistics for healthcare waste management
was formulated by Govindan et al. [27]. The purposes of their
model were to minimize total costs and population risk at the
same time. They used a scenario-based approach to overcome
the uncertainty of the amount of waste generated, and applied
an improved augmented epsilon-constraint method to solve the
bi-objective model.

In the last decade, many researchers have used mathemati-
cal programming models for healthcare waste management. The
review of the literature reveals that facility location, popula-
tion risk, and uncertainty are among the issues that have been
widely addressed in the literature. On the other hand, issues such

as capacity level and treatment technology selection have not
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Papers reviewed in the healthcare waste management area.
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Shi et al. [9] MILP – ✓ – ✓ – – – – – – ✓ ✓ ✓ ✓ – – – –
Medaglia et al. [28] MILP ✓ – – ✓ – – – – – ✓ ✓ ✓ – – – – – –
Nolz et al. [11] MILP ✓ – ✓ – – – – – – ✓ ✓ – – – ✓ ✓ – –
Budak and Ustundag [10] MILP – ✓ ✓ ✓ – – – – – – ✓ ✓ ✓ ✓ ✓ – – –
Mantzaras and Voudrias [29] MINLP – ✓ ✓ ✓ – ✓ – – – – ✓ ✓ ✓ ✓ ✓ – – –
Alshraideh and Qdais [30] MILP – – ✓ – – – – ✓ – – ✓ ✓ – – – ✓ – –
Osaba et al. [14] MILP – – ✓ – – – – ✓ – – ✓ – – – ✓ – – –
Wang et al. [31] MINLP ✓ – ✓ ✓ – – – – – – ✓ ✓ ✓ ✓ ✓ – – –
Kargar et al. [15] MILP ✓ ✓ ✓ ✓ – ✓ – – – – ✓ ✓ ✓ ✓ ✓ – ✓ ✓
Kargar et al. [16] MILP ✓ – ✓ ✓ – – – – – ✓ ✓ – ✓ – ✓ – ✓ –
Homayouni and Pishvaee [17] MILP ✓ ✓ – ✓ – ✓ – – – ✓ ✓ – ✓ ✓ ✓ – – ✓
Taslimi et al [32] MILP ✓ – ✓ – – – – – – ✓ ✓ ✓ – – – – – –
Yu et al. [18] MILP ✓ – ✓ ✓ – – – – – ✓ ✓ – ✓ – ✓ – ✓ –
Yu et al. [19] MILP ✓ ✓ – ✓ – ✓ – – – ✓ ✓ – ✓ ✓ ✓ – – ✓
Saeidi-Mobarakeh et al. [20] MILP ✓ ✓ - ✓ ✓ – – ✓ – ✓ ✓ – ✓ – ✓ ✓ – ✓
Saeidi-Mobarakeh et al. [21] MINLP ✓ ✓ – ✓ ✓ – – ✓ – ✓ ✓ ✓ – – – – – –
Nikzamir and Baradaran [22] MILP ✓ ✓ – ✓ – ✓ – ✓ – – ✓ ✓ ✓ ✓ ✓ – – –
Nikzamir et al [33] MILP ✓ ✓ ✓ ✓ – ✓ – ✓ – ✓ ✓ – ✓ ✓ ✓ – – –
Shadkam [23] MILP – – – ✓ – – – – – – ✓ ✓ ✓ ✓ ✓ – – –
Torkayesh et al. [25] MILP ✓ ✓ ✓ ✓ – – – ✓ – ✓ ✓ – ✓ ✓ ✓ – – –
Tirkolaee and Aydin [26] MILP ✓ – – – – – – ✓ – ✓ ✓ ✓ – – ✓ – – –
Govindan et al. [24] MILP ✓ ✓ ✓ ✓ ✓ – – ✓ – ✓ ✓ ✓ – – – – ✓ –
Mei et al. [34] MINLP ✓ – ✓ ✓ – – – – – ✓ ✓ – ✓ – ✓ – – –
Tirkolaee et al. [35] MILP ✓ – ✓ ✓ – – – ✓ – ✓ ✓ – – – ✓ ✓ ✓ –
Eren and Tuzkaya [36] IP ✓ – – – – – – – – – ✓ ✓ – – – – ✓ –
Aydemir-Karadag [4] MINLP ✓ ✓ ✓ ✓ – ✓ – ✓ – ✓ ✓ ✓ ✓ ✓ ✓ – – –
Faizal et al. [37] IP ✓ ✓ – – – – – – – – ✓ ✓ – – – – – –
Valizadeh et al. [38] MILP ✓ ✓ – ✓ ✓ – – – – – ✓ – ✓ ✓ ✓ – – ✓
Polat [39] MILP ✓ – – ✓ – – – ✓ – ✓ ✓ – – – ✓ – ✓ –
Lotfi et al. [40] MILP – – ✓ ✓ – – – – – ✓ ✓ – ✓ ✓ ✓ ✓ – ✓
Govindan et al. [27] MILP ✓ ✓ ✓ ✓ – ✓ – ✓ – ✓ ✓ ✓ ✓ ✓ ✓ ✓ – –
This research MILP ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ –

IP: Integer Programming; MILP: Mixed-Integer Linear Programming; MINLP: Mixed-Integer Non-Linear Programming
received enough attention. In addition, previous studies failed
to address the set covering problem and epidemic disruptions.
Motivated by reviewed papers and the importance of the context,
a bi-objective MILP model for healthcare waste management is
presented considering facilities location, set covering, epidemic
disruptions, treatment technology selection, population risk and
capacity level under uncertainty. A Monte Carlo simulation ap-
proach is developed to consider epidemic disruptions. In addition,
a multi-objective approach based on the fuzzy goal programming
method is applied to solve the proposed bi-objective model. In
Table 1, a comprehensive and accurate review of the literature
is presented to show the research gaps and consequently, to
position the contributions of this study.

3. Proposed model

This section presents a bi-objective MILP model to manage
edical waste under uncertainty. The network under study in-
ludes waste generation nodes, collection, treatment, recycling,
nd disposal centers. There are two types of waste generation
odes; the first type is hazardous nodes that all the waste pro-
uced by them is infectious, and the second type includes both
‘infectious’’ and ‘‘non-infectious’’ waste. All waste is transferred
rom the waste generation node to the collection centers, and
hen the infectious waste is transferred to the treatment centers.
3

In the collection centers, non-infectious waste that is recyclable
is shipped to the recycling centers, and the rest is delivered to
the disposal centers. At the treatment center, after the treatment
process, non-recyclable waste is moved to the disposal centers,
and the rest of the waste is delivered to the recycling centers (See
Fig. 1).

In the following, the assumptions of the proposed model are
presented. The network includes a reverse flow; and is multi-
item, multi-period, and multi-echelon. Both ‘‘infectious’’ and
‘‘non-infectious’’ wastes are considered. Infectious waste is either
infectious in nature or generated by hazardous nodes. The geo-
graphical location of waste generation nodes is known, but the
model determines the location of other centers. There are differ-
ent technologies with various capacity levels for waste treatment.
Infectious and non-infectious wastes should not be transferred
by the same vehicle. Vehicles are heterogeneous. The amount of
waste generated by each node is uncertain. Vehicles and centers
are considered capacitated.

