
About Assignment 1

• assignments must be in notebook format
• Report must be in a notebook and not in “.py” file. “.py” files are

allowed as modules, only to store functions and they must be
imported in the main notebook.

• Only one notebook is allowed (other notebooks will be ignored).
• The notebook name must be the name of the group.

• Do zip your files but upload them separately.

• All files required to run your notebook must be uploaded.
• For example, “ciphertext.txt” must be uploaded together with the

notebook.
• If the notebook does not run for a missing file, it will be considered

as an error.

About Assignment 1

• Remove template indications:
• Write the report as you were going to submit it

to your boss at the company you are working
for.

• Report must be written in markdown cells:
• Formatting (bold, italic, formulas in latex) and

inclusion of figures are appreciated.

• However, formatting must be used wisely.

• Respect the structure of the template. You can
add subsections but be sure to be coherent
with the notebook organization.

Task 1:
LFSR
• Implement an LFSR.

04/04/2023 Elements of Applied Data Security 5

LFSR

In an LFSR, the output from a standard shift register is fed back into its
input causing an endless cycle. The feedback bit is the result of a linear
combination of the shift register content and the polynomial coefficients.

04/04/2023 Elements of Applied Data Security 6

𝑠𝑚−1 𝑠𝑚−2 𝑠0𝑠1

𝑝1 𝑝2 𝑝𝑚−1 𝑝𝑚

ck

𝑏Shift
Register

Linear
Feedback

LFSR

From the block scheme:

04/04/2023 Elements of Applied Data Security 7

𝑠𝑗 𝑡 = 𝑠𝑗+1 𝑡 − 1 , 𝑗 = 0,1,… ,𝑚 − 2

𝑠𝑚−1 𝑡 =ໄ

𝑗=0

𝑚−1

𝑝𝑚−𝑗⨂𝑠𝑗 𝑡 − 1

𝑏 𝑡 = 𝑠0 𝑡

𝑠𝑚−1 𝑠𝑚−2 𝑠0𝑠1

𝑝1 𝑝2 𝑝𝑚−1 𝑝𝑚

ck

𝑏

LFSR example

• length = 3

• polynomial = 𝑥3 + 𝑥 + 1 (𝑝 = 0𝑏1011)

• initial state 0𝑏111

04/04/2023 Elements of Applied Data Security 8

𝑠

111 (7) 1 0

𝑏 𝑓𝑏

011 (3) 1 1

101 (5) 1 0

010 (2) 0 0

001 (1) 1 1

100 (4) 0 1

110 (6) 0 1

111 (7) 1 0

𝑝1 = 1 𝑝2 = 0

ck

𝑝3 = 1

𝑏𝑓𝑏 𝑠2 𝑠1 𝑠0𝑠2 = 1𝑠2 = 0 𝑠1 = 1𝑠1 = 0 𝑠0 = 1𝑠0 = 0 𝑏 = 1𝑏 = 0𝑓𝑏 = 1𝑓𝑏 = 0

LFSR Iterable

Inputs:

• Feedback Polynomial:
list of integers representing the degrees of the non-zero coefficients.
Example: 12, 6, 4, 1, 0 represents 𝑥12 + 𝑥6 + 𝑥4 + 𝑥1 + 1

• LFSR state (optional, default all bits to 1)
Integer or bitstream representing the LFSR initial state
Example: 0xA65 for [1010 0110 0101]

04/04/2023 Elements of Applied Data Security 9

LFSR Iterable

Attributes:

• poly: list of the polynomial coefficients (list of int)

• length: polynomial degree and length of the shift register (int)

• state: LFSR state (int)

• output: output bit (bool)

• feedback: last feedback bit (bool)

04/04/2023 Elements of Applied Data Security 10

LFSR Iterable

Methods:

• __init__: class constructor;

• __iter__: necessary to be an iterable;

• __next__: update LFSR state and returns output bit;

• cycle: returns a list of bool representing the full LFSR cycle ;

• run_steps: execute N LFSR steps and returns the corresponding
output list of bool (N is a input parameter, default N=1);

• __str__: return a string describing the LFSR class instance.

