
Preprint, 17 July 2020

A Review of Platforms for the Development of Agent Systems

Constantin-Valentin Pal

1
, Florin Leon

1
, Marcin Paprzycki

2
, Maria Ganzha

2

1
Faculty of Automatic Control and Computer Engineering

“Gheorghe Asachi” Technical University of Iași, Romania

2
 Systems Research Institute

Polish Academy of Sciences

valentin.pal@tuiasi.ro, florin.leon@tuiasi.ro,

paprzyck@ibspan.waw.pl, maria.ganzha@ibspan.waw.pl

Abstract

Agent-based computing is an active field of research with the goal of building autonomous software

of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks.

For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them

have been abandoned, others continue their development and new platforms are released. This

paper presents a up-to-date review of the existing agent platforms and also a historical perspective

of this domain. It aims to serve as a reference point for people interested in developing agent

systems. This work details the main characteristics of the included agent platforms, together with

links to specific projects where they have been used. It distinguishes between the active platforms

and those no longer under development or with unclear status. It also classifies the agent platforms

as general purpose ones, free or commercial, and specialized ones, which can be used for particular

types of applications.

Keywords: agent systems, agent-based systems, multiagent systems, agent platforms, modeling,

simulation, swarm intelligence, artificial intelligence

1. Introduction

It is already almost 10 years since the last comprehensive overview of tools for the development of

agent systems has been published (Bădică et al., 2011). Since agent systems remain an active

research area, and software agents start to be applied in new domains (e.g., Savaglio et al., 2020) we

believe that it is time to reflect on the current state of the art in platforms for development of agent

systems. Let us start our work with highlighting key developments in the area of agent systems.

1.1. A Short History of Agent Systems

Perhaps, one of key moments in development agent systems was the Workshop on Distributed

Artificial Intelligence, held at MIT in June 1980, where 22 people presented their research results

and ideas (Davis, 1980). Next, 1980s saw the first attempts at defining the main concepts of the

agents domain and, among them, one can recognize key issues that are still studied today.

2

In 1984, Axelrod showed how cooperation can emerge from the interaction of selfish

entities, without centralized control (Axelrod, 1984). He discussed several strategies in the iterated

prisoner’s dilemma, a game theoretical problem which remains to be a topic of interest in political

and social studies or evolutionary biology.

In 1985, the actor model was proposed by Agha and Hewitt (1985). With all conceptual

limitations, actors can be seen as a “simpler version” of agents. An actor is reactive, as it only

responds to messages it receives, but it can nevertheless be used to simulate more advanced

behavior, such as perceiving the environment and initiating new actions when its internal state

changes in some way.

In 1986, Brooks stated his rejection of the logical, symbolic approach to intelligence,

prevalent at that time, and proposed the subsumption architecture (Brooks, 1986), implemented in

four robots capable of seemingly intelligent behavior, without any symbolic internal representation

of the environment.

At the beginning of the 1990s, Maes worked together with Brooks at MIT, to design robots

for building a base on the Moon (Brooks et al., 1990), and then she turned to software agents for

personalized information filtering (Sheth & Maes, 1993), later abstracted into what we commonly

view now as agents – an autonomous entity (Maes, 1993; Maes et al., 1995).

Also in 1986, the first (micro-)simulations were conceived, namely in the pursuit domain,

where a number of predators aimed at encircling, or capturing, a prey (Benda, Jagannathan &

Dodhiawala, 1986). Note that simulations in different domains are presently one of the more

popular applications of multiagent systems. Even if we can consider proper simulation only in a

computer-based settings, interest in this area was even older, e.g. the paper-based analysis of

segregation in the Schelling’s community (Schelling, 1969), in a grid-based environment

reminiscent of even older cellular automata, invented by von Neumann and Ulam in 1940, and

made famous by Conway’s “Game of Life” proposed in 1970.

Based on the psychological studies of practical reasoning (Bratman, 1987), Georgeff and

Lansky developed in 1987 a so-called “Procedural Reasoning System” (PRS), based on the Belief-

Desire-Intention (BDI) model for intelligent agents (Georgeff & Lansky, 1987). A formalization of

the BDI architecture, which is one of the most popular in the agent domain, can be found in (Rao &

Georgeff, 1995). The model explicitly includes the agent’s beliefs about the state of the

environment and its own. BDI incorporates the concepts of establishing the means available to

reach a certain goal and creating a plan whose actions can be performed sequentially.

While the first agents were built using the available means, e.g. in Lisp, as the complexity of

applications increased, and experience was gathered, the need of specialized frameworks for

constructing agents was recognized. One of the first attempts was AGENT0 (Torrance & Viola,

1991), a language that incorporated the idea of agent-oriented programming (Shoham, 1993), where

the agent has full control over its own state (beliefs, capabilities) and behavior (responding to

messages, commitments).

The 1990s witnessed a steady stream of development in the agent systems domain. Here, we

can identify separate areas of interest. There were advances in the theoretical study of such systems.

The ARCHON project (Jennings, 1994) proposed a general-purpose architecture, which could be

used to facilitate cooperative problem-solving in industrial applications. KQML (Knowledge Query

and Manipulation Language) was put forward, within the DARPA Knowledge Sharing Effort (Finin

et al., 1994), and proposed a standardized way for agent communication which separated the intent

of the message in the form of a so-called “performative” (inspired by the speech act theory (Austin,

3

1962)) from the actual content of the message. This effort was further refined by FIPA ACL, Agent

Communication Language (FIPA, 1997). Software agents were described and discussed in several

influential papers by Wooldridge and Jennings (Jennings & Wooldridge, 1996; Wooldridge, 1996;

Wooldridge, 1997). A specific agent-based language, AgentSpeak, inspired by PRS, was formally

introduced (d’Inverno & Luck, 1998).

Here, interest emerged in autonomous cars, seen as autonomous agents. Agent architectures

were proposed, e.g. Touring Machine (Ferguson, 1992), InteRRaP (Müller & Pischel, 1993), and

the first self-driving vehicles were put to the test in competitions, e.g. ALVINN (Pomerleau, 1995)

and later Nomad rover (Jordan, Andreas & Makshtas, 2001) or Stanley (Thrun et al., 2007).

Another class of applications for multiagent systems is related to social simulations,

usefulness of which continues. In this respect, we can mention the Sugarscape emergent economic

model (Epstein & Axtell, 1996), the evolution of social corruption (Hammond, 2000), the study of

the population dynamics of Cyber-Anasazi (Axtell et al., 2002) and a model for civil violence,

leading to “artificial genocide” (Epstein, 2002).

Reflecting on the connection to the industry, we can mention the AgentLink European

project (three phases, 1998-2003), which studied the application of agent systems in domains such

as telecommunications, information management, electronic commerce or manufacturing. COST

Agreement Technologies We can see that the vision of software agents from the AgentLink is

materializing now, in the world of the Internet of Things, IoT (Savaglio et al., 2020).

Another European initiative was the COST Agreement Technologies action, which aimed at

coordinating efforts on a new paradigm for next generation distributed systems, based on the

concept of agreement between computational agents, i.e. computer systems in which autonomous

software agents negotiate with one another, typically on behalf of humans, in order to come to

mutually acceptable agreements.

After a period of slow decline at the beginning of the new millennium (although the research

community has remained active throughout), we can presently see a rebirth of interest, with new

understanding of the importance of agent systems, especially in domains such as autonomous cars

and drones, including those aimed at delivering goods to customers, simulations (e.g. evacuation

behavior in emergency situations (Teo et al., 2015)) or smart cities and IoT, where new technology

advances in the communication infrastructure (e.g. 5G) make further automation and

interconnectedness of intelligent devices possible.

1.2. Applications of Agent Systems

This brief history of the field leads us to identify two main approaches in the development of agent

systems. On one hand, we can consider agents as a metaphor and implement agent systems using

any programming environment, usually an object-oriented one. Still, this requires work that is not

really needed, in dealing with the specific aspects of agent systems. On the other hand, a better way

seems to be the use of a dedicated agent platform. Agent-based modeling and simulation software

of this kind take away many of the complexities of the modeling and simulation implementation.

They allow the user to focus on studying the phenomena that arise from the interaction of agents,

e.g. emergent behaviors, or on addressing problems that are difficult to solve in a centralized

manner.

Among the main classes of applications where agent systems have been and are used, we

can mention the following:

4

● Social simulations: various scenarios, such as those presented in the previous section;

● Mobility simulations: traffic situations, such as the avoidance of traffic jams, light control,

route choice, e.g. (Czura et al., 2014), ground transportation, mobility planning systems,

urban planning based on accessibility studies with dynamic populations e.g. (Tian & Qiao,

2014), microscopic pedestrian crowds, e.g. (Wang et al., 2015), or mapping passenger flow

for market improvement and evacuation of buildings, flight or air-traffic control in aviation,

e.g. (Bongiorno et al., 2013; Horio et al., 2015) etc.;

● Physical entities: robots or self-driving vehicles (cars, drones) seen as agents;

● Environment and ecosystems: simulations in ecology, e.g. (Ayllón et al., 2016), biology,

climate models, human and nature interaction (sometimes using geographic information

systems), epidemiology (the spread of infections or disease), e.g. (García et al., 2017);

● Organizational simulations: planning and scheduling, enterprise and organizational

behavior, workflow simulations, e.g. (Prenkert & Følgesvold, 2014);

● Economic studies: business, marketing, economics (e.g. price forecasting in real world

markets);

● Medical applications: personalized healthcare or hospital management, e.g. (Sulis & Di

Leva, 2017);

● Industrial simulations: manufacturing and production, including with the use of holons, e.g.

(Parv et al., 2019);

● Military applications: military-combat simulations, air-defense scenarios, e.g. (Lee et al.,

2018).

On the other hand, there are agent-based applications for distributed computing, e.g. in

cloud computing, virtualized data centers, large-scale parallel or distributed computing clusters and

high performance supercomputers (Kiourt & Kalles, 2015; Taylor et al., 2018).

A recent book that focuses on the practical aspects related to agent systems is (Ganzha &

Lakhmi, 2013).

The types of applications mentioned above are displayed more concisely in Figure 1.

Finally, we can also mention the application of agents in games or movie making, games or

graphic engines, e.g. Massive (Massive Software, 2017), Unity-ML (Booth & Booth, 2019; Unity

Technologies, 2020) or DeepMotion (DeepMotion, 2020).

1.3. The Structure of the Review

Taking into account the breadth and depth of applications of software agents, as well as the

continuous development and growing maturity of agent platforms, not to mention recent creation of

new ones, we have decided that the time has come to deliver an up-to-date overview of existing

agent platforms, combined with the summary of more recently departed ones.

With the decrease of interest after 2005, the majority of these platforms have been more or

less abandoned. This is why it is important to reflect on what is available today – and this is the goal

of our present work.

We would like to stress that this is not an introduction in the field of multiagent systems.

The readers interested in an more introductory perspective are invited to study some of the general

books on the subject, such as (Wooldridge, 2009; Weiss, 2013).

The current paper presents a list of more up-to-date software, free or commercial, the latter

sometimes with special discounts or free offerings for academia. In addition, this survey also

5

includes some platforms oriented more towards the Artificial Intelligence domain. These platforms

can be used for multiagent problem solving, or for studying the emergent behavior of intelligent

multiagent systems in various domains like arcade games, robotics, autonomous vehicles, or agents

that are capable of reinforcement learning. The structure of the paper is graphically presented in

Figure 2.

Figure 1. Types of applications of agent systems

Figure 2. The main structure of the current review

6

2. Related Work: Earlier Reviews of Agent Platforms

As the field of agent systems matured, a number of authors have reviewed the landscape of this type

of software. Some reviews are confined within a specific application domain, like electricity market

(Zhou, Chan & Chow, 2007), marketing (Negahban & Yilmaz, 2014), networking (Niazi &

Hussain, 2009), land use (Groeneveld et al., 2017). (Dorri et al., 2018) discusses aspects like

definitions, applications, features, challenges, communications, evaluation, but does not directly

present a comprehensive list of software platforms that can be used to implement agent systems.

Older reviews of software in this space can be found in (Railsback, Lytinen & Jackson, 2006;

Bordini et al., 2006). Allan (2010) reviews the development at the time of the paper and, beside

software platforms, discusses the domains of application with use cases from physics, chemistry,

biology, cyber-security, social modeling, economics, environment. Newer papers, e.g. (Kravari &

Bassiliades, 2015; Abar et al., 2017) also review a wide range of software tools, the various features

of the tools and types of licenses. Leon, Paprzycki and Ganzha (2015) presents the list of the most

important software at the time of the writing and some methodologies for agent system

development.

3. General Purpose Platforms

Let us start with general purpose agent platforms. We summarize them in the following two tables.

In each table, we provide links for the website of the platform and its applications in research

projects. We consider that, in this way, the links are more easy to use, compared to the situation

where they were included as references at the end of the paper. Following these two tables, we

summarize specific features of mentioned platforms. In this case, we may mention some references

of publications that presented, or described, applications developed using a particular framework.

The platforms from this section can be used in a variety of domains, since they are not

“domain focused”. Various programming languages are used for the implementation of the

platforms, and there are also some platforms that can be leveraged just by manually interacting with

a graphical user interface. Some platforms offer modular and hierarchical modeling, based on

reusable components, and they range from low to very high scale simulation with millions of

agents.

3.1. Open-Source, Free Software

Table 1 contains a list with the general purpose platforms that seem to be the most popular open-

source or free license software.

7

Table 1. General purpose platforms - open-source, free software

No. Name
Programming

language
Website. Projects and applications License Description

1 ActressMas C#

http://florinleon.byethost24.com/actressmas

Applications (several multiagent algorithms and

protocols implemented):

https://github.com/florinleon/ActressMas

Open source

Used for teaching

multiagent protocols

and algorithms. offers

implementations of

various popular

multiagent protocols

and algorithms

2 Agents.jl Julia
https://github.com/JuliaDynamics/Agents.jlhttps:/

/doi.org/10.21105/joss.01611
Open source

General purpose, grid-

based environments;

1D, 2D, 3D;

distributed simulations

3 AgentScript Javascript https://github.com/backspaces/agentscript Open source

General purpose,

based on NetLogo

semantics

4 CoSMoSim GUI based

https://sourceforge.net/projects/cosmosim/

https://acims.asu.edu/software/cosmos/

Open source (Java)

Component-based,

modular, hierarchical

modeling; DEVS,

cellular automata and

XML models

5 DEVS-Suite GUI based

https://acims.asu.edu/software/devs-suite/

https://sourceforge.net/projects/devs-suitesim/

Open source (Java)

Rich visual modeling,

component-based and

cellular automata

simulator, hierarchical

models, superdense

time data trajectories

6 Evoplex C++ https://evoplex.org/en/ Open source

An agent is

represented as a node

in a network;

Evolutionary Graph

Theory, Evolutionary

Dynamics,

Game Theory,

Cellular Automata,

Complex Adaptive

Systems.

