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Abstract
MIMO system identification is a fundamental concern in a variety of applications. Various iterative and recursive MIMO
system identification algorithms exist in the literature. The iterative algorithms suffer from high computational cost due
to large matrix computations and recursive algorithms suffer from slow convergence speed. This paper proposes a fast
recursive exact least squares algorithm for MIMO system identification with fast convergence speed and low computational
cost. The recursions of the algorithm give rise to a lattice structure. The lattice structure is less sensitive to round-off errors,
coefficients variations and can also be used for model order reduction. Although in this work we estimate an FIR (finite
impulse response) model of the MIMO system, the framework can also be used for IIR (infinite impulse response) models,
and for estimating linear periodically time varying (LPTV) and multivariable systems. The theory proposed is validated
using simulation results.

Keywords MIMO system identification · Parameter estimation · Multirate synthesis filter bank · Exact least squares
algorithm · Lattice filter

1 Introduction

System identification refers to the operation of mathemati-
cal modelling of dynamic systems from the measured input,
u(n) ∈ R

L, and output data, y(n) ∈ R
M . The system can

either be described by a state space model or a transfer func-
tion model [1–3], depending on the particular application. In
this work we estimate a givenMIMO system using a transfer
function model.

Various system identification methods exist in the litera-
ture like prediction error method (PEM) [3] which provides
asymptotically optimal estimates for the given model if the
noise is Gaussian, cost function is quadratic and the model
orders are correct. However, the non-convex optimization
function leads to low computational efficiency. To improve
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the computational efficiency of PEM, algorithms like Sub-
space method [4] and instrumental variable method [5] have
been introduced which avoid the non-convexity by provid-
ing proper initialization. Steiglitz-McBride method [6] uses
iterative least squares to avoid the non-convexity of PEM.

To improve the computational performance of system
identification methodologies, various algorithms based on
stochastic gradient(SG) and least squares (LS) have also
been proposed [7–11]. The SG algorithms have slower
convergence speed than recursive least squares (RLS)
algorithm, however, they are computationally more efficient
than RLS as there is no need to compute the covariance
matrix at each recursion [12]. Han and Ding [12] used multi-
innovation identification theory to improve the convergence
rate of SG algorithm for MIMO system identification. Ding
and Chen [13] proposed a hierarchical stochastic gradient
method (HSG) for a class of multivariable discrete time
systems by decomposing the given system into several sub-
models with smaller dimensions and fewer variables. The
algorithm computes several smaller covariance matrices.

Recently several authors [14–18] have proposed filtering
and auxiliary model based recursive and iterative least
squares algorithms for system identification. In these works,
it was noticed that since the iterative least squares (ILS)
algorithms use all the available data to estimate the
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parameters at each iteration, their accuracy is high but are
not computationally efficient as it requires computation
of larger matrices and their inverses. In contrast, the
recursive least squares (RLS) algorithm computes the
parameter estimates with only the data available till the
present time, n, making them less accurate but more
computationally efficient. Therefore, the major drawback of
the above mentioned algorithms, [14, 15, 19–21], is the high
computational cost of ILS and low convergence rate of RLS.

In this work, we propose a fast, time, and order recursive
exact least squares algorithm for MIMO system identifi-
cation. The algorithm is developed by first converting an
L-input M-output system (consisting of L×M subsystems)
into a SISO systemwith onlyM-subsystems. Here, the input
signal space of each subsystem consist of all L input sig-
nals, thus the cross-correlation of the input signals is not
neglected while estimating the subsystem. The SISO form
is found to be structurally equivalent to a multirate synthesis
filter bank. Therefore, the problem of estimating the MIMO
system parameters becomes identical to obtaining the syn-
thesis filters of a multirate filter bank. The relationship of
MIMO system with multirate filter bank can be used to
develop multirate system identification algorithms and lin-
ear periodically time varying (LPTV) system identification
algorithms.

The MIMO system parameters are obtained in two
stages: first, by providing the required geometrical frame-
work we present a fast least squares algorithm and obtain a
lattice structure. Here the recursions consist of only scalar
computations unlike RLS. Once the lattice coefficients
have converged, MIMO filter coefficients are estimated in
the second stage using a time and order recursive algo-
rithm. Although in this work we estimate a finite impulse
response(FIR) model of the MIMO system, the framework
can also be used for infinite impulse response (IIR) model.
Also, the proposed algorithm can be used for multivariable
system identification.