04/04/2023 Elements of Applied Data Security 11

LFSR Iterable

04/04/2023 Elements of Applied Data Security 12

class LFSR(object):
''' class docstring '''

def __init__(self, poly, state=None):
''' constructor docstring '''
...
self.poly = ...
self.length = ...
self.state = ...
self.output = ...
self.feedback = ...

def __iter__(self):
return self

def __next__(self):
''' next docstring '''
...
return self.output

def run_steps(self, N=1):
''' run_steps docstring '''
...
return list_of_bool

def cycle(self, state=None):
''' cycle docstring '''
...
return list_of_bool

Hints

There are many ways to implement an LFSR in Python.

The first choice to make is how to store the internal state and the
polynomial. I suggest two types:

• list of bool: it is the most straightforward choice as it directly maps
the LFSR block scheme, but bit-wise logical operation may not be as
easy.

• integer: bit-wise logical operation, as well as bit-shift, are easy to
perform on integers, while XOR of multiple bits or reversing the bit
order are less straightforward.

04/04/2023 Elements of Applied Data Security 13

Useful functions

• XOR: In Python bit-wise xor between two integers is implemented with the ̂
mark. It is also implemented as function (xor) in the built-in module operator.
Example: xor(5,4) -> 5^4 -> 0b101^0b100 -> 0b001 -> 1

• reduce: available from the built-in module functools, apply a function of
two arguments cumulatively to the items of an iterable so as to reduce the
iterable to a single value.
Example: reduce(xor, [True, False, True, False]) -> False

• compress: available from the built-in module itertools, make an iterator
that filters elements from data returning only those that have a
corresponding element in selectors that evaluates to True.
Example: compress([3, 7, 5], [True, False, True]) -> [3, 5]

04/04/2023 Elements of Applied Data Security 14

https://docs.python.org/3/library/operator.html
https://docs.python.org/3/library/functools.html
https://docs.python.org/3.6/library/itertools.html

Task 2:
Berlekamp-Massey Algorithm
• Implement the Berlekamp-Massey Algorithm.

• Use the Berlekamp-Massey Algorithm to compute the linear complexity of a bit
sequence.

04/04/2023 Elements of Applied Data Security 15

Berlekamp-Massey
Algorithm
Find the shortest LFSR for a given binary
sequence.

• Input: sequence of bit 𝑏 of length 𝑁

• Outputs: feedback polynomial 𝑃 𝑥 .

04/04/2023 Elements of Applied Data Security 16

𝐈𝐧𝐩𝐮𝐭 𝑏 = [𝑏0, 𝑏1, … , 𝑏𝑁]
𝑃 𝑥 ← 1,𝑚 ← 0
𝑄 𝑥 ← 1, 𝑟 ← 1
𝐅𝐨𝐫 𝜏 = 0,1, … , 𝑁 − 1

𝑑 ←ໄ

𝑗=0

𝑚

𝑝𝑗⨂𝑏[𝜏 − 𝑗]

𝐈𝐟 𝑑 = 1 𝐭𝐡𝐞𝐧
𝐈𝐟 2𝑚 ≤ 𝜏 𝐭𝐡𝐞𝐧

𝑅 𝑥 ← 𝑃(𝑥)
𝑃 𝑥 ← 𝑃 𝑥 + 𝑄 𝑥 𝑥𝑟

𝑄 𝑥 ← 𝑅(𝑥)
𝑚 ← 𝜏 + 1 −𝑚
𝑟 ← 0

𝐞𝐥𝐬𝐞
𝑃 𝑥 ← 𝑃 𝑥 + 𝑄 𝑥 𝑥𝑟

𝐞𝐧𝐝𝐢𝐟
𝐞𝐧𝐝𝐢𝐟
𝑟 ← 𝑟 + 1

𝐞𝐧𝐝𝐟𝐨𝐫
𝐎𝐮𝐭𝐩𝐮𝐭 𝑃 𝑥

def berlekamp_massey(b):
''' function docstring '''
algorithm implementation
return poly