7 Gama
Java

GAML

https://github.com/gama-platform

http://gama-platform.org

https://code.google.com/p/gama-platform/

Projects:

https://gama-platform.github.io/wiki/Projects

Open source (Java)

Complete modeling

and simulation

development

environment for

building spatially

explicit multiagent

simulations

8 FLAME C/C++

http://flame.ac.uk/

https://github.com/FLAME-HPC/

http://flame.ac.uk/projects/

Open source

It generates a

complete agent-based

application which can

be compiled and built

on most computing

systems ranging from

laptops to HPC

supercomputers.

9 FLAME GPU

C for CUDA,

C-based

scripting

http://www.flamegpu.com/home
Open source

(C/C++)

Graphics Processing

Unit (GPU) extension

to the FLAME

framework

8

10 Insight Maker

Runs in the

browser and

modeling is

done through

the browser UI

https://insightmaker.com/

Projects:

https://insightmaker.com/new

Open source (Qt)

System dynamics,

agent-based modeling

in the browser.

11 JaCaMo
AgentSpeak

(Jason)

http://jacamo.sourceforge.net/

http://cartago.sourceforge.net/
Open source

Autonomous agents,

environment artifacts,

multiagent

organizations

12 JADE
Java, C# (JADE

LEAP)
http://jade.tilab.com/ Open source (Java)

FIPA-compliant

middleware, graphical

debugging and

deployment tools

13 JADEX Java https://www.activecomponents.org/#/download Open source (Java)
Rational agents on top

of JADE, BDI

14 Janus, SARL

SARL,

interoperable

with Java

http://www.janusproject.io/

https://github.com/janus-project

http://www.sarl.io/

Open source (Java)

Agent-oriented SARL

language, fundamental

abstractions for

dealing with

concurrency,

distribution,

interaction,

decentralization,

reactivity, autonomy

and dynamic

reconfiguration

15 JAS-mine Java http://www.jas-mine.net/ Open source

Discrete-event

simulation, including

agent-based and

micro-simulation

models. Integration

with RDBMS

(relational database

management tools

16 MADKIT Java http://www.madkit.org/ Open source

AGR

(Agent/Group/Role)

organizational model:

agents play roles in

groups and thus create

artificial societies.

17 MASON Java

https://cs.gmu.edu/~eclab/projects/mason/

Projects:

https://github.com/eclab/mason/

https://cs.gmu.edu/~eclab/projects/mason/#Projec

ts

Manual:

https://cs.gmu.edu/~eclab/projects/mason/manual

.pdf

Open source

Discrete event

multiagent simulation;

2D and 3D

visualization

18 MASS Java, C++, Cuda http://depts.washington.edu/dslab/MASS/
Open source (Java,

C++)

Parallel-computing

library for multiagent

and spatial simulation

over a cluster of

computing nodes.

19 Mesa
Python 3+,

recent code,

https://mesa.readthedocs.io/en/master/overview.h

tml

https://github.com/projectmesa/mesa

https://www.researchgate.net/publication/328774

079_Mesa_An_Agent-

Based_Modeling_Framework

Open source,

Apache2 licensed

(Python)

Python 3 alternative to

NetLogo, Repast,

MASON.

20 MOOSE C++

https://www.mooseframework.org/

Code:

https://github.com/idaholab/moose

Open source (C++)

High-scale

Multiphysics object-

oriented simulation

environment.

9

21 Orleans C#

http://research.microsoft.com/en-

us/projects/orleans/

https://github.com/dotnet/orleans

Internal Microsoft projects:

http://research.microsoft.com/en-

us/projects/orleans/

Open source

Distributed high-scale

computing

applications, without

the need to learn and

apply complex

concurrency or other

scaling patterns.

22 Repast

Java, Python,

C#/.NET, C++,

ReLogo,

Groovy

https://repast.github.io/

Projects:

http://www2.econ.iastate.edu/tesfatsi/repastsg.ht

m#Project

http://www2.econ.iastate.edu/tesfatsi/repastsg.ht

m#Project

Open source

(Java, C++)

Agent-based modeling

and simulation that

can run on large

computing clusters

and supercomputers.

23 SeSAm
GUI

programming
http://www.simsesam.de/

LGPL license

(Java)

Distributed agent-

based modeling and

simulation

24 SLAPP Python https://github.com/terna/SLAPP3 Open source
Swarm-like agent

protocol

25 SPADE Python https://pypi.python.org/pypi/SPADE Open source

 Multiagent and

Organizations

Platform based on the

instant messaging

XMPP/Jabber

technology

26 SpaDES R

http://spades.predictiveecology.org/

Code:

https://github.com/PredictiveEcology/SpaDES

GPL-3

Spatially explicit

discrete event

simulation models

ActressMas is an agent framework based on the Actor model, implemented by means of

.NET asynchronous operations. Its main objective is simplicity and it is primarily dedicated to

students learning about agent systems. It is one of the few agent frameworks available for C#. Many

algorithms specific to agent systems were implemented, and also a traffic simulator that can be used

to gather data for autonomous driving scenarios.

Agents.jl is a Julia framework for agent-based modeling (ABM). It provides a structure and

components for implementing agent-based models, run them in batch, collect data, and visualize

them. It provides default grids to run the simulations, including simple or toroidal 1D grids, simple

or toroidal regular rectangular and triangular 2D grids, and simple or toroidal regular cubic 3D grids

with von Neumann or Moore neighborhoods. The simulations can be run in parallel on multiple

cores and their results can be explored interactively in “Data Voyager”. Agents.jl is inspired by the

Mesa framework for Python.

AgentScript is a minimalist agent-based modeling (ABM) framework based on NetLogo

agent semantics. Its goal is to promote the agent-oriented programming model in a CoffeeScript/

JavaScript implementation.

CoSMoSim offers an integrated framework for model development, simulation and

experimentation. Its unified logical, visual, and persistence framework supports specifying families

of parallel cellular automata (CA), discrete event system simulation (DEVS), Statecharts, and

XML-Schema models. As an integrated modeling and simulation environment, CoSMoS supports

configuring input/output data monitoring and visualization for every model component. Logical

specifications of models and their elements are stored in a Microsoft Access relational database.

Code automatically generated from model components are systematically managed without any

involvement by the user. While full Java code for the DEVS-Suite simulator is automatically

generated for instances of coupled DEVS models, at present only partial code generation is

10

supported for atomic parallel DEVS models. Once implementation of the atomic models are

completed using a built-in editor, coupled models can be executed using the DEVS-Suite simulator.

DEVS-Suite is a Parallel DEVS Component-based and Cellular Automata simulator with

support for: automating design of experiments in combination with generating superdense time data

trajectories at run-time, hierarchical model libraries, animating models, synchronized run-time

viewing for time-based trajectories and box-in-box hierarchical component and I/O messaging

viewing. Capabilities for tracking, animation, playback, and area zooming are supported at scale.

New concepts for component tracking (automated transducers) include mixed separate and stack

time trajectories with naming, dynamic tracking log, and configuration interface. For Cellular

Automata, independent tracking of any number of cells with independent start times is supported.

The time-based trajectory plotting is enriched to handle zero-time advance at the start of simulation.

This simulator engine package is strictly separated from model packages. The “Models” package is

divided into the “CellularAutomata” and “Component” packages. User-defined model packages can

be added alongside the provided model packages. The Component package is composed of a

collection of packages, each providing a set of model components focusing on a class of general

and specific system types including single-input-single-output, basic and multiprocessor

architectures, and switch networks. The Cellular Automata package offers a collection of packages

including the game of life, system biology chemotaxis, forest fire, and heat diffusion.

Evoplex is a fast, robust and extensible platform for developing agent-based models and

agent systems on networks. Each agent is represented as a node and interacts with its neighbors, as

defined by the network structure. Evoplex is a fast, multi-threaded, user-friendly, cross-platform

and modular application. It was originally developed to tackle problems in the field of evolutionary

computation and complex systems. However, it has been used in a wide range of scenarios,

including: evolutionary graph theory, evolutionary dynamics, game theory, cellular automata and

complex adaptive systems.

GAMA is a simulation platform, which aims at providing field experts, modelers, and

computer scientists with a complete modeling and simulation development environment for

building spatially explicit multiagent simulations. GAMA has been developed with a very general

approach and can be used for many application domains. Some additional plugins had been

developed to fit particular needs. Example of application domains where GAMA is mostly present

are: transport, urban planning, epidemiology and environment. One can instantiate agents from any

dataset, including GIS data, and execute large-scale simulations (up to millions of agents). Declare

interfaces supporting deep inspections on agents, user-controlled action panels, multi-layer 2D/3D

displays and agent aspects.

FLAME is a generic agent-based modeling system which can be used to develop

applications in many areas. It generates a complete agent-based application which can be compiled

and built on the majority of computing systems ranging from laptops to HPC supercomputers.

Models are created based upon a model of computation called extended finite state machines. By

defining agent-based models in this way the FLAME framework can automatically generate

simulation programs that can run models efficiently on HPCs.

FLAME GPU is a high performance graphics processing unit (GPU) extension to the

FLAME framework. It provides a mapping between a formal agent specifications with C-based

scripting and optimized CUDA code. This includes a number of key ABM building blocks such as

multiple agent types, agent communication and birth and death allocation. Agent-based modelers

are able to focus on specifying agent behavior and run simulations without explicit understanding of

11

CUDA programming or GPU optimization strategies. Massive agent populations can be visualized

in real time as agent data is already located on the GPU hardware.

Insight Maker is a multi-method modeling solution packaged within a fluid and cohesive

software environment. At one level, Insight Maker can be used purely to map out conceptual

models: using causal loop diagrams or rich pictures to describe a system. In this mode, Insight

Maker functions as a powerful diagramming tool that allows to illustrate a model and then easily

share it with others. Once a model diagram has been created, behavior can be added to the different

components using Insight Maker’s simulation engine. Insight Maker supports two different

modeling paradigms that together can describe most of the models imaginable. “System Dynamics”

(sometimes called differential equation modeling or dynamical systems modeling) concerns itself

with the high-level behavior of a system. It helps understanding the aggregate operations of a

system on a macro-scale. It is good for cutting away unnecessary detail and focusing on what is

truly important in a model. “Agent Based Modeling” allow the modeling of individual agents within

a system. Where in “System Dynamics” the modeler looks only at the population, in “Agent Based

Modeling” one can model each individual and explore the differences and interactions between

these individuals.

JaCaMo is a framework for multiagent programming that combines three separate

technologies, each of them being well-known on its own and developed for a number of years so

they are fairly robust and fully-fledged: Jason, for programming autonomous agents, Cartago, for

programming environment artifacts and Moise, for programming multiagent organizations.

CartAgO (Common ARTifact infrastructure for AGents Open environments) is a framework for

programming and executing virtual environments in multiagent programs. Jason is a platform for

the development of agent systems that incorporates an agent-oriented programming (AOP)

language.

JADE (Java Agent DEvelopment Framework) is a software framework implemented in

Java. It simplifies the implementation of agent systems through a middleware that complies with the

FIPA specifications and through a set of graphical tools that support the debugging and deployment

phases.

JADEX (JADE extension) is a rational agent layer on top of JADE that allows for the easy

development of rational agents. Intelligent agents follow a modeling paradigm, based on the notion

of agents with mental states. The JADEX system realizes these concepts following the well-known

belief, desire, intention (BDI) model at the design and implementation layer. The beliefs, goals and

plans of the agents are defined in XML files, and the plan bodies are written in Java. It has a new

version implemented only in Java called “ActiveComponents”, which focuses on web services.

Janus is an open-source agent platform implemented in Java. It enables developers to create

web, enterprise and desktop agent-based applications. It provides a set of features to develop, run,

display and monitor agent-based applications. Janus-based applications can be distributed across a

network. Janus can be used as an agent-oriented platform, an organizational platform, and/or a

holonic platform. It natively manages the concept of recursive agents and holons. SARL is a

general-purpose agent-oriented language. It aims at providing the fundamental abstractions for

dealing with concurrency, distribution, interaction, decentralization, reactivity, autonomy and

dynamic reconfiguration. Janus is a runtime environment for multiagent applications that supports

the concepts of SARL.

JAS-mine is a Java platform that aims at providing a unique simulation tool for discrete-

event simulations, including agent-based and micro-simulation models. With the aim to develop

12

large-scale, data-driven models, the main architectural choice of JAS-mine is to use whenever

possible standard, open-source tools already available in the software development community. The

main added value of the platform are: integration of I/O communication tools, in the form of

embedded relational database management systems (RDBMS) tools and automatic CSV table

creation; advanced multi-run tools to facilitate the design of experiments; regression libraries that

allow a complete separation of regression specifications from the code, and permit uncertainty

analysis of the model outcome by bootstrapping the estimated coefficients across different

simulation runs. JAS-mine allows the separation of data representation and management, which is

automatically taken care of by the simulation engine, from the implementation of processes and

behavioral algorithms, which should be the primary concern of the modeler. This results in quicker,

more robust and more transparent model building.

MADKIT is a lightweight Java library for designing and simulating agent systems. MaDKit

is designed to easily build distributed applications and simulations. In contrast to conventional

approaches, which are mostly agent-centered, MaDKit follows an organization-centered approach

without any predefined agent models. MaDKit is built upon the AGR (Agent/Group/Role)

organizational model, i.e. agents play roles in groups and thus create artificial societies.