In this paper, first, the proposed model is formulated, and a
multi-objective solution approach based on fuzzy goal program-
ming is presented to convert the bi-objective MILP model to a
single-objective one. Then, a simulation algorithm is developed
to generate data, and finally, the proposed model is run in GAMS
software. Fig. 2 shows the general structure of the research.
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Fig. 1. The structure of the investigated network in this study.
Fig. 2. The general structure of the research.
The proposed mathematical model is as follows:

athematical model

Indices
w ∈ {1, 2, . . . ,W } Waste types
v ∈ {1, 2, . . . , V } Vehicles
n ∈ {1, 2, . . . ,N} Waste generation nodes
c ∈ {1, 2, . . . , C} Collection centers
k ∈ {1, 2, . . . , K } Treatment centers
r ∈ {1, 2, . . . , R} Recycling centers
4

d ∈ {1, 2, . . . ,D} Disposal centers
l ∈ {1, 2, . . . , L} Capacity levels
g ∈ {1, 2, . . . ,G} Treatment technologies
s ∈ {1, 2, . . . , S} Scenarios
t ∈ {1, 2, . . . , T } Time periods
Parameters
CPTR

v The capacity of vehicle v
CPCL−H

c The capacity of collection center c for
hazardous waste

CPCL−N
c The capacity of collection center c for

non-hazardous waste
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CPRC
wr The capacity of recycling center r for

waste type w
CPDS

wd The capacity of disposal center d for
waste type w

WGwnts The amount of type w waste generated at
waste generation node n in period t, and
under scenario s

CPUP
lg Maximum capacity level l for treatment

technology g
CPLOW

lg Minimum capacity level l for treatment
technology g

CECL
c The cost of establishing collection center

c
CERC

r The cost of establishing recycling center r
CETRT

k The cost of establishing treatment center
k

CEDS
d The cost of establishing disposal center u

CIlg The cost of installing treatment technol-
ogy g with capacity level l

CTRv The transportation cost for each unit of
distance by vehicle v

CPRCL
wct The cost of processing type w waste at

collection center c in period t
CPRTRT

wkt The cost of processing type w waste at
treatment center k in period t

CPRRC
wrt The cost of recycling type w waste at

recycling center r in period t
CPRDS

wdt The cost of disposing type w waste at
disposal center d in period t

DISHCnc The distance between waste generation
node n and collection center c

DISCTck The distance between collection center c
and treatment center k

DISCRcr The distance between collection center c
and recycling center r

DISCDcd The distance between collection center c
and disposal center d

DISTRkr The distance between treatment center k
and recycling center r

DISTDkd The distance between treatment center k
and disposal center d

POnc Population living between waste gen-
eration node n and collection center
c

VLw The volume of waste type w
PWwlg The amount of energy consumed for

treating one unit of type w waste by
treatment technology g with capacity
level l

Eng Energy unit price

ξwn

{
1

0

If waste generation node n is hazardous
or type w waste is infectious,
Otherwise

ϕnc

{
1

0

If waste generation node n covered by
collection center c,
Otherwise

Ωwct Non-hazardous recyclable type w waste
proportion shipped from collection cen-
ter c to recycling centers in period
t

Φwkt Treated recyclable type w waste propor-
tion shipped from treatment center k to
recycling centers in period t

ωs Probability of scenario s
Ψ A very large number
5

Variables

δCLc

{
1

0

If collection center c is established,
Otherwise

δTRTk

{
1

0

If treatment center k is established,
Otherwise

δRCr

{
1

0

If recycling center r is established,
Otherwise

δDSd

{
1

0

If disposal center d is established,
Otherwise

δlgk

{
1

0

If treatment technology g with capacity
level l is installed in treatment center k
Otherwise

ψHC
wncvts The amount of type w waste shipped

from waste generation node n to collec-
tion center c by vehicle v in period t, and
under scenario s

ψCT
wckvts The amount of type w waste shipped

from collection center c to treatment cen-
ter k by vehicle v in period t, and under
scenario s

ψCR
wcrvts The amount of type w waste shipped

from collection center c to recycling cen-
ter r by vehicle v in period t, and under
scenario s

ψCD
wcdvts The amount of type w waste shipped

from collection center c to disposal cen-
ter d by vehicle v in period t, and under
scenario s

ψTR
wkrvts The amount of type w waste shipped

from treatment center k to recycling cen-
ter r by vehicle v in period t, and under
scenario s

ψTD
wkdvts The amount of type w waste shipped

from treatment center k to disposal cen-
ter d by vehicle v in period t, and under
scenario s

XHC−H
ncvts The number of type v vehicles needed

for shipping hazardous waste from waste
generation node n to collection center c
in period t, and under scenario s

XHC−N
ncvts The number of type v vehicles needed

for shipping non-hazardous waste from
waste generation node n to collection
center c in period t, and under scenario
s

XCT
ckvts The number of type v vehicles needed for

shipping the waste from collection center
c to treatment center k in period t, and
under scenario s

XCR
crvts The number of type v vehicles needed for

shipping the waste from collection center
c to recycling center r in period t, and
under scenario s

XCD
cdvts The number of type v vehicles needed for

shipping the waste from collection center
c to disposal center d in period t, and
under scenario s

XTR
krvts The number of type v vehicles needed for

shipping the waste from treatment center
k to recycling center r in period t, and
under scenario s
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O

M

∑

w

a

XTD
kdvts The number of type v vehicles needed for

shipping the waste from treatment center
k to disposal center d in period t, and
under scenario s

bjective functions

inZ1 =

∑
c

CECL
c × δCLc

+

∑
k

CETRT
k × δTRTk +

∑
r

CERC
r × δRCr +

∑
d

CEDS
d × δDSd +

l,g,k

CIlg × δlgk +

∑
w,n,c,v,t,s

ωs × CPRCL
wct × ψHC

wncvts

+

∑
w,c,k,v,t,s

ωs × CPRTRT
wkt × ψCT

wckvts+∑
,c,k,r,v,t,s

ωs × CPRRC
wrt × (ψCR

wcrvts + ψTR
wkrvts)

+

∑
w,c,k,d,v,t,s

ωs × CPRDS
wdt × (ψCD

wcdvts + ψTD
wkdvts)+∑

,e,g,j,k,b,t,s

ωs × Eng × PWaeg × ψCT
ajkbts

+

∑
n,c,v,t,s

ωs × CTRv × DISHCnc × XHC−H
ncvts +∑

n,c,v,t,s

ωs × CTRv × DISHCnc × XHC−N
ncvts

+

∑
c,k,v,t,s

ωs × CTRv × DISCTck × XCT
ckvts+∑

c,r,v,t,s

ωs × CTRv × DISCRcr × XCR
crvts

+

∑
c,d,v,t,s

ωs × CTRv × DISCDcd × XCD
cdvts+∑

k,r,v,t,s

ωs × CTRv × DISTRkr × XTR
krvts

+

∑
k,d,v,t,s

ωs × CTRv × DISTDkd × XTD
kdvts

(1)