Berlekamp-Massey
Algorithm

04/04/2023 Elements of Applied Data Security 17

𝐈𝐧𝐩𝐮𝐭 𝑏 = [𝑏0, 𝑏1, … , 𝑏𝑁]
𝑃 𝑥 ← 1,𝑚 ← 0
𝑄 𝑥 ← 1, 𝑟 ← 1
𝐅𝐨𝐫 𝜏 = 0,1, … , 𝑁 − 1

𝑑 ←ໄ

𝑗=0

𝑚

𝑝𝑗⨂𝑏[𝜏 − 𝑗]

𝐈𝐟 𝑑 = 1 𝐭𝐡𝐞𝐧
𝐈𝐟 2𝑚 ≤ 𝜏 𝐭𝐡𝐞𝐧

𝑅 𝑥 ← 𝑃(𝑥)
𝑃 𝑥 ← 𝑃 𝑥 + 𝑄 𝑥 𝑥𝑟

𝑄 𝑥 ← 𝑅(𝑥)
𝑚 ← 𝜏 + 1 −𝑚
𝑟 ← 0

𝐞𝐥𝐬𝐞
𝑃 𝑥 ← 𝑃 𝑥 + 𝑄 𝑥 𝑥𝑟

𝐞𝐧𝐝𝐢𝐟
𝐞𝐧𝐝𝐢𝐟
𝑟 ← 𝑟 + 1

𝐞𝐧𝐝𝐟𝐨𝐫
𝐎𝐮𝐭𝐩𝐮𝐭 𝑃 𝑥

A

B

𝑚𝜏 𝑟𝑏𝜏 𝑑 𝑃(𝑥) 𝑄(𝑥)

2 1 1 A 2 11 + 𝑥2 1

1 0 1 B 1 21 1

3 0 0 2 21 + 𝑥2 1

4 0 1 A 3 11 1 + 𝑥2

5 1 1 B 3 21 + 𝑥 + 𝑥3 1 + 𝑥2

6 1 0 3 31 + 𝑥 + 𝑥3 1 + 𝑥2

7 1 0 3 41 + 𝑥 + 𝑥3 1 + 𝑥2

0 1 1 A 1 11 + 𝑥 1

0 11 1- - -

Hints

There are many ways to implement BM in Python.

We suggest an implementation based on integers since bit-wise logical
operation, as well as bit-shift, are easy to perform on integers, while
XOR of multiple bits or reversing the bit order are less straightforward.

04/04/2023 Elements of Applied Data Security 18

Task 3:
LFSR-based generator
• Implement the Alternating Step Generator.

• Use the Berlekamp-Massey algorithm to compute the linear complexity of the
generated sequence.

• Use the Alternating Step Generator as a CPRNG to decrypt a message.

04/04/2023 Elements of Applied Data Security 19

Alternating-Step Generator

04/04/2023 Elements of Applied Data Security 20

LFSR0

LFSR1

LFSRC

ck

Three LFSR of which LFSRC decides which between LFSR0 and LFSR1
is clocked. The output is the XOR of LFSR0 and LFSR1current outputs.

𝑃0 𝑥 = 𝑥5 + 𝑥2 + 1
𝑃1 𝑥 = 𝑥3 + 𝑥 + 1
𝑃𝐶 𝑥 = 𝑥2 + 𝑥 + 1

𝑏

Stream Cipher

A stream cipher is a symmetric key cipher where the plaintext is
encrypted (and ciphertext is decrypted) one digit at a time. A digit
usually is either a bit or a byte.

04/04/2023 Elements of Applied Data Security 21

Alternating
Step Gen.