Salient contribution of this work are as follows:

1. FIR model of the given MIMO system is first converted
to a SISO multirate filter and hence the problem
of MIMO system identification can be interpreted as
estimating synthesis filters of multirate filter bank,

2. A computationally efficient, time and order recursive
exact least squares algorithm for MIMO system
identification has been proposed to achieve fast
convergence of estimated parameters,

3. A lattice structure is presented which can be used for
model order reduction

This paper is organized as follows: Section 2 presents
the problem addressed in this work and propose the
SISO form of the given MIMO system. Section 3, first,
provides the required geometrical framework which is then

used to develop a fast least squares algorithm for MIMO
system identification. Simulation results are presented in
Section 4 to validate the efficacy of the proposed algorithm.
Conclusions are presented in Section 5.

2Methodology

2.1 Notations

In this work, random variables are denoted by lower-case
letters, vectors of random variable by boldfaced lower-case
letters and matrices of random variables with capital letters.
AT denotes the transpose of matrix A. The norm of a vector
x is denoted by || x ||, which is the positive square-root
of the inner-product of x with itself, where x belongs to a
Hilbert space.

2.2 Problem Statement

Consider the following FIR model of a MIMO system:

y(n) = H(z)u(n) + v(n) (1)

= ŷ(n) + v(n) (2)

where, y(n) = [
y0(n), y1(n), · · · , yM−1(n)

]T ∈ R
M

is the measured output vector, u(n) = [u0(n),

u1(n), · · · , uL−1(n)
]T ∈ R

L is system input vector, v(n) =
[
v0(n), v1(n), · · · , vM−1(n)

]T is the measurement noise,
H(z) is the MIMO system to be estimated, represented as:

H(z) =

⎡

⎢
⎢⎢
⎣

H0,0 H0,1 · · · H0,L−1

H1,0 H1,1 · · · H1,L−1
...

... · · · ...
HM−1,0 HM−1,1 · · · HM−1,L−1

⎤

⎥
⎥⎥
⎦

where, Hij ’s are polynomials in z−1, which is the delay
operator, 0 ≤ i ≤ M − 1, 0 ≤ j ≤ L − 1 and ŷ(n)

is the response of the estimated system i.e. H(z)u(n). The
time domain representation of the estimated system can be
written as follows:

⎡

⎢⎢⎢
⎣

ŷ0(n)

ŷ1(n)

...
ŷM−1(n)

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

h0,0(0) h0,1(0) · · · h0,L−1(0)
h1,0(0) h1,1(0) · · · h1,L−1(0)

...
... · · ·

...
hM−1,0(0) hM−1,1(0) · · · hM−1,L−1(0)

⎤

⎥⎥⎥
⎦

⎡

⎢⎢⎢
⎣

u0(n)

u1(n)

...
uL−1(n)

⎤

⎥⎥⎥
⎦

+ · · · +

⎡

⎢⎢⎢
⎣

h0,0(N − 1) h0,1(N − 1) · · · h0,L−1(N − 1)
h1,0(N − 1) h1,1(N − 1) · · · h1,L−1(N − 1)

...
... · · ·

...
hM−1,0(N − 1) hM−1,1(N − 1) · · · hM−1,L−1(N − 1)

⎤

⎥⎥⎥
⎦

×

⎡

⎢⎢⎢
⎣

u0(n − N + 1)
u1(n − N + 1)

...
uL−1(n − N + 1)

⎤

⎥⎥⎥
⎦

(3)
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as Hij (z) = ∑N−1
n=0 hij (n)z−n for 0 ≤ j ≤ L − 1 and

0 ≤ i ≤ M − 1.
The problem addressed in this work can be stated as: For

an L input M output system, develop a system identification
algorithm such that as soon as the new measured input
and output sample is available, the system parameters are
adapted in an order recursive manner to ensure that the error,
e(n), between the response of the estimated system, ŷ(n)

and the true system, y(n) is minimized in the least square

sense i.e.
(∑M−1

i=0 || ei(n) ||2
)
, as shown in Fig. 1, and the

error is given below:

e(n) = y(n) − H(z)u(n) (4)

It is pertinent to mention here that the algorithm proposed
in this work, does not assume the matrix H(z) to be square.
Moreover, the filter orders are not assumed to be known,
unlike [22] where the system order is, first, identified using
sub-space method. Before we present the derivation of the
proposed estimation algorithm, we first convert the given
MIMO system, Eq. 3, into a SISO system and establish
its equivalence with an M-channel multirate synthesis filter
bank.