MinZ2 =

∑
w,n,c,v,t,s

ωs × POnc × DISHCnc × ψHC
wncvts × ξwn (2)

s.t.∑
w,n,v

ψHC
wncvts × ξwn × VLw ≤ CPCL−H

c ∀c, t, s (3)

∑
w,n,v

ψHC
wncvts × (1 − ξwn) × VLw ≤ CPCL−N

c ∀c, t, s (4)

∑
c,v

ψCR
wcrvts +

∑
k,v

ψTR
wkrvts ≤ CPRC

wr ∀w, r, t, s (5)

∑
c,v

ψCD
wcdvts +

∑
k,v

ψTD
wkdvts ≤ CPDS

wd ∀w, d, t, s (6)

∑
w,c,v

ψCT
wckvts × VLw + Ψ × (1 − δlgk) > CPLOW

lg ∀l, g, k, t, s (7)

∑
ψCT

wckvts × VLw ≤ Ψ × (1 − δlgk) + CPUP
lg ∀l, g, k, t, s (8)
w,c,v

6

∑
l,g

δlgk ≤ 1 ∀k (9)

∑
w ψ

HC
wncvts × VLw × ξwn

CPTR
v

≤ XHC−H
ncvts

<

∑
w ψ

HC
wncvts × VLw × ξwn

CPTR
v

+ 1 ∀n, c, v, t, s (10)

∑
w ψ

HC
wncvts × VLw × (1 − ξwn)

CPTR
v

≤ XHC−N
ncvts

<

∑
w ψ

HC
wncvts × VLw × (1 − ξwn)

CPTR
v

+ 1 ∀n, c, v, t, s (11)

∑
w ψ

CT
wckvts × VLw
CPTR

v

≤ XCT
ckvts

<

∑
w ψ

CT
wckvts × VLw
CPTR

v

+ 1 ∀c, k, v, t, s (12)

∑
w ψ

CR
wcrvts × VLw
CPTR

v

≤ XCR
crvts

<

∑
w ψ

CR
wcrvts × VLw
CPTR

v

+ 1 ∀c, r, v, t, s (13)

∑
w ψ

CD
wcdvts × VLw
CPTR

v

≤ XCD
cdvts

<

∑
w ψ

CD
wcdvts × VLw
CPTR

v

+ 1 ∀c, d, v, t, s (14)

∑
w ψ

TR
wkrvts × VLw
CPTR

v

≤ XTR
krvts

<

∑
w ψ

TR
wkrvts × VLw
CPTR

v

+ 1 ∀k, r, v, t, s (15)

∑
w ψ

TD
wkdvts × VLw
CPTR

v

≤ XTD
kdvts

<

∑
w ψ

TD
wkdvts × VLw
CPTR

v

+ 1 ∀k, d, v, t, s (16)

∑
c,v

ψHC
wncvts × ϕnc ≥ WGwnts ∀w, n, t, s (17)

∑
n,v

ψHC
wncvts =

∑
k,v

ψCT
wckvts +

∑
r,v

ψCR
wcrvts +

∑
d,v

ψCD
wcdvts ∀w, c, t, s

(18)∑
k,v

ψCT
wckvts =

∑
n,v

ψHC
wncvts × ξwn ∀w, c, t, s (19)

∑
r,v

ψCR
wcrvts = Ωwct ×

∑
n,v

ψHC
wncvts × (1 − ξwn) ∀w, c, t, s (20)

∑
c,v

ψCT
wckvts =

∑
r,v

ψTR
wkrvts +

∑
d,v

ψTD
wkdvts ∀w, k, t, s (21)

∑
r,v

ψTR
wkrvts = Φwkt ×

∑
c,v

ψCT
wckvts ∀w, k, t, s (22)
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∑
w,n,v

ψHC
wncvts ≤ Ψ × δCLc ∀c, t, s (23)

∑
w,k,v

ψCT
wckvts ≤ Ψ × δCLc ∀c, t, s (24)

∑
w,r,v

ψCR
wcrvts ≤ Ψ × δCLc ∀c, t, s (25)

∑
w,d,v

ψCD
wcdvts ≤ Ψ × δCLc ∀c, t, s (26)

∑
l,g

δlgk ≤ δTRTk ∀k (27)

∑
w,c,v

ψCT
wckvts ≤ Ψ ×

∑
l,g

δlgk ∀k, t, s (28)

∑
w,r,v

ψTR
wkrvts ≤ Ψ ×

∑
l,g

δlgk ∀k, t, s (29)

∑
w,d,v

ψTD
wkdvts ≤ Ψ ×

∑
l,g

δlgk ∀k, t, s (30)

∑
w,c,v

ψCR
wcrvts ≤ Ψ × δRCr ∀r, t, s (31)

∑
w,k,v

ψTR
wkrvts ≤ Ψ × δRCr ∀r, t, s (32)

∑
w,c,v

ψCD
wcdvts ≤ Ψ × δDSd ∀d, t, s (33)

∑
w,k,v

ψTD
wkdvts ≤ Ψ × δDSd ∀d, t, s (34)

The first objective function minimizes the total cost including
the cost of establishing collection, treatment, recycling, and dis-
posal centers, the cost of installing treatment technology, costs of
processing waste at collection, treatment, recycling, and disposal
centers, the cost of energy consumed by technologies installed at
treatment centers, and the cost of applying vehicles to transport
waste between centers. The second objective function minimizes
the population that is exposed to the spread of infection from the
infectious waste.

The collection center consists of two parts, including infectious
waste and non-infectious waste parts. These parts are capac-
itated. Constraints (3) and (4) are for controlling the capacity
of infectious and non-infectious waste parts, respectively. The
capacity limitation of recycling and disposal centers is also con-
trolled by Constraints (5) and (6), respectively. The capacity levels
for technologies installed in the treatment centers are determined
by Constraints (7) and (8). Each treatment center is allowed to
install a maximum of one technology with one capacity level. This
condition is considered in Constraints (9). Constraints (10) to (16)
are applied to calculate the number of vehicles used in the net-
work to transport the waste. For example, the number of vehicles
used to move the infectious waste from waste generation nodes
to collection centers is considered by Constraint (10). Constraint
(17) states that all waste should be collected from the waste
generation nodes. Inventory balances at the collection centers
are guaranteed by Constraints (18) to (20). Similarly, inventory

balances at the treatment centers are controlled by Constraints

7

(21) and (22). The location condition for the collection centers
is considered in Constraints (23) to (26). The prerequisite for in-
stalling the technology in the treatment centers is that the desired
center has already been set up. This is satisfied by Constraint
(27). The condition for entering/ leaving the waste to/ from the
treatment center is that the treatment technology is installed
in the center. Constraints (28) to (30) guarantee this condition.
The location condition for the recycling centers is applied by
Constraints (31) and (32). Finally, the location condition for the
disposal centers is considered by Constraints (33) and (34).