𝑏 𝑡 𝑒 𝑡

key
Alice

𝑠 𝑡plaintext ciphertext

Alternating
Step Gen.

𝑏 𝑡

Bob

𝑠 𝑡 plaintext

Encryption (decryption) is
achieved by xoring the plaintext
(ciphertext) with a stream of
pseudorandom digits obtained
as an expansion of the key.

Task 4: RC4

04/04/2023 Elements of Applied Data Security 22

Rivest Cipher 4 (RC4)

RC4 is a stream cipher that generates the keystream from a secret
internal state which consists of two parts:

• A permutation 𝑃 of all 256 possible bytes.

• Two 8-bit index-pointers (denoted 𝑖 and 𝑗).

𝑃 is initialized with a variable length key by means of the key-
scheduling algorithm (KSA).

Then, the keystream is generated using the pseudo-random generation
algorithm (PRGA) that updates the indexes 𝑖 and 𝑗, modifies the
permutation 𝑃 and generates a random byte.

04/04/2023 Elements of Applied Data Security 24

Key Scheduling Algorithm (KSA)

The KSA is used to initialize the permutation 𝑃 starting from a key
composed by 𝐿 bytes. Typical values for 𝐿 range from 40 to 256.

04/04/2023 Elements of Applied Data Security 25

𝐈𝐧𝐩𝐮𝐭 key = 𝑘0, 𝑘1, … , 𝑘𝐿−1 ,
with 𝑘𝑖 ∈ {0, 1, … , 255}

𝑗 ← 0
𝐟𝐨𝐫 𝑖 = 0,1, … , 255

𝑃 𝑖 ← 𝑖
𝐞𝐧𝐝𝐟𝐨𝐫
𝐟𝐨𝐫 𝑖 = 0,1, … , 255

𝑗 ← 𝑗 + 𝑃 𝑖 + key 𝑖 mod 𝐿 mod 256
𝑃 𝑖 , 𝑃 𝑗 ← 𝑃 𝑗 , 𝑃[𝑖]

𝐞𝐧𝐝𝐟𝐨𝐫
𝑖, 𝑗 ← 0, 0
𝐎𝐮𝐭𝐩𝐮𝐭 𝑃

𝑃 is initialized with an identity
permutation (𝑃 𝑖 = 𝑖).

Then, bytes of 𝑃 are mixed
iteratively in a way that depends
on the key.

Pseudo-random generation Algorithm (PRGA)

For each iteration, PRGA modifies the state (represented by the
permutation 𝑃 and the pair of indexes 𝑖, 𝑗) and outputs a byte.

04/04/2023 Elements of Applied Data Security 26

𝐒𝐭𝐚𝐭𝐞 𝑃, 𝑖, 𝑗
𝑖 ← 𝑖 + 1 mod 256
𝑗 ← 𝑗 + 𝑃[𝑖] mod 256
𝑃 𝑖 , 𝑃 𝑗 ← 𝑃 𝑗 , 𝑃 𝑖
𝐾 ← 𝑃[𝑃 𝑖 + 𝑃 𝑗 mod 256]
𝐎𝐮𝐭𝐩𝐮𝐭 𝐾

In each iteration,

• 𝑖 is incremented,

• 𝑗 is updated by adding the value 𝑃[𝑖],

• 𝑃[𝑖] and 𝑃[𝑗] are swapped.

• The output byte is element of 𝑃 ant
the location 𝑃 𝑖 + 𝑃 𝑗 (mod 256)

RC4-drop[n]

RC4 has many known vulnerabilities mainly related to the correlation
between the key and the first bytes of the permutation 𝑃.

Most of them can be avoided by discarding the first 𝑛 bytes of the
output stream, from where it becomes RC4-drop[n].