MASON (Multi-Agent Simulator Of Neighborhoods/Networks) is a fast discrete-event

multiagent simulation library in Java, designed to be the foundation for large simulations, and also

to provide functionality for lightweight simulation needs. MASON contains both a model library

and an optional suite of visualization tools in 2D and 3D. It is a multiagent simulation toolkit

designed to support large numbers of agents relatively efficiently on a single machine. MASON has

no domain-specific features: it is neither a robotics simulator, nor a game library. Instead it belongs

in the class of domain-independent simulators which may be informally described as the “dots on a

screen” type.

MASS is designed for a large number of social or biological agents and can be used to

simulate their emergent collective behavior that may be difficult only with mathematical and

macroscopic approaches. A successful key for simulating mega-scale agents is to speed up the

execution with parallelization. MASS has been developed to address the parallelization challenges,

and a new parallel-computing library for multiagent and spatial simulation over a cluster of

computing nodes has been created. MASS composes a user application of distributed arrays and

agents, each representing an individual simulation place or an active entity. All computation is

enclosed in each array element or agent. All communication is scheduled as periodic data

exchanges among those entities, using machine-independent identifiers. Agents migrate to a remote

array element for rendezvousing with each other. The agent-based approach of MASS takes

advantage of these merits for parallelizing big data analysis using climate change and biological

network motif searches as well as individual-based simulation such as neural network simulation

and influenza epidemic simulation as practical application examples.

Mesa is a modular framework for building, analyzing and visualizing agent-based models.

Mesa is modular, meaning that its components are kept separate but intended to work together. The

modules are grouped into three categories: Modeling: modules used to build the models themselves:

a model and agent classes, a scheduler to determine the sequence in which the agents act, and space

for them to move around on; Analysis: tools to collect data generated from the model, or to run it

multiple times with different parameter values; and Visualization: classes to create and launch an

interactive model visualization, using a server with a JavaScript interface.

13

MOOSE (Multiphysics Object-Oriented Simulation Environment) is a finite-element,

multiphysics framework which provides a high-level interface to some of the most

sophisticated nonlinear solvers. It has a straightforward API that aligns well with the real-world

problems scientists and engineers need to tackle. Some of its capabilities are: a multiphysics solver,

dimension-independent physics, the ability to run on more than 100,000 CPU cores, a modular

development simplifies code reuse, intuitive parallel multiscale solvers, dimension-agnostic,

parallel geometric search, a graphical user interface and pluggable interfaces that allow the

specialization of every part of the solver.

Orleans is a framework that provides a straightforward approach to building distributed

high-scale computing applications, without the need to learn and apply complex concurrency or

other scaling patterns. Project Orleans introduced the Virtual Actor abstraction, which provides a

fairly simple approach to building distributed interactive applications, without the need to learn

complex programming patterns for handling concurrency, fault tolerance, and resource

management. Orleans applications scale-up automatically and are meant to be deployed in the

Azure cloud.

Repast is a family of agent-based modeling and simulation platforms. “Repast Symphony”

is an interactive and easy to learn Java-based modeling system that is designed for use on

workstations and small computing clusters. “Repast for High Performance Computing” is a lean and

expert-focused modeling system based on C++ that is designed for use on large computing clusters

and supercomputers.

SeSAm (Shell for Simulated Agent Systems) is a generic environment for the development

and simulation of multiagent models, especially when modeling societies. Moreover, it has some

valuable properties, like the possibility for formulating flexible interaction between agents, multi-

level interaction, adaptivity, etc. The main entities in a SeSAm model are agents, resources and the

world. Their state and behavior can be implemented at specification level based on visual

programming. There are also some aspects that allow scaling up for complex multiagent

simulation: user functions, user features and model-specific data types. Simulation runs may be

executed for different situations and aggregated into so-called experiments. Also, model

instrumentation for gathering and visualizing simulation data is possible via so-called analysis.

Before starting a simulation run, the model is compiled using standard optimization techniques from

compiler theory, thus visual programming is combined with fast execution. Execution may also be

distributed over a network using the remote simulation runs.

SLAPP is a simulation shell for agent systems based on a swarm-like agent protocol

implemented in Python 3.

SPADE (Smart Python multi-agent Development Environment) is a multiagent and

organizations platform based on the XMPP/Jabber technology, which offers many features that ease

the construction of MAS, such as an existing communication channel, the concepts of users (agents)

and servers (platforms) and an extensible communication protocol based on XML, just like FIPA-

ACL. SPADE is the first to base its roots on the XMPP technology. The SPADE Agent Library is a

collection of classes, functions and tools for creating agents that can work with the SPADE Agent

Platform. Spade-BDI is a plugin that implements BDI agents.

SpaDES is an R meta-package for implementing a variety of event-based models, with a

focus on spatially explicit models. These include raster-based, event-based, and agent-based

models. The core simulation components are built upon a discrete event simulation framework that

14

facilitates modularity, and easily enables the user to include additional functionality by running

user-built simulation modules.

3.2. Commercial Software or with Unknown License Types

In this section, we include some general purpose platforms that require purchasing a commercial

license, although most of them offer discounts, or free versions for academia. These platforms are

very feature-rich, offer a vast array of reusable components, and can be used in a wide range of

applications, with industrial strength simulations. They also offer supporting tools for model

analysis and validation.

Table 2. General purpose platforms - commercial software or with unknown license type

No. Name
Programming

language
Website. Projects and applications License Description

1 AnyLogic

Java and GUI

based

development

https://www.anylogic.com/features/

Commercial license,

free version for

education

Multimethod

simulation (discrete

event, agent-based,

system dynamics)

2 ExtendSim
ModL and GUI

based.
https://extendsim.com/

Commercial license,

discounts for

academia

continuous process

modeling, discrete-

event simulation,

RBD tool, component

based, hierarchical

components modeling,

many pre-built

components

3 FlexSim

C++ and

FlexScript, a C-

like language,

GUI based

interaction

www.flexsim.com

Commercial license,

free version for

academia

Highly realistic 3D

simulation modeling

and analysis, vast

array of pre-built

components, graphical

model analysis and

statistical validation of

models

4 FlexSim HC

C++ and

FlexScript, a C-

like language,

GUI based

interaction

https://healthcare.flexsim.com/healthcare-

simulation-software/

Commercial license,

free version for

academia

variant of the FlexSim

software, designed

specifically for the

unique challenges

faced by the

healthcare facilities.

5 GoldSim GUI https://www.goldsim.com/Web/Home/

Commercial license,

big discount for

academia

Monte Carlo

simulation for

dynamically modeling

complex systems in

engineering, science

and business; supports

decision-making and

risk analysis

6 JACK Java

http://aosgrp.com/products/jack/

Projects:

http://aosgrp.com/applications/

http://aosgrp.com/featured-research/

Commercial license

BDI, plan language,

graphical plans

(reasoning graphs)

6

JIAC, micro

JIAC,

ASGARD

Java

http://www.jiac.de/

Projects:

http://www.jiac.de/projects/

Description of the framework and tools:

https://pdfs.semanticscholar.org/3267/c77443efbf

bbfe027b4f94432a1a1544c9f5.pdf?_ga=2.80982

996.259933356.1571138905-

1270923650.1571138905

GNU/GPL

BDI, rule engine,

security; large scale

distributed

applications and

services

15

7 Simio
GUI

programming

https://www.simio.com/software/simulation-

software.php

Closed source,

Some free versions

for academic use

supports continuous

process and discrete

event systems, and

mixing them; real-

time risk analysis; pre-

built components, 3D

modeling environment

8 SIMUL8
GUI based

programming
https://www.simul8.com/

Commercial license,

some free options

for academic use

Very comprehensive

general purpose,

discrete event, agent-

based, continuous

process or hybrid.

9 Simulink
StateFlow,

Simscape

https://www.mathworks.com/products/simulink.h

tml

Commercial license,

free options for

academia

large-scale models

through

componentization,

vast array of reusable

system components

and libraries; massive

simulations in parallel

on desktop, cluster or

cloud with minimal

coding; hardware

verification and

validation

10

Wolfram

SystemModele

r

Wolfram

language,

C/C++, Java,

Modelica

language by

Wolfram

www.wolfram.com/system-modeler/

Commercial license

with significant

discounts for

academia

General purpose

modeling and

simulation

environment;

industrial strength

multi domain models

of complete systems

AnyLogic is a professional software tool for building industrial strength agent-based

models. Simulation can be performed for marketing, social processes, and healthcare/epidemic

models. ABM allows leveraging an organization’s big data to populate large-scale models with

agents with personalized properties such as consumer behavior, individual skills, schedules,

performance data, or health-related profiles. Agent-based simulation allows representations of

entities and resources as agents with individual parameters and behavior. It also supports discrete

event modeling, when the process or business can be described as a sequence of events. It also

supports system dynamics modeling, when individual properties of people, products, or events can

be ignored.

ExtendSim is a family of simulation tools that support continuous process modeling and

discrete-event simulation. “ExtendSim CP” is a product for modeling continuous, time-based

processes. It can graphically represent the dynamics of continuous processes, exchange information

with other applications, manage big data, perform analysis and report results. It has many pre-built

components to model system behavior and supports unlimited levels of hierarchy for the system

components. “ExtendSim DE” helps to build a comprehensive message-based discrete event

architecture for intuitive modeling of any system where time advances when events occur and

tracking of model entities is important. It includes pre-built discrete event blocks to represent item

generation, queues, activities and delays, shutdown and shift. It has features such as: priorities,

preemption, reneging, jockeying, blocking and balking. “ExtendSim Pro” offers additional features

such as “Discrete Rate Module”, for simulations that involve tanks, levels, valves, and modeling of

the storage and rate-based movement of system components. It includes a reliability block

diagramming tool.

FlexSim is 3D simulation software that models, simulates, predicts, and visualizes business

systems in a variety of industries: manufacturing, material handling, healthcare, warehousing,

16

mining, logistics, and more. It can model real systems in native, highly realistic and immersive 3D

virtual environment, accounting for real-world variability with the help of the statistical

distributions and random number generation that it supports. It contains many objects that can be

used for modeling and it can also import CAD 3D drawings.

FlexSim HC is a variant of the FlexSim software, designed for the challenges faced by

healthcare facilities. The “Patient Track” emulates the natural pull of human resources that come to

the patient to provide service and guide them to the appropriate next step in their prescribed care

process.

GoldSim is a software platform for visualizing and simulating the future behavior of

physical, financial or organizational systems. A model can be built in an intuitive manner by

drawing diagrams of the system. GoldSim has features to quantitatively represent the random

variability and uncertainty that is present in all systems using Monte Carlo simulations. It is a

hybrid simulator, allowing to superimpose the occurrence and consequences of discrete events

(financial transactions, accidents, failures, etc.) onto continuously varying systems. This ability,

coupled with features to support the construction of hierarchical, top-down models, facilitates the

simulation of large, complex systems while keeping the models easy to understand and navigate.

JACK (Jack Intelligent Agent) is a framework for agent system development which uses the

BDI model and provides its own Java-based plan language. These plans are compiled into Java

classes for execution. It also allows the programmer to write and manage graphical plans, which

represent the discrete reasoning of an agent displayed graphically as a flow chart.

JIAC, micro JIAC, ASGARD (Java-based Intelligent Agent Componentware) is an agent

architecture and framework that eases the development and the operation of large-scale, distributed

applications and services. The framework supports the design, implementation, and deployment of

software agent systems. It includes: BDI, rule engine, security. JIAC is the framework, ASGARD is

a tool meant as a monitor for controlling distributed multiagent infrastructure at runtime. Micro

JIAC is the lightweight version for constrained devices.

Simio Simulation Software provides an object-based 3D modeling environment which

allows the construction of a 3D model in a single step, from a top-down 2D view. All Simio model-

building products integrate with Google Warehouse to allow access to a library of freely available

3D symbols that can add realism to the models. Simio simulation software was used for

manufacturing, healthcare, aerospace and defense, mining, industrial engineering. It can model

continuous and discrete systems.

SIMUL8 supports simulations for continuous processes, discrete events, or agent-based

models for various domains. It also supports optimization through the “OptQuest” plugin, and

“Simul8 Online” is an online version, with the same feature set.

Simulink is a very complex software suite from Mathworks, used to perform multi domain

modeling and simulation, because models can be reused across environments to simulate how all

parts of the system work together. Hybrid systems can be built and simulated. With “Stateflow” one

can model combinatorial and sequential logic with state machines and flowcharts, and “SimEvents”

can be used to represent agents and event-driven processes. “Stateflow” provides a graphical

language that includes state transition diagrams, flow charts, state transition tables, and truth tables.

Physical systems can be modeled using “Simscape”, which supports C-code generation to deploy

models to other simulation environments, including hardware-in-the-loop (HIL) systems.

“SimEvents” enables the study of the effects of task timing and resource usage on the performance

of distributed control systems, software and hardware architectures, and communication networks.

17

Wolfram SystemModeler is a modeling and simulation environment for cyber-physical

systems. Using drag and drop from the built-in modeling libraries, one can build industrial strength,

multidomain models of complete systems. The Wolfram Language can be used for analyzing,

understanding and quickly iterating system designs.

4. Special Purpose Platforms

4.1. Cognitive, Social and Affective Agent Platforms

The platforms included in this section can be used to model human behavior and social phenomena.

Some of them are only in the phase of framework design, without an actual implementation.

Table 3. Cognitive, Social and Affective Agent Platforms

No. Name
Programming

language
Website. Projects and applications License Description

1 ABC-EBDI No code
https://www.sciencedirect.com/science/article/pii/S

1389041718309136

No product, just

framework design

Affective, BDI,

human behavior,

cognitive

2 ACT-R ACT-R

http://act-r.psy.cmu.edu/

Projects:

http://acs.ist.psu.edu/papers/ritterTOip.pdf

Open source (Lisp)
Human behavior,

cognitive agents

3 Cormas Smalltalk http://cormas.cirad.fr/indexeng.htm Free, closed source

Relationships

between societies and

their environments,

interactive simulation

4 EBDI No code
https://www.researchgate.net/publication/22145489

3_EBDI_an_architecture_for_emotional_agents

No product, just

framework/architectu

re design

BDI, emotional

agents, merge of

emotion theories with

agent reasoning

process.