4. Modeling the epidemic disruption process

Recently, epidemic disruptions have been a boundless threat
to humankind that is affecting all aspects of our life. Epidemics
could happen as natural disasters, such as the coronavirus out-
break (COVID-19) where the virus infected millions of people
causing about 6 million deaths.1 These disruptions may occur as
cautious bioterrorism mass destructions. Among others, anthrax
and smallpox are the two most harmful biological agents that
could be used in a probable man-made action [41]. From a sus-
tainability point of view, when an epidemic disruption occurs,
it directly affects the waste generation rate, results in a high
demand rate in infected areas of the waste collection network.

Therefore, a stochastic approach could be suitable for model-
ing the occurrence of epidemic disruptions and their direct effect
on waste generation rate and the outbreak risk on the network.
To the best of our knowledge, the epidemic disruption process
has not been covered in the literature of waste management
through quantitative methods. The graphical representation of
the occurrence of an outbreak and its propagation through the
network is presented in Fig. 3. As it is depicted, when an outbreak
occurs at time t, the starting waste generation node is attained,
and then it is probable that all the facilities of the network in
the neighboring zones could be affected due to the propagations.
The propagation risk level is mainly a function of the flow level
between the facilities and their distance. It is clear that when
the secondary facilities are contaminated, they could spread the
disruption as well.

Modeling the described disruption occurrence and propaga-
tion process starts with the segmentation of the whole network
into a set of zones and an exposure level is defined for each
zone regarding its characteristics. The next section defines disrup-
tion and the required characteristics including arrival time and
strength. Using the notation summarized in Table 2, the process
will be modeled.

In general, when a node is disrupted, the strictness of the dis-
ruption could be defined through two elements, namely, intensity
and time for recovery. Propagation is another aspect describing
the disruption strictness and will be added here. These three
dimensions are defined by the following parameters respectively:
βe, θe, and proe|e′ for a given node e and the connected one e’.
Disruptions do not homogeneously disturb the network. The cor-
responding impacts could be well defined via a phase-dependent
recovery function, as illustrated in Fig. 4.

4.1. Scenario generation framework

Scenario generation methodology is employed using the Mon-
te-Carlo sampling method as a common approach that uses sta-
tistical data of uncertain parameters to generate comprehensive
scenarios over a given planning horizon. This method mainly
employs the inverse distribution function of the parameters using
pseudo-random numbers. The main steps of generating scenarios
according to the abovementioned descriptions are as follows.

1 www.who.int/csr/don/2010_05_28/en/index.html

http://www.who.int/csr/don/2010_05_28/en/index.html
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5
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l

Fig. 3. Propagation of epidemic disruption in a network through the time.
Fig. 4. Generic loss-recovery functions.
Table 2
Disruption process notations.
Z Set of partitioned zones (z ∈ Z);
πz The risk exposure level of zone z;
βe The proportion of demand affected at node e,binary parameter (0,1);
θe Time for recovery of facilities, in time periods;
λz The time between two successive disruptions at each zone;
αe|z(e) The risk exposure level of the facility e in case a disruption occurs in the zone;
ce|e′ Propagation probability of facility e when the facility e′ is affected by a disruption

(
ce|e = 1

)
;

proe|e′ Equals 1 if disruption is propagated from facility e′ to facility e, otherwise 0
(
proe|e = 1

)
.

(1) Set pre-disruption capacity levels for all nodes in the network;
(2) Generate disruption arrival time for each zone;
(3) Generate disruption intensity;
(4) Apply disruption propagation test;
(5) Update capacity of disrupted facilities for disruption duration;
(6) Aggregate these values over the time periods.

. Multi-objective solution approach

Numerous methods are at play to deal with the multi-objective
rogramming models. The ‘‘Goal programming’’ method is one
f the most prevalent approaches that have been employed in
arious fields such as pharmaceutical supply chain [42], reverse
ogistics [43], waste management [24] and so on. In addition,
8

the application of methods based on fuzzy theory in multi-
objective problems seems to be a good option to deal with
uncertainty [44]. Accordingly, this paper proposes a fuzzy goal
programming method to cope with the multi-objective model as
follows.

Step 1: Determining goals
First, decision-makers define the goals of the problem. To this

end, it is desired to solve the proposed model taking into account
each objective function separately. Then, the optimal values of
the objective functions will be determined. Next, based on the
optimal values, decision-makers will determine the goals of the
problems. For instance, it is supposed that the optimal values of
Z∗

1 and Z∗

2 are assigned to the first and second objective functions,
respectively. Based on this, problem goals can be defined as
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follows where G1 and G2 represent the goals of the first and
second objective functions, respectively.

G1 = Z∗

1

G2 = Z∗

2

(35)

tep 2: Goal programming model
In this step, the goal-programming model is defined as fol-

ows:
in DV+

1

in DV+

2

.t.

1 − DV+

1 + DV−

1 = G1

Z2 − DV+

2 + DV−

2 = G2

System Constraints

(36)

here DV+

1 and DV+

2 denote the positive deviations, and DV−

1
nd DV−

2 indicate the negative deviations from the first and
econd goals, respectively.

tep 3: Equivalent single objective model
This step is focused on converting the multi-objective goal-

rogramming model extracted from the previous steps into a
ingle-objective model for every nonconformity from the objec-
ive functions. Afterward, it comes to the development of a mem-
ership function via the proposed method by Zandkarimkhani
t al. [42]. The main function of the present goal-programming
odel is to minimize the deviations from the goals already de-

ermined by the decision-makers; therefore, the following mem-
ership function is applied:

Min
DV+

i (x)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 DV+

i (x) > UDV+

i

0 DV+

i (x) < LDV+

i
UDV+

i − DV+

i (x)
UDV+

i − LDV+

i
LDV+

i ≤ DV+

i (x) ≤ UDV+

i

(37)

n which, UDV+

i and LDV+

i represent the upper and lower bounds
f unwanted deviations from goal i, respectively. Here, the mem-
ership function of these deviations from the goal is indicated by
Min
DV+

i (x)
.

The values of LDV+

1 and LDV+

2 are always zero. To calculate
DV+

1 and UDV+

2 , the upper bound of the objective functions 1
UZ1) and 2 (UZ2) should first be calculated. These values are
alculated by the lexicographic approach. Then, the values of
DV+

1 and UDV+

2 are determined by Eq. (38).

V+

1 = UZ1 − G1

V+

2 = UZ2 − G2
(38)

inally, the equation below presents the fuzzy single-objective
odel:
ax FGP =

∑
i

wi × MFi

.t.

Fi ≤ µMin
DV+

i (x)
∀i

i − DV+

i + DV−

i = Gi∀i

ystem Constraints

(39)
here wi represents the weight of the objective function i.

9

. Experimental results

This section is dedicated to examine the efficiency of the
roposed model and solution approach using simulated data. For
his purpose, first, the simulation process for data generation is
xplained, and the results obtained from the implementation of
0 simulated problems in GAMS software are presented. Then
he efficiency of our proposed solution approach is evaluated
n the comparative analysis sub-section. Finally, a discussions
ub-section is provided based on the obtained results.