2.3 SISO Form of theMIMO System

The MIMO system, as given in Eq. 3, has a vector form
representation and thus estimating the parameters in the
current state will require matrix computations. To reduce the
computational complexity we propose to convert the MIMO
system into a single input single output system which can
be then estimated using only scalar computations with the
proposed algorithm. Equation 3 can be converted into a
single input single output form using the following steps:

1. Serializing the inputs:
We define a scalar process, x(n), which is a serial-

ized form of the vector process u(n) = [u0(n)u1(n)

· · · uL−1(n)], as follows:
x(Ln − j) � uj (n), 0 ≤ j ≤ L − 1. (5)

Figure 1 Block diagram for proposed MIMO System identification.

2. Restructuring of the filters:
The i-th row of Eq. 3 can be written, in terms of x(n),

as follows:

ŷi (n) = [
hi,0(0) hi,1(0) · · · hi,L−1(N − 1)

]

⎡

⎢⎢⎢
⎣

x(Ln)

x(Ln − 1)
...

x(Ln − LN + 1)

⎤

⎥⎥⎥
⎦

(6)

The above expression can be written in a closed form
as:

ŷi (n) =
L−1∑

j=0

N−1∑

k=0

hij (k)x(L(n − k) − j). (7)

Equation 7 represents a system with L filters, each of
order N . In order to simplify it further, we restructure
these L filters to obtain only one filter, of order LN ,
given as:

ŷi (n) = [
fi(0) fi (1) · · · fi(LN − 1)

]

⎡

⎢⎢⎢
⎣

x(Ln)

x(Ln − 1)
...

x(Ln − LN + 1)

⎤

⎥⎥⎥
⎦

(8)

The above equation can also be expressed as:

ŷi (n) =
LN−1∑

j=0

fi(j)x(Ln − j). (9)

The filters Fi(z) ≡ ∑LN−1
n=0 fi(n)z−n for 0 ≤ i ≤

M − 1, are related to MIMO subsystems as:

fi(j + Lk) = hij (k), (10)

for 0 ≤ i ≤ M − 1, 0 ≤ j ≤ L − 1 and 0 ≤ k ≤
N − 1. Equation 9 gives a single input multi output
representation which can now be converted into a single
input single output system using the following step.

3. Serializing the output:
Using M-fold upsamplers and a delay line, as shown

in Fig. 2, the M outputs of Eq. 9 are converted to a
single output, ŷ(n), defined as follows:

ŷ(Mn − i) � ŷi (n), 0 ≤ i ≤ M − 1. (11)

The MIMO system represented by Eq. 3 can, now, be
written as follows:

ŷ(Mn − i) =
LN−1∑

j=0

fi(j)x(Ln − j), 0 ≤ i ≤ M − 1. (12)

Using the SISO form, Eq. 12, the MIMO system
identification problem, represented by Eq. 4 can, now, be
written as:

e(Mn) = y(Mn) − F(z)x(Ln) (13)
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Figure 2 SISO form of L × M

MIMO system.

where, F(z) = [
F0(z) F1(z) · · · FM−1(z)

]T
.

The objective of the MIMO system identification
problem, in its new form as given in Eq. 13, is to obtain
the parameter matrix F(z), which minimizes || e(Mn) ||2,
in a computationally efficient manner. In the next section,
we present a recursive least squares algorithm for the same,
but first we briefly discuss the relationship between the
SISO form of MIMO system with an M-channel multirate
synthesis filter bank.

Relationship between a MIMO system and M-channel syn-
thesis filter bank As discussed in [23], type-II polyphase
decomposition and serializing input signals can lead to a
SISO form for an M-channel multirate synthesis filter bank.
Comparing Fig. 3 from [23] and Fig. 2 of this paper, we
observe that the synthesis filter bank is a special case of
the proposed SISO system, when L = M . Therefore,
the parameter estimation algorithm proposed in this work
can be used to estimate synthesis filters. This relation-
ship between synthesis filter bank and MIMO system will
allow us to use various tools and theory of multirate filter
banks for MIMO systems. Two such scenarios are discussed
below:

It is a well known fact that each branch of multirate
synthesis filter bank, consisting of an upsampler followed
by a linear time invariant filter, is an LPTV system [24] and
sum of LPTV systems is also an LPTV system. As discussed
above, the algorithm proposed in this work can be used to
estimate multirate synthesis filter bank and therefore it can
also be used for estimating LPTV systems.