5 DALI Prolog

https://github.com/AAAI-DISIM-UnivAQ/DALI

https://www.aaai.org/Papers/Symposia/Spring/2008

/SS-08-02/SS08-02-003.pdf

Apache License 2.0

An architecture and

an agent-oriented

logic programming

language

6 GOAL

GOAL

It currently uses

Prolog as a

knowledge

representation

language

https://goalapl.atlassian.net/wiki/spaces/GOAL/ove

rview?mode=global

Projects:

https://goalapl.atlassian.net/wiki/spaces/GOAL/pag

es/33046/Projects

Open source

(Java)

GOAL allows and

facilitates the

manipulation of an

agent's beliefs and

goals and to structure

its decision-making

7 GROWLab Java https://icr.ethz.ch/research/growlab/ Open source (Java)

Social phenomena,

hierarchical

relationships between

model actors.

8 Jason AgentSpeak

http://jason.sourceforge.net/

Projects:

http://jason.sourceforge.net/wp/projects/

fully fledged

interpreter for

AgentSpeak, BDI

9 Soar Soar

http://soar.eecs.umich.edu/

Projects:

http://soar.eecs.umich.edu/groups

https://en.wikipedia.org/wiki/Soar_(cognitive_archi

tecture)

Open source (C++)
 Cognitive

architecture

18

10 SOSIEL C#

https://www.sosiel.org

Github:

https://github.com/SOSIEL/Platform-SOSIEL

Open source (C#)

Agent system

simulating social

learning, collective

action, cross-

generational

population dynamics,

multi-layered social

network structures;

11 The Matrix
No code

provided

http://www.ifaamas.org/Proceedings/aamas2019/pd

fs/p1635.pdf

No code/product

offered, just

framework design

Data-intensive

simulation at-scale.

ABC-EBDI is an “affective” framework for BDI agents. The aim of this framework is to

improve the modeling of intelligent agents that reproduce realistic human behavior. BDI

frameworks have been successfully used in this context and have evolved in recent years into EBDI

frameworks, in which affective aspects are considered. The distinguishing feature of this framework

is the classification of an agent’s cognitive-affective process as either rational or irrational. This

process leads to functional emotions and adaptive conduct in the first case and dysfunctional

emotions and maladaptive behaviors in the second. The framework models affect by considering

emotions, mood and personality. It also models human conduct regarding not only actions, but also

the way those actions are expressed.

ACT-R is a cognitive architecture: a theory about how human cognition works. On the

exterior, ACT-R looks like a programming language; however, its constructs reflect assumptions

about human cognition. These assumptions are based on numerous facts derived from psychological

experiments. These assumptions can be tested by comparing the results of the model (i.e. the

traditional measures of cognitive psychology: time to perform the task, accuracy in the task, or,

more recently, neurological data such as those obtained from FMRI) with the results of people

doing the same tasks. One important feature of ACT-R that distinguishes it from other theories in

the field is that it allows researchers to collect quantitative measures that can be directly compared

with the quantitative measures obtained from human participants.

Cormas is a generic ABM platform dedicated to common-pool resource management which

can be used to understand the relationships between societies and their environment. It is intended

to facilitate the design of ABM as well as the monitoring and analysis of simulation scenarios.

Cormas can enable stakeholders to interact with the execution of a simulation by modifying the

behavior of the agents and the way they use the resources. It is a simulation platform based on the

VisualWorks programming environment which allows the development of applications in the

Smalltalk object-oriented language. Its predefined entities are Smalltalk generic classes from which,

by specialization and refining, users can create specific entities for their own model. It facilitates the

construction of agent-based models and the design, monitoring and analyzing of agent-based

simulation scenarios. Cormas was primarily oriented towards the representation of interactions

between stakeholders about the use of natural renewable resources.

DALI is a meta-interpreter built on top of Prolog. It has a logic programming language for

modeling agents and agent systems in computational logic. The basic objective of the specification

of this language is the identification and the formalization of the basic patterns for reactivity,

proactivity, internal “thinking” and “memory”.

EBDI is an architecture for emotional agents. Most of the research on agent systems has

focused on the development of rational utility-maximizing agents. However, research shows that

emotions have a strong effect on people’s physical states, motivations, beliefs, and desires. By

introducing primary and secondary emotion into BDI architecture, this framework shows a generic

19

architecture for an emotional agent, EBDI, which can merge various emotion theories with an

agent’s reasoning process. It implements practical reasoning techniques separately from the specific

emotion mechanism. The separation allows the user to plug in emotional models as needed or

upgrade the agent’s reasoning engine independently.

GOAL is another language for programming cognitive agents. GOAL agents derive their

choice of action from their beliefs and goals. The language provides the key building blocks for

designing and implementing cognitive agents. It allows and facilitates the manipulation of an

agent’s beliefs and goals and to structure its decision-making. GOAL is a rule-based programming

language. A GOAL agent program consists of six different sections, including the knowledge,

beliefs, goals, action rules, action specifications, and percept rules, respectively. The knowledge,

beliefs and goals are represented in a knowledge representation language such as Prolog, Answer

set programming, SQL (or Datalog), or the Planning Domain Definition Language, for example.

The distinguishing feature of GOAL is the concept of a declarative goal. The goals of an agent

describe what it wants to achieve, not how to achieve that.

GROWLab was designed to facilitate the modeling, simulation, analysis, and validation of

complex social processes, with a special focus on geographic conflict research. Four core support:

the seeding of the model with empirical facts (including geo-referenced data) to calibrate the

environments and mechanism to the appropriate level of realism; the effective modeling of complex

network and hierarchical relationships between model actors and the efficient scheduling of their

interactions; the execution of large number of simulation runs on a grid made of many independent

computers to test the sensitivity of the models; the statistical and visual analysis of the state of the

system, as well as the unfolding of the processes over time.

 Jason is a platform for the development of agent systems. AgentSpeak has been one of the

most influential abstract languages based on the BDI architecture. The agents programmed with

AgentSpeak are sometimes referred to as reactive planning systems. Jason is the first fully-fledged

interpreter for an improved version of AgentSpeak, including also speech-act based inter-agent

communication.

Soar is a general cognitive architecture for developing systems that exhibit intelligent

behavior. The Soar Markup Language allows agents to communicate with external environments

and it can be used to interface with agents written in other languages. The goal of the Soar project is

to develop the fixed computational building blocks necessary for general intelligent agents – agents

that can perform a wide range of tasks and encode, use, and learn all types of knowledge to realize

the full range of cognitive capabilities found in humans, such as decision making, problem solving,

planning, and natural language understanding. It is both a theory of what cognition is and a

computational implementation of that theory. Since its beginnings in 1983, it has been used by AI

researchers to create intelligent agents and cognitive models of different aspects of human behavior.

The most current and comprehensive description of Soar is (Laird, 2012).

SOSIEL is an agent system platform developed for building models that are capable of

capturing the spatio-temporal complexity of social contexts in which the heterogeneity of

knowledge, the need for learning, and the potential for collective action plays a significant role. It

can simulate the cross-generational progression of one or a large number of boundedly-rational

agents, each of which is represented by a cognitive architecture that consists of theoretically-

grounded cognitive processes and agent-specific and empirically-grounded knowledge. The agents

can interact among themselves and with coupled natural or technical systems, learn from their and

each other’s experience, create new practices, make decisions take potentially collective actions.

20

Highlights of the platform include: an agent system simulating social learning, collective action,

cross-generational population dynamics, and the self-organization of multi-layered social network

structures; agent cognition is represented with a general cognitive architecture that consists of a

memory component, a learning component, and a decision-making component and that can be set to

one of four cognitive levels; agents can have place-based and hypothetical knowledge that is

organized, updated, modified and utilized by the cognitive architecture.

The Matrix addresses data-intensive simulation at-scale. It can model 3 million users (each

as an individual agent), 13 million repositories and 239 million user-repository interactions on

GitHub. Simulations predict user interactions with GitHub repositories. They demonstrate a three-

order of magnitude increase in the number of cognitive agents simultaneously interacting.

4.2. Platforms for Artificial Intelligence Research

The platforms included in this section are intensively used in the domain of artificial intelligence

research, most of them leveraged using the Python programming language. These platforms provide

various “environments” with which an intelligent agent can interact, and in various research

domains such as games, autonomous driving or robotics. Some of them implement the

environments using high-fidelity physics engines.

Table 4. Platforms for artificial intelligence research

No. Name
Programming

language
Website. Projects and applications License Description

1 Coach Python https://nervanasystems.github.io/coach/ Open source (Python)

AI research in

autonomous driving,

robotics, games, etc.;

models the interaction

between an intelligent

agent and various

environments

2
DeepMind

Garage

Python,

Tensorflow,

Pytorch

https://github.com/rlworkgroup/garage
Open source

(Python)

Intelligent agents

development, using

simulations in a variety

of environments (games,

control tasks, etc.)

3 DeepMind Lab Python https://github.com/deepmind/lab
Open source

(C, Lua, Python)

3D navigation and

puzzle-solving

environments for

intelligent agent

experimentation

(especially deep

reinforcement learning)

4
DeepMind

Spriteworld
Python

https://deepmind.com/research/open-

source/spriteworld

Github:

https://github.com/deepmind/spriteworld/tree

/master/spriteworld

Open source

2D arena with shapes

that can be moved freely;

small scale experiments

for limited

computational resources;

experimentation with

reinforcement learning

agent implementations

21

6 GAZEBO JavaScript http://gazebosim.org/ Open source

3D robot populations

simulation, indoor and

outdoor; very high-

fidelity physics, high-

quality graphics, pre-

built robot models and

environments

7 MADP C++

http://www.fransoliehoek.net/fb/index.php?f

useaction=software.madp

Github:

https://github.cm/MADPToolbox/MADP

Open source

Research in decision

planning and learning in

agent systems

8 MAgent Python
https://github.com/geek-ai/MAgent

https://arxiv.org/pdf/1712.00600.pdf
Open source

Supports huge number of

agents; multiagent

reinforcement learning

9 MuJoCo C/C++ http://www.mujoco.org/index.html

Commercial license,

free student edition,

special licenses for

academia

first full-featured

simulator designed for

the purpose of model-

based optimization, and

in particular optimization

through contacts;

robotics, biomechanics,

graphics, animation; 3D

visualization

10 Neural-MMO Python https://github.com/jsuarez5341/neural-mmo Open source (Python)

Massively multiagent

game environment for

training and evaluating

intelligent agents

11 OpenAI Gym Python

https://gym.openai.com/

agents’ baselines:

https://github.com/openai/baselines

Open source

Reinforcement learning

environments

simulations; control

tasks, Atari games

emulators that allow

custom agents to play in

and try to solve them

12 OpenSpiel C++/Python https://github.com/deepmind/open_spiel
Open source

(C++, Python, Swift)

Environments for n-

player zero-sum,

cooperative and general-

sum, one-shot and

sequential, strictly turn-

taking and simultaneous-

move, perfect and

imperfect information

games, as well as

traditional multiagent

13

PySC2 –

Starcraft II

Learning

Environment

Python https://github.com/deepmind/pysc2 Open source

AI research in the real-

time strategy game

StarCraft II

14
Unity ML

Agents
Python

https://github.com/Unity-Technologies/ml-

agents
Open source

AI research; 2D, 3D,

VR/AR games; high

fidelity physics and

graphics; offers

implementation of some

of the best RL agents;

multiagent environments

Coach is a Python framework which models the interaction between an agent and an

environment in a modular way. It allows one to model an agent by combining various building

22

blocks and training the agent in multiple environments. The available environments allow testing

the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set

of APIs for experimenting with new reinforcement learning (RL) algorithms and allows the

integration of new environments to solve. Coach collects statistics from the training process and

supports visualization techniques for debugging the agent being trained. It also contains the

implementation of many state-of-the-art algorithms.

DeepMind Garage is a framework for developing and evaluating reinforcement learning

algorithms in a variety of environments in which simulations for training and testing can be done.

The toolkit provides a wide range of modular tools for implementing RL algorithms, as well as the

implementation of some of the best RL algorithms. Custom agents and environments can be

created.

DeepMind Lab provides a suite of challenging, customizable, 3D navigation and puzzle-

solving tasks for learning agents. Its primary purpose is to act as a testbed for research in artificial

intelligence, especially deep reinforcement learning.

DeepMind Spriteworld is a Python-based RL environment that consists of a 2-dimensional

arena with simple shapes that can be moved freely. Spriteworld is suited for small-scale

experiments with limited computational resources. Spriteworld sprites can have many shapes and

can vary continuously in position, size, color, angle, and velocity. The environment has occlusion

but no physics, so by default sprites pass beneath each other but do not collide or interact in any

way. Interactions may be introduced through the action space, which can update all sprites each

timestep. There are a variety of action spaces, some of which are continuous (like a touch-screen)

and others of which are discrete (like an embodied agent that takes discrete steps).

GAZEBO is a 3D dynamic simulator with the ability to accurately and efficiently simulate

populations of robots in complex indoor and outdoor environments. While similar to game engines,

Gazebo offers physics simulation at a much higher degree of fidelity, a suite of sensors, and

interfaces for both users and programs. Typical uses of Gazebo include testing robotics algorithms,

designing robots, performing regression testing with realistic scenarios. A few key features of

Gazebo include: multiple physics engines, a library of robot models and environments, a variety of

sensors, and programmatic and graphical interfaces.

MADP (Multiagent Decision Process) is a software toolbox for scientific research in

decision-theoretic planning and learning in agent systems. MADP refers to a collection of

mathematical models for multiagent decision making: multiagent Markov decision processes

(MMDPs), decentralized MDPs, decentralized partially observable MDPs, and partially observable

stochastic games, etc. It provides classes modeling the basic data types used in MADPs (e.g.,

action, observations, etc.) as well as derived types for planning (observation histories, policies, etc.).

It also provides base classes for planning algorithms and includes several example applications

using the provided functionality. Several utility applications are provided, for instance one which

empirically determines a joint policy’s control quality by simulation.

MAgent is a research platform for many-agent reinforcement learning. It aims at supporting

RL scenarios that scale up from hundreds to millions of agents.

MuJoCo is a physics engine aiming to facilitate research and development in robotics,

biomechanics, graphics and animation, and other areas where fast and accurate simulation is

needed. It is designed for the purpose of model-based optimization, especially through contacts.