.1. Data generation

In this sub-section, the parameters of the proposed model are
imulated with the help of probabilistic distribution functions.
he simulation process is designed to provide a feasible solution
pace for any desired amount of indices. In fact, to solve this
roblem, the capacities of the centers and vehicles we defined
s a function of the amount of the generated waste. It should
e noted that the Monte Carlo simulation approach presented in
ection 4 will be used to simulate the parameter of the amount of
aste generated at each node. Table 3 shows the proposed model
f the simulation parameter algorithm.
To validate the proposed model, 10 test problems are gener-

ted in different sizes by the proposed simulation algorithm and
he proposed model is run on GAMS software using CPLEX solver.
hese problems are designed so that by increasing the number
f the problem, the solution space and its complexity will be
ncreased as well. Table 4 indicates the values of the simulated
roblems.
In what follows, an example is provided to show how to

enerate data in GAMS software. For example, Table 5 represents
he amount of the waste generated using Monte Carlo simulation
or the first instance (INC1).

The capacity of recycling centers can be calculated using the
ollowing formula. Table 6 shows the simulated data for the
apacity of recycling centers.

PRC
wr = Round(

∑
n,t,s WGwnts

W × T × S
) (40)

6.2. Numerical examples

In this sub-section, the proposed multi-objective model is
transformed into a single-objective model using proposed ap-
proach. The implementation process of the proposed solution
approach for the simulated problems is as follows:

• Step 1: In this step, the model is executed using simulated
ata for each objective function, separately. The optimal values
btained for the objective functions are considered as their goals.
n Table 7, the goal values for each problem are given.

• Step 2: In this step, the goal-programming model is formu-
ated by Eq. (36) based on the goals obtained. For example, the
oal programming model for INC7 is as follows:

in DV+

1

in DV+

2

.t.

1 − DV+

1 + DV−

1 = 32, 937, 767

2 − DV+

2 + DV−

2 = 730, 720, 732

1 =

∑
c

CECL
c × δCLc +

∑
k

CETRT
k × δTRTk

+

∑
CERC

r × δRCr +

∑
CEDS

d × δDSd +
r d
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Table 3
The simulation algorithm for data generation.
Indices/ Parameters Functions

w, v, n, c, k, r, d, l, g, s, t The user determines the value of indices

WGwnts Monte Carlo

VLw Uniform(0.5, 0.6)

CPTR
v Round(

∑
w,n,t,s WGwnts × VLw

Uniform(6, 10) × T × S
)

CPCL−H
c Round(Uniform(1.2, 1.5) ×

∑
w,n,t,s WGwnts × VLw

C × T × S
)

CPCL−N
c

CPRC
wr Round(

∑
n,t,s WGwnts

R × T × S
)

CPDS
wd Round(Uniform(0.4, 0.5) ×

∑
n,t,s WGwnts

D × T × S
)

CPUP
lg Round(Uniform(1.5, 2) ×

∑
a,i,t,s WGwnts × VLw

T × S
)

CPLOW
lg 0

CECL
c Round(Uniform(2 × 106, 4 × 106))

CERC
r Round(Uniform(1 × 106, 2 × 106))

CETRT
k Round(Uniform(1.5 × 106, 3 × 106))

CEDS
d Round(Uniform(1.2 × 106, 2.2 × 106))

CIlg Round(Uniform(8 × 105, 9 × 105))
CTRv Round(Uniform(1.8 × 102, 2.3 × 102))

CPRCL
wct , CPR

TRT
wkt , CPR

RC
wrt , CPR

DS
wdt Round(Uniform(3.3 × 102, 4 × 102))

DISHCnc ,DIS
CT
ck ,DIS

CR
cr

DISCDcd ,DIS
TR
kr ,DIS

TD
kd

Round(Uniform(3 × 101, 8 × 101))

POnc Round(Uniform(6 × 103, 9 × 103))

PWwlg Round(Uniform(2 × 101, 3 × 101))

ξwn Round(Uniform(0, 1.5))

ϕnc Round(Uniform(0, 1.5)) and
∑

j

ϕij ≥ 1 ∀i

Ωwct ,Φwkt Uniform(0.7, 0.8)

Eng 10
∑
l,g,k

CIlg × δlgk +

∑
w,n,c,v,t,s

ωs × CPRCL
wct × ψHC

wncvts

+

∑
w,c,k,v,t,s

ωs × CPRTRT
wkt × ψCT

wckvts+∑
w,c,k,r,v,t,s

ωs × CPRRC
wrt × (ψCR

wcrvts + ψTR
wkrvts)

+

∑
w,c,k,d,v,t,s

ωs × CPRDS
wdt × (ψCD

wcdvts + ψTD
wkdvts)+∑

a,e,g,j,k,b,t,s

ωs × Eng × PWaeg × ψCT
ajkbts

+

∑
n,c,v,t,s

ωs × CTRv × DISHCnc × XHC−H
ncvts +∑

n,c,v,t,s

ωs × CTRv × DISHCnc × XHC−N
ncvts

+

∑
c,k,v,t,s

ωs × CTRv × DISCTck × XCT
ckvts+∑

c,r,v,t,s

ωs × CTRv × DISCRcr × XCR
crvts

+

∑
ωs × CTRv × DISCDcd × XCD

cdvts+
c,d,v,t,s

10
∑
k,r,v,t,s

ωs × CTRv × DISTRkr × XTR
krvts

+

∑
k,d,v,t,s

ωs × CTRv × DISTDkd × XTD
kdvts

Z2 =

∑
w,n,c,v,t,s

ωs × POnc × DISHCnc × ψHC
wncvts × ξwn

System Constraints

(41)

• Step 3: In this step, first, the upper and lower bounds of
each objective function are calculated using the lexicographic ap-
proach. Then, the upper bound of undesirable deviation from the
goals is determined by Eq. (38). In Table 7, these values are given
for the simulated problems. In addition, membership functions
for the upper bound of undesirable deviation from the goals are
calculated by Eq. (37), which are also reported in Table 7. Finally,
the fuzzy single-objective model is formulated. For example, the
fuzzy single-objective model for INC7 is as follows (Put 0.6 and
0.4 for w1 and w2, respectively):

Max FGP = 0.6 × MF1 + 0.4 × MF2

s.t.