In various industrial and chemical systems, the input
signals are of different bandwidths, however due to
conventional system identification frameworks they are
all sampled at the same rate. Hence, their frequency
information is not completely utilized and the system ends
up with redundant samples and higher computational cost.
This multirate system identification is an active research
problem in system identification literature [25–27]. The
relationship ofMIMO systems with multirate filter bank and

the underlying theory proposed in this work can provide an
efficient solution for these cases where each input channel
can be sampled at the required rate. This will lead to
a non-uniform filter bank which can be realized using a
uniform filter bank [24]. The obtained uniform filter bank
can, then, be estimated using the proposed algorithm. Also,
we observed that the SISO structure with the set of down-
samplers and delay chain, as shown in Fig. 2 can be
implemented with a commutator switch [28].

In the next section we develop a recursive algorithm for
the obtained SISO system.

3 Algorithm

In this section we present a Hilbert space framework
required to obtain the geometrical interpretation of Eq. 13.
We can then develop the required time and order recursive
algorithm.

3.1 Hilbert Space Framework

Using (13), we write the estimation error of the i-th output,
for time upto Mn − i, with the pre-windowed assumption,
in matrix form as follows:

[
0 . . . ep(M−i) . . . ep(Mn−i)

]=[
0 . . . y(M−i) . . . y(Mn−i)

]

−[
fi(0) fi (1) . . . fi (p−1)

]

⎡

⎢⎢⎢
⎣

0 . . . x(L) . . . x(Ln)

0 . . . x(L−1) . . . x(Ln−1)
...
0 . . . x(L−p + 1) . . . x(Ln−p+1)

⎤

⎥⎥⎥
⎦

,

0≤ i ≤M−1. (14)

Since we are interested in an order recursive solution to
the problem, we introduce a variable ‘p’ as superscript to
denote the order of estimation. We can write the above
equation, in matrix form, as follows:

ep(Mn − i) ≡ y(Mn − i) − fpi XLn
p , (15)
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Table 1 Definition of auxiliary quantities arising in the proposed algorithm.

νP ⊥[V1:p]wT ν V1:p w Comment

ep(Mn − i) y(Mn − i) XLn
p π p-th order Forward prediction error of ith MIMO channel

αp(Ln + j) x(Ln + j) X
Ln+j−1
p π p-th order Forward prediction error of j th band joint process estimator

βp(Ln + j) x(Ln − j − p) X
Ln+j
p π p-th order Backward prediction error of j th band joint process estimator

δi
p(Ln + j) π X

Ln+j
p π j th band likelihood variable

We define ep(Mn − i) as the minimum norm error vector
obtained when y(Mn− i) is projected on the space spanned
by {x(Ln), x(Ln − 1), · · · , x(Ln − p + 1)}. Using the least
squares theory, ep(Mn − i) can be written as:

ep(Mn − i) = y(Mn − i) − y(Mn − i)
[
XLn

p

]T
[
XLn

p

[
XLn

p

]T
]−1

XLn
p ,

= y(Mn − i)P ⊥
[
XLn

p

]
, 0 ≤ i ≤ M − 1. (16)

where, P denotes the projection operator and
P ⊥ = (I − P), denotes the projection operator corre-
sponding to the orthogonal complement space. Hence, the
optimum filter coefficients, fpi , are:

fpi = y(Mn − i)
[
XLn

p

]T
[
XLn

p

[
XLn

p

]T
]−1

. (17)

The above set of equations, Eqs. 16 and 17, give us the
geometrical framework required to develop the recursive
least squares algorithm. We now re-state the problem
statement addressed in this work in the Hilbert space setting.

3.2 Problem Statement

With Eqs. 16 and 17 at our disposal the problem statement
can now be re-formulated as follows:“Given a set of pre-
windowed records of input, {u(n) ∈ R

L, 0 ≤ n ≤ T − 1},
and output, {y(n) ∈ R

M, 0 ≤ n ≤ T − 1} and the
system parameters at time T-1, estimate the SISO system,
F(z), in an order recursive manner as soon as the input and
output samples are available at time T. The SISO system
is estimated to minimize the error between the estimated
output and the measured output in the exact least squares
sense.”

We now present the least squares algorithm to address the
MIMO system identification problem as stated above.

Table 2 Autocorrelation and cross-correlation coefficients.