MuJoCo makes it possible to scale up computationally intensive techniques such optimal control,

physically-consistent state estimation, system identification and automated mechanism design, and

23

apply them to complex dynamical systems in contact-rich behaviors. It also has more traditional

applications such as testing and validation of control schemes before deployment on physical

robots, interactive scientific visualization, virtual environments, animation and gaming. Its key

features are: simulation in generalized coordinates, avoiding joint violations; inverse dynamics that

are well-defined even in the presence of contacts; unified continuous-time formulation of

constraints via convex optimization; constraints include soft contacts, limits, dry friction, equality

constraints; • simulation of particle systems, cloth, rope and soft objects; actuators including

motors, cylinders, muscles, tendons, slider-cranks; Newton, Conjugate Gradient, or Projected

Gauss-Seidel solvers; pyramidal or elliptic friction cones, dense or sparse Jacobians; Euler or

Runge-Kutta numerical integrators; multi-threaded sampling and finite-difference approximations;

cross-platform GUI with interactive 3D visualization in OpenGL; run-time module written in C and

tuned for performance.

Neural-MMO platform supports a large, variable number of agents within a persistent and

open-ended task. The inclusion of many agents and species leads to better exploration, divergent

niche formation, and greater overall competence. The platform satisfies the following criteria:

Persistence: agents learn concurrently in the presence of other learning agents with no environment

resets. Strategies must consider long time horizons and adapt to potentially rapid changes in the

behaviors of other agents; Scale: the environment supports a large and variable number of entities,

e.g. up to 100M lifetimes of 128 concurrent agents in each of 100 concurrent servers;

Efficiency: effective policies can be trained on a single desktop CPU; Expansion: core features

include procedural generation of tile-based terrain, a food and water foraging system, and a strategic

combat system.

OpenAI Gym library contains a collection of environments that can be used to test the

intelligent agents’ ability to solve them. Environments are grouped as follows: classic control,

which are small-scale control tasks like a small robot arm, pendulum, etc.; simple 2D and 3D

robots, which are used by intelligent agents that are trying to control a robot in simulation. These

environments are based on MuJoCo engine; Atari games suite (https://github.com/mgbellemare/

Arcade-Learning-Environment) which allows experimentation of reinforcement learning

algorithms, by running simulations of reinforcement learning agents; algorithmic, where the

challenge is to learn the algorithms from examples.

OpenSpiel is a collection of environments and algorithms for research in general

reinforcement learning and search or planning in games. OpenSpiel supports n-player single- and

multiagent zero-sum, cooperative and general-sum, one-shot and sequential, strictly turn-taking and

simultaneous-move, perfect and imperfect information games, as well as traditional multiagent

environments such as partially- and fully-observable grid worlds and social dilemmas. It also

includes tools to analyze learning dynamics and common evaluation metrics. The core API and

games are implemented in C++ and exposed to Python. Algorithms and tools are written both in

C++ and Python.

PySC2 Starcraft II Learning Environment is DeepMind’s Python component of the

StarCraft II Learning Environment (SC2LE). It exposes Blizzard Entertainment’s StarCraft II

Machine Learning API as a Python RL environment. PySC2 provides an interface for RL agents to

interact with StarCraft 2, getting observations and sending actions. This environment wrapper helps

by offering an interface for RL agents to play the game. The game is broken down into “feature

layers”, where the elements of the game such as unit type, health and map visibility are isolated

from each other, while preserving the core visual and spatial elements of the game.

24

Unity ML-Agents (The Unity Machine Learning Agents Toolkit) is an open-source Unity

plugin that enables games and simulations to serve as environments for training intelligent agents.

Agents can be trained using reinforcement learning, imitation learning, neuroevolution, or other

machine learning methods through a Python API. This toolkit provides implementations (based on

TensorFlow) of state-of-the-art algorithms to enable users to train intelligent agents for 2D, 3D and

VR/AR games.

4.3. Platforms for Modeling and Simulating Environments and Ecosystems

This section presents some platforms that can be used for modeling and simulating natural

phenomena, with environmental, climate, hydrological, wildlife or agricultural applications.

Table 5. Platforms for modeling and simulating environments and ecosystems

No. Name
Programming

language
Website. Projects and applications License Description

1
Agent

Analyst

NQPy - Not

Quite Python, a

subset of

Python.

http://resources.arcgis.com/en/help/agent-analyst/ Open source

Agent based models

with spatial

components based on

ArcGIS

2

Altreva

Adaptive

Modeler

UI based https://www.altreva.com/product.htm
Commercial license,

free evaluation

Real-time price

forecasting in real

world markets

3 BSim Java

https://cellsimulationlabs.github.io/tools/bsim/ind

ex.html

Published paper:

https://pubs.acs.org/doi/pdf/10.1021/acssynbio.7b

00121

Github:

https://github.com/CellSimulationLabs/bsim

Open source (Java)

Bacterial population

study, Realistic 3D

environments,

accurate physics,

built-in models

4 CRAFTY XML
https://www.wiki.ed.ac.uk/display/CRAFTY/Ho

me
Open source (Java)

Lands use and goods

and services they

produce, large scale

5 EMOD

JSON based

modeling,

Python runner

scripts

http://www.idmod.org/software#emod

https://github.com/InstituteforDiseaseModeling/E

MOD

Open source (C++)

Quantitative and

analytical means to

model infectious

disease

6 Envision
Xml based

specification
http://envision.bioe.orst.edu/ Open Source (C++)

spatially-explicit

modeling platform

specifically designed

for scenario-based

exploration of coupled

human and natural

systems (CHANS),

GIS based

7 Framsticks

FramScript

(similar to

JavaScript,

Java), C++

http://www.framsticks.com/

http://www.framsticks.com/wiki/Projects.html

http://www.framsticks.com/dev/main.html

Open source (C++)
three-dimensional life

simulation

8 HexSim

Modeling done

through GUI,

but engine

written in C++

and the GUI in

C#

http://www.hexsim.net/

Free, closed

source, C++/C#. soon

to be made open

source

Spatially explicit,

individual based,

multi-species, life

history simulator.

25

9 iLand Javascript http://iland.boku.ac.at/startpage
GPL, open source

(C++)

General model of

forest ecosystem

dynamics; resilience

of ecosystems, climate

change adaptation,

forest carbon storage

and exchange,

functional roles of

diversity; spatially

explicit, hierarchical

multi-scale

10 LANDIS-II C#

http://www.landis-ii.org/

Projects:

 http://www.landis-ii.org/projects

https://github.com/LANDIS-II-Foundation

Open source (C#)

Forest landscape

model, multi-century

timescales, spatial

scales spanning

hundreds of millions

of hectares.

11 MIRAGE
No code

provided

http://www.geocomputation.org/2015/papers/GC

15_56.pdf

No code/product

provided, just design

description

High performance

computing agent-

based framework that

can capture dynamics

and behaviors of

billions of humans.

12 MPMAS Excel files https://mp-mas.uni-hohenheim.de/
Free, closed source

(C++)

Large-scale

simulations of land

use change in

agriculture and

forestry; farm-level

linear programming

13 NetLogo Logo dialect

https://ccl.northwestern.edu/netlogo/

Model library:

http://ccl.northwestern.edu/netlogo/models/

MAS models:

http://jmvidal.cse.sc.edu/netlogomas/

programmable

modeling environment

for simulating natural

and social phenomena

14

OMS - Object

modeling

system

Java https://alm.engr.colostate.edu/cb/wiki/16961 Open source (Java)

Distributed

hydrological and

environmental models

15 Osmose

R (pre/post

processing

tools, call to

the JAVA core,

etc.) and Java

http://www.osmose-model.org/object-oriented-

simulator-marine-ecosystems

Code:

https://github.com/osmose-model/osmose

Open source (Java and

R)

Object-oriented

simulator of marine

ecosystems

16 TerraME Lua http://www.terrame.org/doku.php?id=start
Open source (Lua,

C++)

Spatial dynamical

modeling; cellular

automata, agent-based

models, network

models running in 2D

cell spaces; access to

TerraLib geographical

database; Anisotropic

spaces and hybrid

automata models.

17 UrbanSim
GUI based

programming
https://urbansim.com/ Commercial license

Simulation platform

for supporting

planning and analysis

of urban development,

incorporating the

interactions between

land use,

transportation, the

economy, and the

environment; 3D

visualizations

26

Agent Analyst is a platform for agent-based modeling which integrates Esri ArcGIS, a

geographic information system, and Repast agent system. It can be used to simulate, for example,

the behavior of wildlife directly on a geographic map.

Altreva Adaptive Modeler creates agent-based models for price forecasting of real-world

markets such as stocks, cryptocurrencies, ETFs, commodities or forex currency pairs. One-step-

ahead forecasts and trading signals are generated after every received price bar or tick. Models are

created mostly automatically. Some parameters can be adjusted by the user to take into account the

specific characteristics of the security such as the data fields to use (i.e. open, high, low close, bid,

ask, volume), minimum price increment, transaction costs and the user’s trading preferences. It is

also possible to experiment with agent-based model settings such as the number of market

participants (agents), their initial wealth and asset distribution, and evolution settings. Model

evolution is visualized in real-time and can be paused and resumed by the user at any time. It is also

possible to advance the model step-by-step. “Adaptive Modeler” contains a “Trading Simulator” to

simulate trading based on the trading signals.

BSim is an agent-based modeling tool designed to allow for the study of bacterial

populations. By enabling the description of bacterial behaviors, it attempts to provide an

environment in which to investigate how local interactions between individual bacteria leads to the

emergence of population level features, such as cooperation and synchronization.

CRAFTY is a large-scale ABM designed to simulate scenarios related to land uses and the

goods and services they produce. It can be used without the need of programming.

EMOD (Epidemiological MODeling software) simulates the spread of disease to help

determine the combination of health policies and intervention strategies that can lead to disease

eradication. EMOD is a stochastic, mechanistic, agent-based model that simulates the actions and

interactions of individuals within geographic areas to understand the disease dynamics in a

population over time. EMOD supports modeling a variety of different diseases including malaria,

HIV, and tuberculosis. IDM has created a suite of over 600 scenarios. A vital part of this suite of

tests is the “scientific feature testing,” which involves validating the model output with the

mathematical formulas and distributions specified for each disease.

Envision is a robust, spatially-explicit modeling platform specifically designed for scenario-

based exploration of coupled human and natural systems. It can integrate traditional simulation

models with a multiagent modeling system, incorporating actors and policies capturing the decision

rules available to those actors.

Framsticks is a three-dimensional life simulation project. Both mechanical structures

(“bodies”) and control systems (“brains”) of creatures are modeled. It is possible to design various

kinds of experiments, including simple optimization (by evolutionary algorithms), coevolution,

open-ended and spontaneous evolution, distinct gene pools and populations, diverse genotype-

phenotype mappings, and modeling of species and ecosystems. The system can be interesting for

experimenters who would like to evolve their own artificial creatures and see them in a three-

dimensional, virtual world.

HexSim is a spatially explicit, individual-based computer model designed for simulating

terrestrial wildlife population dynamics and interactions. It is a framework within which plant and

animal population models are constructed. Users define the model structure, complexity, and data

needs. Every function can be accessed through a graphical user interface (GUI). HexSim uses

spatial data to capture landscape structure, habitat quality, stressor distribution, and other types of

information. It can be employed for exploring the cumulative impact to wildlife populations and

27

plants resulting from multiple interacting stressors. HexSim simulations are built around a user-

defined life cycle, which is the principal mechanism driving all other model processing and data

needs. The life cycle consists of a sequence of life-history events that are selected from a list, which

includes survival, reproduction, movement, resource acquisition, species interactions, etc. Through

the use of events, the user can impose yearly, seasonal, daily, or other temporal cycles on the

simulated population.

iLand is a general model of forest ecosystem dynamics. It can be employed to elucidate a

wide variety of ecology and management-related questions, simulating individual tree competition,

growth, mortality, and regeneration. It addresses interactions between climate (change), disturbance

regimes, vegetation dynamics, and forest management.

LANDIS-II forest landscape model simulates future forests (both trees and shrubs) at

decadal to multi-century time scales and spatial scales spanning hundreds to millions of hectares.

The model simulates change as a function of growth and succession and, optionally, the influence

of disturbances (e.g., fire, wind, insects), forest management or land use change. LANDIS-II also

provides dozens of libraries (“extensions”).

MIRAGE is a framework for data-driven collaborative high-resolution simulation.

Information about how human populations shift in response to various stimuli is limited because no

single model can address these stimuli simultaneously, and integration of the best existing models

has been challenging because of the vast disparity among constituent model purpose, architecture,

scale and execution. To demonstrate a potential model coupling for approaching this problem, three

major model components are integrated into a fully coupled system that executes a worldwide

infection-infected routine where a human population requires a food source for sustenance and an

infected population can spread the infection when they are in contact with the remaining healthy

population.

MPMAS (Mathematical Programming-based Multi-Agent Systems) is a software package

for simulating land use change in agriculture and forestry. It combines economic models of farm

household decision-making with a range of biophysical models simulating the crop yield response

to changes in the crop water supply and changes in soil nutrients. MPMAS is part of a family of

models called agent systems models of land-use/cover change, which couple a cellular component

representing a physical landscape with an agent-based component representing land-use decision-

making. The main difference between MPMAS and alternative packages is the use of whole farm

mathematical programming to simulate land-use decision-making. MPMAS was applied in a dozen

countries around the world. It is flexible in terms of the spatial extent that it can cover and has been

used in small-scale as well as large-scale applications.

NetLogo is a programmable modeling environment for simulating natural and social

phenomena. It is particularly well suited for modeling complex systems developing over time.

Modelers can give instructions to hundreds or thousands of agents all operating independently. This

makes it possible to explore the connection between the micro-level behavior of individuals and the

macro-level patterns that emerge from their interaction

OMS (Object Modeling System) is a Java modeling framework, which allows model

construction and model application based on components. This is a collaborative project active

among the U.S. Department of Agriculture and partner agencies and organizations involved with

agro-environmental modeling.

Osmose is a multispecies and individual-based model which focuses on fish species. It

assumes opportunistic predation-based on spatial co-occurrence and size adequacy between a

28

predator and its prey. It represents fish individuals grouped into schools, which are characterized by

their size, weight, age, taxonomy and geographical location (2D model), and which undergo major

processes of fish life cycle (growth, explicit predation, natural and starvation mortalities,

reproduction and migration) and a fishing mortality distinct for each species.