MF1 ≤
2, 826, 399 − DV+

1

2, 826, 399

MF2 ≤
61, 090, 037 − DV+

2

61, 090, 037
+ −
Z1 − DV1 + DV1 = 32, 937, 767
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∑

Table 4
The size of the simulated problems.
Instance w v n c k r d l g s t

INC1 2 1 3 3 2 2 2 1 1 6 6
INC2 2 1 4 3 2 2 2 2 2 7 6
INC3 2 2 4 3 2 2 2 2 2 8 6
INC4 3 2 4 3 3 2 2 2 2 9 6
INC5 3 2 5 3 3 3 3 2 2 9 6
INC6 3 2 5 4 3 3 3 2 3 10 6
INC7 3 2 5 4 3 3 3 3 3 10 8
INC8 4 3 6 4 4 4 4 3 3 11 8
INC9 4 3 7 4 4 4 4 3 3 12 12
INC10 4 3 7 5 4 4 4 4 3 13 12

Z2 − DV+

2 + DV−

2 = 730, 720, 73

Z1 =

∑
c

CECL
c × δCLc +

∑
k

CETRT
k × δTRTk

+

∑
r

CERC
r × δRCr +

∑
d

CEDS
d × δDSd +

l,g,k

CIlg × δlgk +

∑
w,n,c,v,t,s

ωs × CPRCL
wct × ψHC

wncvts

+

∑
w,c,k,v,t,s

ωs × CPRTRT
wkt × ψCT

wckvts+∑
w,c,k,r,v,t,s

ωs × CPRRC
wrt × (ψCR

wcrvts + ψTR
wkrvts)

+

∑
w,c,k,d,v,t,s

ωs × CPRDS
wdt × (ψCD

wcdvts + ψTD
wkdvts)+∑

a,e,g,j,k,b,t,s

ωs × Eng × PWaeg × ψCT
ajkbts

+

∑
n,c,v,t,s

ωs × CTRv × DISHCnc × XHC−H
ncvts +∑

n,c,v,t,s

ωs × CTRv × DISHCnc × XHC−N
ncvts

+

∑
c,k,v,t,s

ωs × CTRv × DISCTck × XCT
ckvts+∑

c,r,v,t,s

ωs × CTRv × DISCRcr × XCR
crvts

+

∑
c,d,v,t,s

ωs × CTRv × DISCDcd × XCD
cdvts+∑

k,r,v,t,s

ωs × CTRv × DISTRkr × XTR
krvts

+

∑
k,d,v,t,s

ωs × CTRv × DISTDkd × XTD
kdvts

Z2 =

∑
w,n,c,v,t,s

ωs × POnc × DISHCnc × ψHC
wncvts × ξwn

System Constraints

(42)

By running the model on GAMS software, the optimal values of
the objective functions and decision variables are obtained. The
implementation steps of the proposed model in GAMS software
for INC3 are shown in Appendix. The optimal values of the
objective functions for each problem are shown in Table 8.

As it was stated, the optimal values of the objective functions
presented in Table 8 are obtained by considering the values of
0.6 and 0.4 for w1 and w2, respectively. A sensitivity analysis is
conducted to validate the proposed model and solution approach,
and to find a set of efficient optimal solutions for various weight
11
Table 5
The amount of waste generated by nodes in INC1.
WGwnts s = 1 s = 2 s = 3 s = 4 s = 5 s = 6

w=1

n=1

t = 1 32.9 34.2 30.5 31.2 34.7 29.4
t = 2 30.2 27 32.3 33.9 27.8 30.9
t = 3 28 29.1 29.6 28.9 26.6 28.9
t = 4 44.5 47.4 42.2 41.5 43.9 36.1
t = 5 46.2 37.8 48.8 49.4 42.1 43.4
t = 6 53 53.7 48 47.9 43.7 52

n=2

t = 1 25.7 33.2 30.3 28.7 25.1 33.9
t = 2 29.3 25.5 31.1 31.5 25.5 34
t = 3 33.2 26.7 33.7 33.3 28.1 31.2
t = 4 34.8 46 41.9 38.2 31.8 41.6
t = 5 44.9 35.8 47.1 45.9 38.6 47.7
t = 6 62.9 49.2 54.6 55.3 46.2 56.1

n=3

t = 1 34.9 31.5 32.5 25.4 29.6 32.3
t = 2 32.1 32.9 33 31.2 27 27.2
t = 3 32.3 27.5 31.7 32.2 30.5 34.8
t = 4 47.2 43.7 44.9 33.8 37.4 39.7
t = 5 49.1 46.2 49.9 45.5 40.8 38.2
t = 6 61.3 50.7 51.4 53.3 50.1 62.5

w=2

n=1

t = 1 26.2 32.1 33.4 25.1 29.8 30.3
t = 2 27.1 31 33.3 30.2 26.5 26.2
t = 3 26.3 29.1 34.8 29.4 32.5 31.6
t = 4 35.4 44.4 46.1 33.5 37.7 37.3
t = 5 41.5 43.5 50.3 44.1 40.1 36.7
t = 6 49.8 53.7 56.5 48.8 53.5 56.9

n=2

t = 1 31.2 32.7 26.1 33.8 26.9 33.2
t = 2 30.1 31.3 28.5 28.3 28.4 25.3
t = 3 30.5 29.9 34.3 33.9 28.8 32.4
t = 4 42.1 45.3 36 45 34 40.8
t = 5 46 44 43.1 41.2 43 35.4
t = 6 57.7 55.2 55.7 56.2 47.4 58.2

n=3

t = 1 25.9 33.8 31.3 35 32.5 27.3
t = 2 26.6 25.4 29.6 26.5 29.1 31.3
t = 3 28.8 27.3 25.4 26.9 30.6 33.1
t = 4 35 46.8 43.2 46.5 41.1 33.5
t = 5 40.7 35.7 44.7 38.7 44.1 43.9
t = 6 54.5 50.3 41.1 44.5 50.3 59.6

Table 6
The capacity of recycling centers in INC1.
CPRC

wr r = 1 r = 2

w = 1 57 57
w = 2 56 56

sets. Accordingly, the Pareto front can be drawn. In this vein,
the strategies based on changing the values of these parame-
ters are defined in Table 9, and the efficiency of the proposed
model is examined for each strategy. In the defined strategies,
as the coefficient of an objective function decreases (increases),
the coefficient of another objective function increases (decreases),
as well. It is expected that a decrease in the coefficient of an
objective function will lead to no improvement of the optimal
value of that objective function. On the other hand, an increase
in the coefficient of the objective function will not lead to a
deterioration of the optimal value of that objective function. In
Table 9, the optimal values of the objective functions for INC7,
INC8, and INC9 strategies have been presented.

According to the results provided in Table 9, as the coefficient
of each objective function increases (decreases), the optimal value
of that objective function decreases (increases). These results ex-
actly match the expectations. Therefore, the results obtained from
the proposed model and solution approach indicate its efficiency
and effectiveness. In addition, the behavior of the first and second
objective functions in different strategies are depicted in Figs. 5
and 6, and the Pareto front resulting from the defined strategies
is shown in Fig. 7.