Typical values for 𝑛 are:

• 𝑛 = 768

• 𝑛 = 3072 (more conservative value)

04/04/2023 Elements of Applied Data Security 27

Bonus Task

04/04/2023 Elements of Applied Data Security 28

Stream Cipher

04/04/2023 Elements of Applied Data Security 29

Bit/Byte Generator

seed

stream

key

XOR
You want to create a class «Stream Cipher»
that takes as input a generic «Bit or Byte
Generator» class

Stream Cipher

Inputs:

• key: integer representing the shared secret key.

• PRNG: Iterator implementing a PRNG that produce a pseudorandom
bit/byte stream starting from an initial seed.

Methods:

• encrypt: encrypts a plaintext (bytes) and returns the corresponding
cyphertext (bytes);

• decrypt: decrypts a cypertext (bytes) and returns the corresponding
plaintext (bytes);

04/04/2023 Elements of Applied Data Security 30

Stream Cipher

Template:

04/04/2023 Elements of Applied Data Security 31

class StreamCipher():
''' class docstring '''

def __init__(self, key, prng, **kwargs):
''' constructor docstring '''
do stuff
self.prng = ...

def encrypt(self, plaintext):
do stuff
return ciphertext

def decrypt(self, ciphertext):
do stuff
return plaintext

**kwargs

04/04/2023 Elements of Applied Data Security 32

The **kwargs are utilized to pass a dictionary of variable-length,
keyword arguments to a function. It represents "keyword arguments"
and enables the passing of argument dictionaries to a function.

Try this code:

**kwargs RIVEDERE
• **kwargs (keyword arguments) are used to give general input

argument to a function/class/… , e.g.,

• To call «func», argument «key» and «f» MUST be specified. This does
not apply for «**kwargs». In the example, «f» is a generic function,
whose arguments (we must specify we call it) may vary. «**kwargs»
may contain the input arguments of a general «f». In particular
«**kwargs» is a dictionary whose values are the input arguments of
«f», e.g.,

04/04/2023 Elements of Applied Data Security 33

def example_function(**kwargs):
for key, value in kwargs.items():

print(key, value)

example_function(a=1, b=2, c=3)

def my_f(plaintext):
…
return …

kwargs = {‘plaintext’: ‘hello world!’}
func(5, my_f, **kwargs)

Stream Cipher Example

04/04/2023 Elements of Applied Data Security 34

message = 'hello world!'
key = 0x12345678

create a StreamCipher instance for Alice and Bob
alice = StreamCipher(key)
bob = StreamCipher(key)

plaintextA = message.encode('utf-8') # string to bytes
ciphertext = alice.encrypt(plaintextA) # encryption by Alice
plaintextB = bob.decrypt(ciphertext) # decryption by Bob

	Slide 1: Stream Ciphers
	Slide 2: About Assignment 1
	Slide 3: About Assignment 1
	Slide 4: About Assignment 1
	Slide 5: Task 1: LFSR
	Slide 6: LFSR
	Slide 7: LFSR
	Slide 8: LFSR example
	Slide 9: LFSR Iterable
	Slide 10: LFSR Iterable
	Slide 11: LFSR Iterable
	Slide 12: LFSR Iterable
	Slide 13: Hints
	Slide 14: Useful functions
	Slide 15: Task 2: Berlekamp-Massey Algorithm
	Slide 16: Berlekamp-Massey Algorithm
	Slide 17: Berlekamp-Massey Algorithm
	Slide 18: Hints
	Slide 19: Task 3: LFSR-based generator
	Slide 20: Alternating-Step Generator
	Slide 21: Stream Cipher
	Slide 22: Task 4: RC4
	Slide 24: Rivest Cipher 4 (RC4)
	Slide 25: Key Scheduling Algorithm (KSA)
	Slide 26: Pseudo-random generation Algorithm (PRGA)
	Slide 27: RC4-drop[n]
	Slide 28: Bonus Task
	Slide 29: Stream Cipher
	Slide 30: Stream Cipher
	Slide 31: Stream Cipher
	Slide 32: **kwargs
	Slide 33: **kwargs RIVEDERE
	Slide 34: Stream Cipher Example
	Slide 35: DEADLINE