TerraME is a programming environment for spatial dynamical modeling. It supports

cellular automata, agent-based models, and network models running in 2D cell spaces. TerraME

provides an interface to TerraLib geographical database, allowing models direct access to geospatial

data. Two important innovations in TerraME are its use of anisotropic spaces and of hybrid

automata models. Anisotropic spaces arise when modeling natural and human-related phenomena.

For example, land settlers in a new area do not occupy all places at the same time; they follow roads

and rivers, leading to an anisotropic pattern. Anisotropic spaces are implemented in TerraME using

generalized proximity matrices. A hybrid automaton is an abstract model for a system whose

behavior has discrete and continuous parts. It extends the idea of finite automata to allow

continuous change to take place between transitions. Adopting hybrid automata in spatial dynamical

models allows complex models which include critical transitions.

UrbanSim is a simulation system for supporting planning and analysis of urban

development, incorporating the interactions between land use, transportation, the economy, and the

environment. It is designed for use by metropolitan planning organizations, cities, counties, non-

governmental organizations, real estate professionals, planners, researchers and students interested

in exploring the effects of infrastructure and development constraints as well as other policies on

community outcomes such as motorized and non-motorized accessibility, housing affordability,

greenhouse gas emissions, and the protection of open space and environmentally sensitive habitats.

UrbanSim is a computational representation of metropolitan real estate markets interacting with

transport markets, modeling the choices made by households, businesses, and real estate developers,

and how these are influenced by governmental policies and investments.

4.4. Platforms for Transport-Related Simulations

This section presents platforms used for traffic simulations in autonomous driving scenarios, agent-

based transportation simulations, as well as for autonomous vehicle simulations.

Table 6. Platforms for Transport-Related Simulations

No. Name
Programming

language
Website. Projects and applications License Description

1 Carla Python http://carla.org/ Open source (C++)

Autonomous driving

systems, realistic 3D

simulation, physics

engine, traffic

scenarios simulation

2

Distributed Real-

Time Traffic

Simulation for

Autonomous

Vehicle Testing in

Urban

Environments

No code

provided
https://ieeexplore.ieee.org/document/8569544

No product, just

framework design

Traffic simulation for

autonomous driving in

urban environments

3 MATSim Java

http://www.matsim.org/

Code:

https://github.com/matsim-org/matsim/

Open source (Java)

Large-scale agent-

based transport

simulation

29

4 Microsoft AirSim
C++, Python,

C#, Java
https://github.com/microsoft/AirSim Open Source (C++)

Simulator for

autonomous vehicles

built on Unreal Engine

and Unity engine

5 Spice N/A
https://link.springer.com/article/10.1007%2Fs

10458-018-9383-2

No code/product

offered, just

framework design

cognitive agent

framework for

computational crowd

simulations in

complex environments

6

Torcs - The Open

Racing Car

Simulator

C/C++ http://torcs.sourceforge.net/index.php Open source (C/C++)

Car racing simulation;

realistic 3D graphics;

real-time; AI racing

game – research

platform

Carla was created to support development, training, and validation of autonomous driving

systems. In addition to open-source code and protocols, CARLA provides open digital assets such

as: urban layouts, buildings and vehicles. The simulation platform supports flexible specification of

sensor suites, environmental conditions, full control of all static and dynamic actors, and map

generation. CARLA consists mainly of two modules, the CARLA Simulator and the CARLA

Python API module. The simulator controls the logic, physics, and rendering of all the actors and

sensors in the scene; it requires a machine with a dedicated GPU to run. The CARLA Python API is

a module that can be imported in Python scripts, it provides an interface for controlling the

simulator and retrieving data. With this Python API one can control any vehicle in the simulation,

attach sensors to it, and read back the data these sensors generate.

Distributed Real-Time Traffic Simulation for Autonomous Vehicle Testing in Urban

Environments presents a distributed real-time simulation setup for automated driving function

testing in urban environments. In the automotive domain, many simulation frameworks are utilized

which are tailored towards a specific application. However, virtual testing of automated driving

functions requires a holistic simulation of realistic urban traffic environments. This paper presents a

distributed simulation framework, with integrated ego-vehicle and a linked pedestrian simulator. It

also presents a pedestrian behavior model, which can interact with all agents of the different

simulation instances.

MATSim provides a toolbox to run and implement large-scale agent-based transport

simulations. The toolbox consists of several modules which can be combined or used stand-alone.

Modules can be replaced by custom implementations to test single aspects of the modeler’s work. It

offers a toolbox for demand-modeling, agent-based mobility-simulation (traffic flow simulation),

re-planning, a controller to iteratively run simulations as well as methods to analyze the output

generated by the modules.

Microsoft AirSim is a simulator for drones, cars, etc., built on the Unreal engine

(https://www.unrealengine.com , also with an experimental Unity release: https://unity.com). It is

open-source, cross-platform and supports HIL with flight controllers for physically and visually

realistic simulations. The goal of AirSim is to become a platform for AI research to experiment with

deep learning, computer vision and reinforcement learning algorithms for autonomous vehicles. For

this purpose, it also exposes APIs to retrieve data and control vehicles in a platform-independent

way. It has support for multiple types of sensors, such as GPS, barometer, distance sensor, Lidar,

and has multiple vehicle capability.

Spice. Pedestrian behavior is an omnipresent topic, but the underlying cognitive processes

and the various influences on movement behavior are still not fully understood. Nonetheless,

computational simulations that predict crowd behavior are essential for safety, economics, and

30

transport. Spice provides an approach to structure pedestrian agent models by integrating concepts

of pedestrian dynamics and cognition. The model solves spatial sequential choice problems in

enough detail, including movement and cognition aspects.

Torcs - The Open Racing Car Simulator is a portable multi-platform car racing

simulation. It is used as an ordinary car racing game, as AI racing game and as a research platform.

It is built using a sophisticated physical model, supports many racing tracks, opponents, cars and

many input devices: steering wheels, joysticks, game pads, etc.

5. Platforms with Unclear Status or No Longer Under Development

In this section, we present some agent based modeling and simulation platforms whose

development seems to have stopped. In the following tables, the year when the latest reference (LR)

was found about a specific platform (approximately), is also included. Since there are many such

cases, we divide the mentioned platforms into three groups, by the decade of their latest reference:

the 1990s, the 2000s and the 2010s.

Table 7 shows platforms that were built in the 1990s. Some of them are programmed using

agent-oriented programming.

Table 7. Platforms with unclear status or no longer under development (the 1990s)

No. Name LR Website

1 AGENT-0 1991 http://infolab.stanford.edu/pub/cstr/reports/cs/tr/91/1389/CS-TR-91-1389.pdf

2 Agent-K 1994 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.30.664

3 April 1995 http://www.doc.ic.ac.uk/~klc/april1.html

4 OASIS 1995
http://www.stern.nyu.edu/om/faculty/pinedo/book2/downloads/CMU-

Salman/Reference%20Articles/oasis%20aircraft%20sequencing.html

5 Agent Building Shell 1996
http://dl.acm.org/citation.cfm?id=781919&dl=ACM&coll=DL&CFID=540414311&CFTOKEN=26572

040

6 PLACA 1996 http://link.springer.com/chapter/10.1007/3-540-58855-8_23

7 VIVA 1996 http:// www.informatik.uni-leipzig.de/fk/papers/viva.ps

8 DESIRE 1997 http://eprints.soton.ac.uk/252110/

9 JAFMAS 1997
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=699236&url=http%3A%2F%2Fieeexplore.ieee.

org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D699236

Agent-K provides the possibility of inter-operable (or open) software agents that can

communicate via KQML and which are programmed using the AOP approach.

AGENT-0. The initial implementation of AOP, Agent-0, is a simple language for specifying

agent behavior. KQML provides a standard language for inter-agent communication.

April (Agent PRocess Interaction Language) is a high-level language which also offers a

simple interface to other programming languages such as C. April is oriented to the implementation

of agent systems; however, it is not a multiagent applications language. It does not directly offer

high level features such as: planners, problem solvers and knowledge representation systems that a

multiagent applications language might be expected to include. April is more a concurrent language

with objects as processes.

OASIS (Optimal Aircraft Sequencing using Intelligent Scheduling) is a prototype air-traffic

management system developed for Sydney’s Kingsford Smith airport. It accurately calculates

31

estimated landing times, determines the sequence of aircraft to land giving the least total delay, and

advises air traffic controllers of appropriate control actions to achieve this sequence. It also

monitors and compares actual progress of aircraft against the established sequence, and notifies the

air traffic controller of significant differences and appropriate action to correct the situation. OASIS

is designed to be responsive to sudden changes in environmental conditions such as meteorological

conditions or runway configuration and changes in user objectives such as aircraft operational

emergencies or requirements. OASIS combines artificial intelligence, software agents, and

conventional software techniques.

Agent Building Shell provides several reusable layers of languages and services for

building agent systems: description logic based knowledge management, speech-act based

communication, content based information distribution, coordination modeling language, agent

modeling and conflict management

PLACA (Planning Communicating Agents) is an agent-oriented programming language that

focuses on agent planning.

VIVA is an agent-oriented programming language based on the theory of VIVid Agents. It

follows the AOP paradigm, but adopts many concepts from SQL and Prolog.

JAFMAS (Java-based Agent Framework for Multi-Agent Systems) provides a generic

methodology for developing speech-act based agent systems.

During the decade 2000-2009 the development of agent platforms increased, and the

platforms were more diverse. Table 8 presents the most popular ones.

Table 8. Platforms with unclear status or no longer under development (the 2000s)

No. Name LR Website

1 FORR 2000 http://www.cs.hunter.cuny.edu/~epstein/papers/ApplyingForrToHumanMultiRobotTeams.pdf

2 JATLite 2000 http://www-cdr.stanford.edu/ProcessLink/papers/JATL.html

3 MINERVA 2001 ftp://ftp.elet.polimi.it/users/Francesco.Amigoni/pic19.pdf

4 Visual Soar 2002 http://web.eecs.umich.edu/~soar/sitemaker/projects/visualsoar/

5
Concurrent

MetateM
2003

http://cgi.csc.liv.ac.uk/~anthony/metatem.html

6 FIPA-OS 2003 http://fipa-os.sourceforge.net/index.htm

7 GO! 2003 http://dl.acm.org/citation.cfm?doid=860575.860747

8 MAST 2003
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1247718&url=http%3A%2F%2Fieeexplore.ieee.org%2F

xpls%2Fabs_all.jsp%3Farnumber%3D1247718

9 Aglets 2004 http://www.research.ibm.com/topics/popups/innovate/java/html/aglets.html

10 ALIAS 2004
http://lia.disi.unibo.it/research/ALIAS/

http://dx.doi.org/10.1023/A:1020259411066

11 BDI4JADE 2004 http://www.inf.ufrgs.br/prosoft/bdi4jade/

12 CybelePro 2004

http://www.i-a-i.com/cybelepro/

http://www.i-a-i.com/?core/modeling-and-simulation/distributed-architectures-and-solutions

http://www.i-a-i.com/?core

13 IMPACT 2005 https://www.cs.umd.edu/projects/impact/

14

AGLOBE,

AglobeX

Simulation

2005

https://agents.felk.cvut.cz/projects/aglobe

Projects:

https://agents.felk.cvut.cz/projects

15
Multiagent System

Development Kit
2005

http://link.springer.com/chapter/10.1007%2F0-387-23152-8_9

16 3APL 2006 http://link.springer.com/chapter/10.1007/0-387-26350-0_2

17 CAFnE 2006 https://researchbank.rmit.edu.au/eserv/rmit:9785/Jayatilleke.pdf (PhD thesis)

32

18 ZEUS 2006 http://sourceforge.net/projects/zeusagent/

19 OAA 2007 http://www.ai.sri.com/~oaa/

20 PUPS P3 2007 http://www.tumblingdice.co.uk/pupsp3/introduction.htm

21 SOCS-SI 2007
http://lia.disi.unibo.it/research/projects/socs/

http://dx.doi.org/10.1080/08839510500479546

FORR is a cognitive architecture that considers the opinions of others when choosing

actions.

JATLite (Java Agent Template, Lite) is a package of Java programs that allows users to

create software agents that communicate robustly over the Internet. JATLite also provides a basic

infrastructure in which agents register with an “Agent Message Router” using a name and

password, connect/disconnect from the Internet, send and receive messages, transfer files with FTP,

and generally exchange information with other agents on the various computers where they are

running.

MINERVA is an architecture supporting the logic-based and BDI paradigms.

Visual Soar is a development environment written in Java to aid in the creation of agents

for use in Soar.

Concurrent MetateM is an agent-oriented programming language that is based on the

theory of temporal logic and is influenced by methods of formal software development.

FIPA-OS is a component-based toolkit enabling rapid development of FIPA compliant

agents. It supports the majority of the FIPA Experimental specifications.

GO! is a logic-based programming language.

MAST. Programmed in Java and built on top of the JADE agent platform, the tool is

designed mainly for the simulations of material handling systems.

Aglets are programmed to leave their owner's computer on request, roam the Internet, and

visit other computers, where they perform specific tasks such as collecting data and interacting with

other agents.

ALIAS offers coordination of hypothetical reasoning among agents, based on abductive

logic programming.

BDI4JADE provides an implementation of the BDI architecture, which is used as a layer on

top of JADE. A key goal of this platform is to provide an environment to implement enterprise

applications, which means full integration of standard technologies. The platform leverages the

JADE infrastructure, such as distribution and message exchange. Recently, it was extended to

provide capability relationships, which promote agent modularity.

CybelePro is a commercial agent infrastructure used by the government, industry and

academia for applications such as robotics, planning and scheduling, data mining, modeling and

simulation, and control of air and ground transportation systems, communication networks and

cross-enterprise systems.

IMPACT is a project that aims to develop both a theory and a software implementation that

facilitates the creation, deployment, interaction, and collaborative aspects of software agents in a

heterogeneous, distributed environment. It provides a set of servers (yellow pages, thesaurus,

registration, type and interface) that facilitate agent interoperability in an application independent

manner. It also provides an Agent Development Environment for creating, testing, and deploying

agents. It uses a logic-based custom syntax for agent definition.