Figs. 5 and 6 show the behavior of the first and second objec-
tive functions, respectively, for INC7, INC8, and INC9 in different
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Table 7
The goals, upper bounds of objective functions and unwanted deviations from goals.
Instance G1(Z∗

1 ) G2(Z∗

2 ) UZ1 UZ2 UDV+

1 UDV+

2

INC1 19,310,342 188,835,994 19,312,139 188,835,994 1,797 0
INC2 17,941,975 242,194,878 20,637,627 265,431,444 2,695,652 23,236,566
INC3 19,453,233 295,702,929 21,985,489 320,557,713 2,532,256 24,854,784
INC4 21,536,731 370,637,153 23,899,652 405,448,327 2,362,921 34,811,174
INC5 22,806,270 588,163,542 25,684,842 618,140,325 2,878,572 29,976,783
INC6 27,995,638 654,582,051 30,185,028 713,637,116 2,189,390 59,055,065
INC7 32,937,767 730,720,732 35,764,166 791,810,769 2,826,399 61,090,037
INC8 46,986,441 1,040,760,388 53,929,321 1,101,254,071 6,942,880 60,493,683
INC9 59,701,734 1,297,003,456 65,821,657 1,349,738,614 6,119,923 52,735,158
INC10 64,839,312 1,387,256,624 72,637,222 1,461,153,818 7,797,910 73,897,194
Fig. 5. The behavior of the first objective function in the sensitivity analysis process.
Fig. 6. The behavior of the second objective function in the sensitivity analysis process.
trategies. As seen in Table 9, the strategies are designed so
hat by going from strategy 1 to strategy 10, the weight of the
irst objective function increases and the weight of the second
bjective function decreases. Since both objective functions are
n minimization form, the trend of the first and second objec-
ive functions from strategy 1 to strategy 10 are expected to
e descending and ascending, respectively. The behavior of the
12
objective functions depicted in Figs. 5 and 6 confirms the effective
performance of the proposed model.

The Pareto fronts obtained from the sensitivity analysis of
the objective functions’ coefficients for INC7, INC8, and INC9 are
illustrated in Fig. 7a, b, and c, respectively. The noteworthy point
is that in each examined problem, 10 grid points are obtained,
none of which dominate the other. Therefore, by applying the
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Fig. 7. Pareto front obtained from the sensitivity analysis process.
Table 8
The optimal objective function values.
Instance Z FGP

1 Z FGP
2

INC1 19,310,342 188,835,994
INC2 18,250,783 254,017,526
INC3 19,466,260 320,557,713
INC4 22,155,643 393,228,065
INC5 23,630,752 612,386,341
INC6 28,816,257 674,119,865
INC7 33,004,052 765,965,908
INC8 48,724,013 1,097,118,936
INC9 60,536,165 1,321,666,472
INC10 66,174,832 1,413,665,716
13
sensitivity analysis process to each problem, 10 sets of optimal
solutions are provided. As seen in Fig. 7, as we move towards
strategy 10, total costs decrease, but the population risk increases.
Decision makers who care about human lives choose strategies
that have the lowest population risk; in contrast, profit-seeking
decision makers choose strategies that result in the lowest cost.
In general, the results of the sensitivity analysis of the objective
functions’ coefficients allow decision-makers to choose the pre-
ferred strategy in accordance with their organizational limitations
such as budget constraints, maximum exposed people, etc.

6.3. Comparative analysis

In this section, we solve the proposed multi-objective model
using simulated data by another multi-objective solution ap-
proach. Then, to indicate the efficiency of the proposed solution
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Table 9
The strategies for the sensitivity analysis process.
Strategy w1 w2 INC7 INC8 INC9

Z FGP
1 Z FGP

2 Z FGP
1 Z FGP

2 Z FGP
1 Z FGP

2

Str1 0.3 0.7 35,162,081 742,051,931 51,932,943 1,055,928,373 63,726,035 1,303,751,568
Str2 0.35 0.65 34,556,638 748,181,265 51,253,817 1,063,849,656 63,267,118 1,306,267,411
Str3 0.4 0.6 34,160,712 755,300,652 50,736,469 1,072,839,008 62,544,728 1,308,338,470
Str4 0.45 0.55 33,743,002 758,231,267 49,688,140 1,076,734,367 62,061,269 1,311,145,146
Str5 0.5 0.5 33,562,135 761,547,782 49,485,061 1,081,333,129 61,378,144 1,314,016,384
Str6 0.55 0.45 33,284,961 763,273,063 48,998,734 1,086,372,016 61,004,432 1,316,827,721
Str7 (Main
problem)

0.6 0.4 33,004,052 765,965,908 48,724,013 1,097,118,936 60,536,165 1,321,666,472

Str8 0.65 0.35 32,998,945 768,413,519 48,156,728 1,098,332,934 60,471,458 1,329,839,657
Str9 0.7 0.3 32,996,308 773,997,332 47,621,245 1,098,944,515 60,288,813 1,337,746,264
Str10 0.75 0.25 32,976,447 780,341,277 47,308,827 1,100,763,931 59,943,467 1,342,165,048
Table 10
The optimal objective functions value obtained from the approach
presented by Nasr et al. [43].
Instance Z FGP

1 Z FGP
2

INC1 19,310,342 188,835,994
INC2 18,348,051 253,873,121
INC3 19,466,260 320,557,713
INC4 22,099,167 398,581,637
INC5 23,462,721 613,233,009
INC6 28,956,335 671,426,497
INC7 33,367,816 759,064,478
INC8 47,911,263 1,099,011,554
INC9 60,859,357 1,302,628,123
INC10 65,735,422 1,432,390,624

approach, the results obtained from both multi-objective solution
approaches are compared. It is important to note that we are not
allowed to use any multi-objective solution approach for com-
parison. In other words, we should use a multi-objective solution
approach that has similar features to our solution approach. The
three main features of our multi-objective solution approach are
the consideration of weights for the objective functions, the use
of fuzzy theory to consider uncertainty, and the consideration of
goals for objective functions. Therefore, the comparative solution
approach should have these three features. Nasr et al. [43] have
presented a multi-objective solution approach based on the fuzzy
goal programming method to solve the multi-objective model,
which has all the three features. In this regard, 10 simulated prob-
lems are solved using the approach provided by Nasr et al. [43].
The optimal values of the objective functions for each simu-
lated problem obtained from the Nasr et al. [43] approach are
presented in Table 10.

One of the ways to examine the efficiency of multi-objective
olution approaches is to compare the results of the proposed
pproach with the results of a solution approach whose efficiency
as already been confirmed in the literature. If the solutions
btained from the proposed approach are not dominated by the
olutions obtained from the comparative approach, the efficiency
f the proposed approach is confirmed (Govindan et al. [45]).
omparing the results presented in Tables 8 and 10 reveals that
he value of the objective functions for both approaches in INC1
nd INC3 are similar. In other simulated problems (i.e., INC2,
NC4, INC5, INC6, INC7, INC8, INC9, and INC10), none of the
olutions set obtained from our proposed solution approach are
ominated by the approach presented by Nasr et al. [43]. There-
ore, it can be concluded that the proposed solution approach has
good performance and is sufficiently efficient.
14
6.4. Discussions

In general, this paper consists of three basic parts including
modeling, data generation and solving the multi-objective model
using a multi-objective solution approach. In the following, each
part is discussed with emphasis on the relevant advantages.