AGLOBE is an agent platform designed for testing experimental scenarios featuring agents

position and communication inaccessibility, but it can be also used without these extended

33

functions. The platform focuses on the modeling and development of decentralized agent systems.

It implements an efficient message transport layer, agent life-cycle management and a high level of

scalability.

Multi Agent System Development Kit implements the Gaia methodology and supports the

whole life cycle of agent system development.

3APL language is motivated by cognitive agent architectures and provides programming

constructs to implement individual agents in terms of beliefs, goals, plans, actions, and practical

reasoning rules.

CAFnE enables domain experts to work with a graphical representation of the system. The

model of the system, updated by domain experts, is then transformed into executable code using a

transformation function.

ZEUS provides a graphical environment to build distributed agent systems. A rule engine,

planner and visualization tools are included. It contains some extensions for the DAML semantic

web project and Web Services integration features.

OAA is a framework for integrating a community of heterogeneous software agents in a

distributed environment. The architecture contains a central blackboard server holding a list of

tasks, while a group of agent machines executes these tasks based on their specific capabilities.

PUPS P3 is a portable cluster computing environment that facilitates the development of

complex multi-process and multi-host computations by emulating colonies of homeostatically

regulated organisms. Its central philosophy is that each process is a digital artificial life form,

responsible for maintaining its own environment.

SOCS-SI is a runtime monitoring of social interactions among agents, which verifies that

agents are complying with protocols specified in the SCIFF language.

Continuing with the subsequent decade, Table 9 shows the platforms that seem to be

inactive. For some of them we provide links to projects implemented using those platforms.

Table 9. Recent platforms that seem to be inactive (the 2010s)

No. Name LR Website

1 Golog, GTGolog 2010 http://www.kr.tuwien.ac.at/staff/lukasiew/ki06a.pdf

2 AgentBuilder 2011 http://www.agentbuilder.com/

3 AgentScape 2011 http://www.agentscape.org/

4 eXAT 2011
http://www.erlang.org/euc/05/Santoro.pdf

https://github.com/gleber/exat

5 Axum 2012 http://social.technet.microsoft.com/wiki/contents/articles/6615.microsoft-axum-formerly-maestro.aspx

6 BRAHMS 2012 https://www.nasa.gov/centers/ames/research/lifeonearth/lifeonearth-brahms.html

7
CLAIM,

S-CLAIM
2012

http://www.sciencedirect.com/science/article/pii/S1877050912003651

http://aimas.cs.pub.ro/people/andrei.olaru/art/2012-ANT-

SCLAIMAnAgentBasedProgrammingLanguageForAmiASmartRoomCaseStudy-presentation.pdf

8 MAPS 2012 http://maps.deis.unical.it/

9 REC 2012
http://www.inf.unibz.it/~montali/tools.html#jREC

http://ijcai.org/papers09/Papers/IJCAI09-026.pdf

10 agentTool 2013 http://agenttool.cs.ksu.edu/

11 Cougaar, ActiveEdge 2013

http://sourceforge.net/projects/cougaar

Projects:

http://www.cougaarsoftware.com/supported-industries/

12 SWARM 2013 http://www.swarm.org http://savannah.nongnu.org/projects/swarm

13 2APL 2014 http://apapl.sourceforge.net/

34

14 Event-B, Rodin 2014

www.event-b.org

Formalizing multiagent systems example:

http://wiki.event-b.org/images/ZGraja-RodinWorkshop2014.pdf

Projects:

http://wiki.event-b.org/index.php/Industrial_Projects

15 KGP 2014

http://dx.doi.org/10.1613/jair.2596

Projects:

http://lia.disi.unibo.it/research/projects/socs/

16 RETSINA 2014

http://www.cs.cmu.edu/~softagents/retsina_agent_arch.html

http://www.cs.cmu.edu/~softagents/software.html

http://www.cs.cmu.edu/~./blangley/commusersguide/Overview.html

Projects/Applications:

http://www.cs.cmu.edu/~softagents/retsina_agent_arch.html

http://www.cs.cmu.edu/~softagents/software.html

17 Eve 2015 https://eve.almende.com/

18 PRESAGE2 2015 https://github.com/Presage/Presage2

19 Agent Factory 2016

http://sourceforge.net/projects/agentfactory/

http://www.agentfactory.com/index.php/Main_Page

http://astralanguage.com/wordpress

Projects:

http://www.agentfactory.com/index.php/Projects

20 Siebog 2016
https://github.com/gcvt/siebog

https://github.com/milanvidakovic/siebog

GTGolog combines explicit agent programming in Golog with multiagent planning in

stochastic games.

AgentBuilder is an integrated tool suite for constructing intelligent software agents. It has

two major components: the “Toolkit” and the “Run-Time System”. The “Toolkit” includes tools for

managing the agent-based software development process, analyzing the domain of agent operations,

designing and developing networks of communicating agents, defining behaviors of individual

agents, and debugging and testing agent software. The “Run-Time System” includes an agent

engine that provides an environment for the execution of agent software.

AgentScape is a middleware layer that supports large-scale agent systems. It supports

multiple code bases and operating systems, and interoperability with other agent platforms.

eXAT (Erlang eXperimental Agent Tool) provides an “all-in-one framework” allowing to

design, with a single tool, agent intelligence, agent behavior and agent communication. This is

made possible by means of a set of modules strongly tied to one another: an Erlang-based expert

system engine, an execution environment for agent behaviors based on object-oriented finite-state

machines, and a module able to handle FIPA-ACL messages.

Axum is a domain specific concurrent programming language, based on the Actor model. It

is an object-oriented language based on the .NET Common Language Runtime using a C-like

syntax which, as a domain-specific language, is intended for developing portions of a software

application that is well-suited to concurrency. An agent (or an actor) is an isolated entity that

executes in parallel with other agents.

BRAHMS, created by NASA, is a set of software tools to develop and simulate multiagent

models of human and machine behavior. It was originally developed to analyze or design human

organizations and work processes. Brahms is a multiagent, rule-based, activity programming

language. It has similarities to the BDI architecture and other agent-oriented languages, but is based

on a theory of work practice and situated cognition. It also integrates the subsumption architecture.

CLAIM, S-CLAIM are platforms built in JADE, providing a Lisp-like language.

35

MAPS (Mobile Agent Platform for Sun SPOTs) is a Java-based framework for wireless

sensor network (WSNs) based on Sun SPOT technology which enables agent-oriented

programming of WSN applications. The MAPS architecture is based on components which interact

through events. Each component offers a minimal set of services to mobile agents which are

modeled as multi-plane state machines driven by ECA rules. In particular, the offered services

include message transmission, agent creation, agent cloning, agent migration, timer handling, and

easy access to the sensor node resources.

REC is a runtime monitoring of compliance of agents to commitment. It is based on reactive

event calculus.

agentTool is a Java-based graphical development environment to help users analyze, design

and implement agent systems. It is designed to support the Organization-based Multiagent Systems

Engineering (O-MaSE) methodology.

Cougaar, ActiveEdge (Cognitive Agent Architecture) is a Java-based architecture for the

construction of large-scale distributed agent-based applications. It is a product of two consecutive,

multi-year DARPA research programs into large-scale agent systems. ActiveEdge is an intelligent

decision support platform. It uses a distributed intelligent agent architecture based on the human

cognitive model of reasoning and planning, which captures the way humans observe, reason, plan

and act.

SWARM is a kernel and library for the multiagent simulation of complex systems. The

basic architecture of Swarm is a collection of concurrently interacting agents.

2APL (A Practical Agent Programming Language) is a modular BDI-based programming

language that supports the development of agent systems. 2APL provides a set of programming

constructs allowing direct implementation of concepts such as beliefs, declarative goals, actions,

plans, events, and reasoning rules. The reasoning rules allow run-time selection and generation of

plans based on declarative goals, received events and messages, and failed plans. It can be used to

implement agent systems consisting of software agents with reactive as well as proactive behaviors.

The platform can be used in two modes: in the stand-alone mode or in distributed mode using the

JADE platform.

Event-B, Rodin is a formal method for system-level modeling and analysis. Key features

are the use of set theory as a modeling notation, the use of refinement to represent systems at

different abstraction levels and the use of mathematical proof to verify consistency between

refinement levels. Rodin is the name of the tool platform for Event-B. It allows formal Event-B

models to be created with an editor.

KGP is an agent modeling framework entirely based on computational logic.

RETSINA (Reusable Environment for Task-Structured Intelligent Networked Agents) is an

agent architecture developed at Software Agents Lab at Carnegie Mellon University’s Robotics

Institute.

Eve is a multipurpose, web-based agent platform. It aims to be an open and dynamic

environment where agents can live and act anywhere: in the cloud, on smartphones, on desktops, in

browsers, robots, home automation devices, and others. The agents communicate with each other

using simple, existing protocols (JSON-RPC) over existing transport layers (HTTP, XMPP),

offering a language- and platform-agnostic solution.

Presage2 is a simulation platform for agent-based simulation. It enables designers to

investigate the effect of agent design, network properties and the physical environment on

individual agent behavior and long-term collective global performance.

36

Agent Factory is a open-source, FIPA-based collection of tools, platforms and languages

that support the development and deployment of agent systems. ASTRA is an agent programming

language that is built on and integrated with Java. This is an implementation of AgentSpeak(TR), a

logic-based agent programming language that combines AgentSpeak(L) with teleo-reactive

functions.

Siebog is an enterprise-scale multiagent middleware consisting of the following main

modules: an extensible Java EE-based Agent Framework operating on top of computer clusters,

offering automatic agent load-balancing, state-replication, and fault-tolerance; Radigost, a web-

based multiagent platform, built using JavaScript and HTML5-related standards. Radigost agents

are executed inside web browsers and can be used in a wide variety of hardware and software

platforms, including personal computers, smartphones and tablets, Smart TVs, etc.; a Jason

interpreter, a port of the popular Jason interpreter to Java EE; and a distributed non-axiomatic

reasoning system, an advanced reasoning system based on the non-axiomatic logic formalism.

6. Conclusions

Agent systems provide a bottom up approach for analyzing complex systems. Agents can be the

means for modeling and simulating diverse phenomena which are difficult to model and understand

using traditional, analytical methods. Because of this research interest, a large number of platforms

specifically designed to ease the programming of agent-based applications have been proposed.

Although the main applications of agent systems belong to the computer science field, and often

related to artificial intelligence, there are increasingly many uses found in areas such as life

sciences, ecological sciences and social sciences.

In this work, we presented a detailed review of the available platforms, and also of those

which are no longer actively being developed, but can be given merit from a historical perspective.

Our main goal was to help researchers in assessing their characteristics in order to choose those

which best suit their scientific necessities. In this respect, we tried to perform an extensive

inventory of the platforms and present their key features. We tried our best to include the most

significant ones, but it is certainly possible that there are other popular platforms missing. It is also

possible that some platforms presented as legacy are still active.

Also, the specific details of various agent platforms can give the interested reader a broad

perspective of the concepts and techniques used in agent systems and perhaps encourage new

theoretical and practical developments in this field.

References

1. Abar, S., Theodoropoulos, G.K., Lemarinier, P. and O’Hare, G.M. (2017). Agent Based Modelling and

Simulation tools: A review of the state-of-art software. Computer Science Review, 24, pp.13-33.

2. Agha, G. and Hewitt, C.E. (1985). Concurrent Programming Using ACTORS Exploiting Large Scale

Parallelism, Technical Report AI Memo, MIT

3. Allan, R.J. (2010). Survey of agent based modelling and simulation tools, Science & Technology Facilities

Council, pp. 1362-0207

4. Austin, J. L. (1962). How to Do Things with Words. Oxford: University Press.

5. Axelrod, R. (1984). The Evolution of Cooperation, Basic Books

37

6. Axtell, R L, Epstein, J M, Dean, J S, Gumerman, G J, Swedlund, A C, Harburger, J, Chakravarty, S,

Hammond, R, Parker, J, and Parker, M. (2002). Population Growth and Collapse in a Multi-Agent Model of

the Kayenta Anasazi in Long House Valley. Proceedings of the National Academy of Sciences, vol. 99, no. 3,

pp. 7275-7279

7. Ayllón, D., Railsback, S.F., Vincenzi, S., Groeneveld, J., Almodóvar, A. and Grimm, V. (2016). InSTREAM-

Gen: Modelling eco-evolutionary dynamics of trout populations under anthropogenic environmental change,

Ecological Modelling, vol. 326, pp. 36–53, https://www.ucm.es/data/cont/docs/ 581-2016-03-02-Ayllon%20et

%20al%202016.pdf

8. Bădică, C., Budimac, Z., Burkhard, H.D. and Ivanović, M. (2011). Software agents: Languages, tools,

platforms. Computer Science and Information Systems, vol. 8, no. 2, pp.255-298.

9. Bandini, S., Manzoni, S. and Vizzari, G. (2009). Agent based modeling and simulation: an informatics

perspective. Journal of Artificial Societies and Social Simulation, 12(4), p.4.

10. Benda, M., Jagannathan, V. and Dodhiawala, R. (1986). On optimal cooperation of knowledge sources - an

empirical investigation. Technical Report BCS–G2010–28, Boeing Advanced Technology Center, Boeing

Computing Services, Seattle, Washington

11. Berryman, M. (2008). Review of software platforms for agent based models, Technical Report no. DSTO-GD-

0532. Defence Science and Technology Organisation Edinburgh (Australia) Land Operations Div.

12. Bongiorno, C., Gurtner, G., Lillo, F., Valori, L., Ducci, M., Monechi, B. and Pozzi, S. (2013). An Agent Based

Model of Air Traffic Management, https://www.sesarju.eu/sites/default/files/documents/sid/2013/ SID-2013-

40.pdf

13. Booth, J. and Booth, J. (2019). Marathon Environments: Multi-Agent Continuous Control Benchmarks in a

Modern Video Game Engine, https://arxiv.org/ftp/arxiv/papers/1902/1902.09097.pdf

14. Bordini, R.H., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.J., Leite, J., O'Hare, G., Pokahr,

A. and Ricci, A. (2006). A survey of programming languages and platforms for multi-agent systems.

Informatica, 30(1).