The literature review reveals that many researchers have used
mathematical programming tools for healthcare waste manage-
ment. The noteworthy point is that a significant number of these
papers have been presented in recent years with the emergence
of COVID-19. This shows that healthcare waste management is
important in epidemic conditions. Although healthcare waste
management in epidemic conditions in articles such as Govindan
et al. [24], Tirkolaee et al. [26], and Govindan et al. [27] have been
addressed, none of them has considered epidemic disruptions
in healthcare waste management, which is one of the unique
features of this paper. Another special feature of this paper is
the consideration of the set covering problem in the structuring
the investigated network. Based on this problem, each poten-
tial collection center is allowed to cover a predetermined area,
which is determined based on the maximum acceptable distance
traveled by vehicles. In other words, the set covering problem
is applied to reduce population risk. By removing this problem
from the proposed model, the network costs may decrease, but
the population risk will be increased.

In this regard, a bi-objective MILP model was formulated to
design an efficient network for healthcare waste management
under uncertainty using a mathematical programming tool. The
objectives of the proposed model are to minimize total network
costs and population risk, simultaneously. Network costs include
strategic and operational costs. This means that the model in-
corporates both strategic and operational decisions into network
design. Uncertainty is an integral part of problems that include
epidemic disruptions; because these problems are faced with
different conditions under various scenarios. Therefore, this paper
employs a stochastic scenario-based approach to deal with the
uncertainty of the proposed model.

In this paper, due to the lack of access to real-world data, an
intelligent algorithm is designed to simulate data using proba-
bilistic distribution functions. Intelligent simulation means that
the algorithm is designed in such a way that for each optional
value for indices, a feasible solution space is provided. For this
purpose, different parameters such as the capacity of centers and
vehicles that may create infeasible solution space are defined as a
function of the amount of the waste generated. Other parameters
such as the cost of establishing the centers, the distance between
the centers, etc., which do not affect the infeasibility of the
solution space, should be defined logically so that the simulated
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data is close to the real world. For example, the strategic cost
should be defined as large enough compared to the operational
costs. All these points are included in the proposed simulation
algorithm.

Another feature of this paper is the development of a multi-
bjective solution approach based on fuzzy goal programming.
ne of the advantages of the goal programming method is that
t determines a goal for each objective function, and it aims
o minimize the difference between the objective functions and
heir goals. Considering the weight for objective functions enables
he decision makers to assign a weight to each objective function
ccording to its importance results in a Pareto front by changing
he weights. In this paper, to examine the performance of the
roposed model and to evaluate the efficiency of the proposed
olution approach, 10 test problems are simulated in different
izes. Then, the proposed bi-objective model is converted into
single-objective model for these problems using the presented
ulti-objective solution approach. Finally, by running the single-
bjective model in the GAMS software, the optimal values of
he objective functions and decision variables are calculated for
ach simulated problem. As mentioned, one of the features of
he proposed solution approach is to consider weights for the
bjective functions. By changing these weights, a set of optimal
olutions can be obtained. In this vein, 10 strategies based on
hanging the coefficients of the objective functions were defined
nd the proposed model was implemented for these strategies.
or this purpose, the defined strategies were implemented on
hree simulated problems (i.e., INC7, INC8, and INC9). The results
howed that the behavior of the proposed model in the process
f sensitivity analysis of the objective functions’ coefficients is in
ccordance with the logical expectations. On the other hand, to
nvestigate the accuracy of the proposed multi-objective solution
pproach performance, the results of the proposed approach were
ompared with the results of an approach applied in the literature
nd it was shown that the proposed solution approach is effective.

. Managerial implications

The literature review shows that many papers have been
resented in the field of reverse logistics network optimization
or healthcare waste management. With the emergence of the
OVID-19 pandemic, researchers’ attention around the world has
een directed toward this disaster, and a significant number of
apers associated with COVID-19 have been presented. Health-
are waste’s scholars are at the forefront of these researchers
ince improper waste management caused by COVID-19 can have
rreparable effects. Location of facilities, population risk, and un-
ertainty about the amount of waste generated are among the
ain concerns of the researchers in healthcare waste manage-
ent, which are abundantly observed in the literature of this

ield. The capacity level of facilities is also another important
ssue that is effective in healthcare waste management, espe-
ially during the outbreak of a pandemic. Indeed, this feature
f facilities can be used to make the network more flexible. In
ddition to these issues, epidemic disruptions are very important
uring the outbreak of a pandemic because any disturbed node
an cause disturbance in its neighboring nodes. In this research,
pidemic disruptions are investigated during the outbreak of a
andemic for the first time. For this purpose, a Monte Carlo-
ased simulation approach is applied to simulate the amount
f waste generated at each node. After simulating the amount
f generated waste, a bi-objective MILP model is formulated
or healthcare waste management under uncertainty. Since the
mount of generated waste is inherently uncertain, a scenario-
ased approach is used to deal with its uncertainty, and a fuzzy
oal programming approach is employed to solve the proposed
i-objective model.
15
From a systematic point of view, this model can help decision-
makers by acting as a decision support system (DSS) for adopting
strategic and operational decisions in the field of healthcare waste
management. One of the advantages of the model is that it is
not designed only for pandemic conditions, but it can also be
implemented in normal conditions as well. Furthermore, the pro-
posed model is flexible and not limited to a specific geographical
location. Thus, with a few changes in its structure, it can be used
in other areas such as hazardous and urban waste management.
This methodological approach could help supply chain managers
to deal with other sources of uncertainties when designing and
planning a network.

8. Conclusion

This paper formulates a bi-objective MILP model to minimize
total costs and risk population for the healthcare waste manage-
ment system under uncertainty. In this paper, for the first time,
concepts such as epidemic disruption, capacity level, set covering,
treatment technology, and population risk are used simultane-
ously for designing a reverse logistics network to manage both
infectious and non-infectious healthcare waste. In addition, a new
concept of waste infection has been considered, in which if there
is a hazardous node (for example, a COVID-19 patient care cen-
ter), the whole waste produced in that node will be considered
as infectious. Furthermore, a new concept of population risk has
been formulated in the second objective function. In this objective
function, population risk is defined as a function of the amount
of infectious waste, the exposed population, and the distance
between the waste production node and the collection center.
To consider epidemic disruption, the Monte Carlo simulation ap-
proach has been applied, through which the amount of generated
waste has been simulated for different scenarios. To solve the
proposed bi-objective model, a solution approach based on fuzzy
goal programming has been developed. Finally, the performance
of the proposed model has been evaluated using ten simulated
problems in different sizes.

8.1. Limitations and future research directions

The proposed model is categorized as an NP-hard problem and
cannot be solved with commercial software such as GAMS in large
sizes. Therefore, it is suggested that an efficient heuristic or meta-
heuristic algorithm be developed to solve the proposed model on
large-scale data sets. In this paper, it is assumed that disruptions
affect the amount of waste generated. But these disruptions may
also disrupt the capacity of the centers. In this case, a resilient
network should be designed using strategies such as cooperation
with third-party logistics or by considering overtime in centers,
etc. The proposed model is validated using the simulated data. It
is suggested that real-world data be applied to validate and eval-
uate the behavior of the proposed model and solution approach
in future research.
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Appendix

See Figs. A.1–A.3.
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Fig. A.1. Overview of INC3 in GAMS software.

Fig. A.2. The process of converting the multi-objective model to a single-objective one in GAMS software.

16
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Fig. A.3. The results obtained from running the model in GAMS software for INC3.
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