15. Bordini, R.H., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.J., Leite, J., O'Hare, G., Pokahr,

A. and Ricci, A. (2006). A survey of programming languages and platforms for multi-agent systems.

Informatica, 30(1).

16. Bratman, M. (1987). Intention, plans, and practical reason, vol. 10, Harvard University Press Cambridge, MA

17. Braubach, L., Pokahr, A. and Lamersdorf, W. (2008). A universal criteria catalog for evaluation of

heterogeneous agent development artifacts. From Agent Theory to Agent Implementation (AT2AI-6), pp.19-

28.

18. Brooks, R.A. (1986). A robust layered control system for a mobile robot. IEEE Journal on Robotics and

Automation, vol. 2, no. 1, DOI: 10.1109/JRA.1986.1087032

19. Brooks, R.A., Maes, P., Mataric, M.J. and More, G. (1990). Lunar base construction robots. EEE International

Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications, DOI:

10.1109/IROS.1990.262415

20. Czura, G., Taillandier, P., Tranouez, P. and Daudé, E. (2014). MOSAIIC: City-Level Agent-Based Traffic

Simulation Adapted to Emergency Situations, https://link.springer.com/chapter/10.1007/978-3-319-20591-

5_24

21. d’Inverno, M. and Luck, M. (1998). Engineering AgentSpeak(L): A Formal Computational Model

22. Davis, R. (1980). Report on the Workshop on Distributed AI, https://dspace.mit.edu/bitstream/handle/1721.1/

41155/AI_WP_204.pdf?sequence=4

23. DeepMotion (2020). Motion Brain, https://deepmotion.com/ai-motion-brain

24. Dorri, A., Kanhere, S.S. and Jurdak, R. (2018). Multi-agent systems: A survey. IEEE Access, 6, pp.28573-

28593.

25. Epstein, J.M. (2002). Modeling civil violence: An agent-based computational approach, PNAS May 14, 2002,

99 (suppl 3) 7243-7250; https://doi.org/10.1073/pnas.092080199

26. Epstein, J.M. and Axtell, R.L. (1996). Growing Artificial Societies: Social Science From the Bottom Up,

Complex Adaptive Systems, Brookings Institution Press & MIT Press

27. Ferguson, I.A. (1992). Touring Machines: Autonomous Agents with Attitudes, https://doi.org/10.1109/2.144395

38

28. Finin, T., Fritzson, R., McKay, D. and McEntire, R. (1994). KQML as an agent communication language,

https://dl.acm.org/doi/pdf/10.1145/191246.191322

29. FIPA (1997). Agent Communication Language, Foundation for Intelligent Physical Agents,

http://www.fipa.org/specs/fipa00018/OC00018.pdf

30. Franceschini, R., Bisgambiglia, P.A., Touraille, L., Bisgambiglia, P. and Hill, D. (2014). A survey of modelling

and simulation software frameworks using Discrete Event System Specification. In 2014 Imperial College

Computing Student Workshop. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik

31. Ganzha, M. and Jain, L.C., eds. (2013). Multiagent Systems and Applications. Volume 1: Practice and

Experience, Intelligent Systems Reference Library series, vol. 45, Springer-Verlag Berlin Heidelberg, DOI:

10.1007/978-3-642-33323-1

32. García, M.R. Vázquez, J.A. Teixeira, I.G. and Alonso, A.A. (2017). Stochastic Individual-Based Modeling of

Bacterial Growth and Division Using Flow Cytometry, Front Microbiol. 8: 2626, DOI:

10.3389/fmicb.2017.02626

33. Georgeff, M. P. and Lansky, A. L. (1987). Reactive reasoning and planning, AAAI, vol. 87, pp. 677–682

34. Gómez-Cruz, N.A., Loaiza Saa, I. and Ortega Hurtado, F.F. (2017). Agent-based simulation in management

and organizational studies: a survey. European Journal of Management and Business Economics, 26(3),

pp.313-328.

35. Groeneveld, J., Müller, B., Buchmann, C.M., Dressler, G., Guo, C., Hase, N., Hoffmann, F., John, F., Klassert,

C., Lauf, T. and Liebelt, V. (2017). Theoretical foundations of human decision-making in agent-based land use

models - A review. Environmental modelling & software, 87, pp.39-48.

36. Gupta, R. and Kansal, G. (2011). A survey on comparative study of mobile agent platforms. International

Journal of Engineering Science and Technology, 3(3).

37. Hammond, R. (2000). Endogenous Transition Dynamics in Corruption: An Agent-Based Computer Model,

Working Paper No.19, Center on Social and Economic Dynamics, Brookings Institution. Washington D.C.

38. Horio, B.M., Kumar, V. and DeCicco, A.H. (2015). An Agent-Based Approach to Modeling Airlines,

Customers, and Policy in the U.S. Air Transportation System, Proceedings of the 2015 Winter Simulation

Conference, http://simulation.su/uploads/files/default/2015-horio-kumar-decicco.pdf

39. Jennings, N. and Wooldridge, M. (1996). Software Agents, IEE Review, January 1996, pp, 17-20,

http://www.cs.ox.ac.uk/people/michael.wooldridge/pubs/iee-review96.pdf

40. Jennings, N.R. (1994). The Archon System and Its Applications. Proceedings of the 2nd International Working

Conference on Cooperating Knowledge Based Systems, CKBS-94, pp. 13-29

41. Jordan, R.E., Andreas, E.L., Makshtas, A.P. (2001). Heat budget of snow-covered sea ice at North Pole 4,

Journal of Geophysical Research. 106: 7785–7806. doi:10.1029/1999jc900011

42. Kiourt, C. and Kalles, D. (2015). A Distributed Multi Agents Based Platform for High Performance Computing

Infrastructures, https://arxiv.org/ftp/arxiv/papers/1610/1610.03450.pdf

43. Kravari, K. and Bassiliades, N. (2015). A survey of agent platforms. Journal of Artificial Societies and Social

Simulation, 18(1), p.11.

44. Laird, J.E. (2012). The Soar Cognitive Architecture, The MIT Press.

45. Lee, J., Shin, S., Park, M. and Kim, C. (2018). Agent-Based Simulation and Its Application to Analyze Combat

Effectiveness in Network-Centric Warfare Considering Communication Failure Environments, vol. 2018,

article ID 2730671, 9 pages, DOI: 10.1155/2018/2730671

46. Leon, F., Paprzycki, M. and Ganzha, M. (2015). A review of agent platforms. Technical Report, Multi-

Paradigm Modelling for Cyber-Physical Systems (MPM4CPS), ICT COST Action IC1404, 16 pages, updated

June 2018, http://florinleon.byethost24.com/cost_ic1404/ReviewAgentPlatforms.pdf

47. Macal, C.M. and North, M.J. (2005). Tutorial on agent-based modeling and simulation. In Proceedings of the

Winter Simulation Conference, IEEE.

48. Maes, P. (1993). Modeling Adaptive Autonomous Agents, https://doi.org/10.1162/artl.1993.1.135

49. Maes, P., Darrell, T., Blumberg, B. and Pentland, A. (1995). The ALIVE system: full-body interaction with

autonomous agents. Proceedings of Computer Animation'95, DOI: 10.1109/CA.1995.393553

50. Massive Software (2017). Massive Software - Applications and Products, http://www.massivesoftware.com

51. Müller, J.P. and Pischel, M. (1993). The agent architecture InteRRaP: concepts and application, DFKI

39

52. Negahban, A. and Yilmaz, L. (2014). Agent-based simulation applications in marketing research: an

integrated review. Journal of Simulation, 8(2), pp.129-142.

53. Nguyen, G., Dang, T.T., Hluchy, L., Balogh, Z., Laclavik, M. and Budinska, I. (2002). Agent platform

evaluation and comparison. Technical Report, Institute of Informatics, Bratislava, Slovakia.

54. Niazi, M. and Hussain, A. (2009). Agent-based tools for modeling and simulation of self-organization in peer-

to-peer, ad hoc, and other complex networks. IEEE Communications Magazine, 47(3), pp.166-173.

55. Parv, L., Deaky, B., Nasulea, M.D. and Oancea, G. (2019). Agent-Based Simulation of Value Flow in an

Industrial Production Process, Processes, 7(2), 82; DOI: 10.3390/pr7020082

56. Pomerleau, D.A. (1995). ALVINN: An Autonomous Land Vehicle in a Neural Network,

https://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf

57. Prenkert, F. and Følgesvold, A. (2014). Relationship strength and network form: An agent-based simulation of

interaction in a business network. Australasian Marketing Journal, vol. 22, no. 1, pp. 15-27

58. Railsback, S.F., Lytinen, S.L. and Jackson, S.K. (2006). Agent-based simulation platforms: Review and

development recommendations. Simulation, 82(9), pp.609-623.

59. Rao, A. and Georgeff. M. (1995). BDI agents: From theory to practice. In Proc. of the 1st International

Conference on Multi-Agents Systems, pp. 312-319

60. Ricordel, P.M. and Demazeau, Y. (2000). From analysis to deployment: A multi-agent platform survey. In

International Workshop on Engineering Societies in the Agents World (pp. 93-105). Springer, Berlin,

Heidelberg.

61. Ringler, P., Keles, D. and Fichtner, W. (2016). Agent-based modelling and simulation of smart electricity grids

and markets - a literature review. Renewable and Sustainable Energy Reviews, 57, pp. 205-215.

62. Rousset, A., Herrmann, B., Lang, C. and Philippe, L. (2014) A survey on parallel and distributed multi-agent

systems. In European Conference on Parallel Processing, pp. 371-382. Springer, Cham.

63. Rousset, A., Herrmann, B., Lang, C. and Philippe, L. (2016). A survey on parallel and distributed multi-agent

systems for high performance computing simulations. Computer Science Review, 22, pp.27-46.

64. Savaglio, C., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M., Fortino, G. (2020). Agent-based Internet of

Things: State-of-the-art and research challenges, Future Generation Computer Systems, vol. 102, pp. 1038-

1053

65. Schelling, T.C. (1969). Models of Segregation, The American Economic Review, Vol. 59, No. 2, Papers and

Proceedings of the Eighty-first Annual Meeting of the American Economic Association, pp. 488-493,

https://acoustique.ec-lyon.fr/chaos/Schelling69.pdf

66. Serenko, A. and Detlor, B. (2002). Agent toolkits: A general overview of the market and an assessment of

instructor satisfaction with utilizing toolkits in the classroom. Journal of Computing in Higher Education

67. Sheth, B. and Maes, P. (1993). Evolving agents for personalized information filtering. Proceedings of 9th IEEE

Conference on Artificial Intelligence for Applications, DOI: 10.1109/CAIA.1993.366590

68. Shoham, Y. (1993). Agent-oriented programming. Artificial intelligence, 60(1):51-92

69. Singh, D., Padgham, L. and Logan, B. (2016). Integrating BDI agents with agent-based simulation platforms.

Autonomous Agents and Multi-Agent Systems, 30(6), pp.1050-1071, http://dx.doi.org/10.1007/ s10458-016-

9332-x, Springer

70. Sulis, E. and Di Leva, A. (2017). An Agent-Based Model of a Business Process: The Use Case of a Hospital

Emergency Department, https://link.springer.com/chapter/10.1007/978-3-319-74030-0_8

71. Taylor, S.J.E., Kiss, T., Anagnostou, A., Terstyanszky, G., Kacsuk, P., Costes, J. and Fantini, N. (2018). The

CloudSME simulation platform and its applications: A generic multi-cloud platform for developing and

executing commercial cloud-based simulations, Future Generation Computer Systems, vol. 88, pp. 524-539,

DOI: 10.1016/j.future.2018.06.006

72. Teo, J.S.E., Schmöcker, J.D., Leon, F., Li, J.Y.T., Ji, J., Atanasiu, G.M., Taniguchi, E. (2015). An Agent-based

Evacuation Model Considering Field Effects and Government Advice, Transportation Research Record, issue

2532, pp. 129-140, DOI: 10.3141/2532-15

73. Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., Gale, J., Halpenny, M.,

Hoffmann, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., Stang, P., Strohband, S., Dupont, C., Jendrossek,

L. E., Koelen, C., Markey, C., Rummel, C., Niekerk, J., Jensen, E., Alessandrini, P., Bradski, G., Davies, B.,

Ettinger, S., Kaehler, A., Nefian, A., Mahoney, P. (2007). Stanley: The Robot That Won the DARPA Grand

40

Challenge. The 2005 DARPA Grand Challenge. Springer Tracts in Advanced Robotics. 36. doi:10.1007/978-

3-540-73429-1_1

74. Tian, G. and Qiao, Z. (2014). Modeling urban expansion policy scenarios using an agent-based approach for

Guangzhou Metropolitan Region of China, Ecology and Society, vol. 19, no. 3

75. Torrance, M. and Viola, P. (1991). The AGENT0 Manual, http://infolab.stanford.edu/pub/cstr/reports/cs/tr/91/

1389/CS-TR-91-1389.pdf

76. Unity Technologies (2020). Machine Learning, https://unity3d.com/machine-learning

77. Wang, W. L., Lo, S. M., Liu, S. B. and Ma, J. (2015). On the Use of a Pedestrian Simulation Model with

Natural Behavior Representation in Metro Stations, Procedia Computer Science, vol. 52, pp. 137-144, DOI:

10.1016/j.procs.2015.05.048

78. Weiss, G., ed. (2013). Multiagent Systems, 2nd edition, The MIT Press

79. Wikipedia, the free encyclopedia (2015). Comparison of agent-based modeling software, https://en.wikipedia.

org/wiki/Comparison_of_ agent-based_modeling_software

80. Wooldridge, M. (1996). What agents aren’t: a discussion paper, IEE Colloquium on Intelligent Agents and

Their Applications, Digest No: 1996/101

81. Wooldridge, M. (1997). Agent-based software engineering, Software Engineering - IEE Proceedings, DOI:

10.1049/ip-sen:19971026

82. Wooldridge, M. (2009). An Introduction to MultiAgent Systems, 2nd edition, Wiley

83. Zhou, Z., Chan, W.K.V. and Chow, J.H. (2007). Agent-based simulation of electricity markets: a survey of

tools. Artificial Intelligence Review, vol. 28, no. 4, pp. 305-342.