ν w νwT

αp(Ln + j) αp(Ln + j) Rα
p (Ln + j)

βp(Ln + j − 1) βp(Ln + j − 1) R
β
p (Ln + j − 1)

αp(Ln + j) βp(Ln + j − 1) Δ
p
α,β(Ln + j)

βp(Ln + j − 1) αp(Ln + j) Δ
p
β,α(Ln + j − 1)

ep(Mn − i) βp(Ln) Δ
p
e,β(Mn − i)

3.3 Exact Least Squares Algorithm

The proposed algorithm is developed in two stages: first we
obtain prediction error, Eq. 16, in a recursive manner which
gives rise to a lattice structure. In the second stage we use
these lattice parameters to obtain the system coefficients,
Eq. 17, in an order and time recursive manner.

Stage 1: Development of the lattice structure We, first,
develop a time, and order recursive least squares algorithm
to compute error given in Eq. 16. To obtain this recursive
algorithm we are interested only in the present (or most
recent) error, hence, we post-multiply both the sides of

Eq. 16 by pinning vector defined as πT = [
0 · · · 0 1

]T
,

as shown below:

ep(Mn−i) = y(Mn−i)P ⊥ [
XLn

p

]
πT .0 ≤ i ≤ M−1 (18)

Our problem now reduces to the computations of the set of
equations given in Eq. 18 in an order recursive manner. This
is achieved by substituting proper values in the inner product
update formula, Eq. 33. To give a complete readability
to this paper we have briefly discussed the inner product
update formula in the Appendix.

To obtain ep+1(Mn − i) in a recursive manner, we
substitute v = y(Mn − i), V1:p = XLn

p , vp+1 = x(Ln− p)

andw = π in Eq. 33. The recursion obtained is given below:

ep+1(Mn−i)=ep(Mn−i)−y(Mn−i)P ⊥
[
XLn

p

]
xT (Ln−p)[x(Ln−p)

×P ⊥
[
XLn

p

]
xT (Ln − p)]−1x(Ln − p)P ⊥

[
XLn

p

]
πT

= ep(Mn − i) − Δ
p
e,β (Mn − i)R

−β
p (Ln)βp(Ln), (19)

where,

Δ
p
e,β(Mn − i) � y(Mn − i)P ⊥

[
XLn

p

]
xT (Ln − p, )

R
β
p(Ln) � x(Ln − p)P ⊥

[
XLn

p

]
xT (Ln − p),

βp(Ln) � x(Ln − p)P ⊥
[
XLn

p

]
πT .

Δ
p
e,β(Mn − i), R

−β
p (Ln) and βp(Ln) are the auxiliary

quantities that appears in a natural way. This is the typicality
of fast algorithms like [29]. βp(Ln) is the backward
prediction error, Δ

p
e,β(Mn − i) is the cross-correlation of

ep+1(Mn − i) and βp(Ln), R
−β
p (Ln) = 1/Rβ

p(Ln) and
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Table 3 Substitution table, for 0 ≤ i ≤ M − 1, 0 ≤ j ≤ L − 1.

ν V1:p νp+1 w

1 x(Ln + j) X
Ln+j−1
p π x(Ln + j − 1 − p)

2 x(Ln + j − p − 1) X
Ln+j−1
p π x(Ln + j)

3 x(Ln + j − p − 1) X
Ln+j−1
p π x(Ln + j − p − 1)

4 x(Ln + j) X
Ln+j−1
p π x(Ln + j)

5 π X
Ln+j−1
p x(Ln + j − p − 1) π

6 x(Ln + j) X
Ln+j−1
p x(Ln + j − p − 1) π

7 x(Ln + j − p − 1) X
Ln+j−1
p x(Ln + j) π

8 y(Mn − i) XLn
p π x(Ln − p)

9 y(Mn − i) XLn
p x(Ln − p) π

R
β
p(Ln) is the autocorrelation of βp(Ln). The product

of auxiliary quantities Δ
p
e,β(Mn − i).R−β

p (Ln) is known
lattice reflection coefficient. For complete derivation of
the algorithm, all the auxiliary quantities arising in the
development are defined in Table 1 and their correlations
are given in Table 2. One has to find recursions for these
auxiliary quantities in order to complete the cycle. This
cycle, then, can be repeated when new inputs become
available at the next instance.

To obtain the update relations, Table 3 consists of the
quantities to be substituted in the inner product update
formula and the recursions obtained are given in Table 4.

For example, to compute order updates of βp(Ln) substitute
the values given in row (7) of Table 3 in the inner product
update formula (33), we get:

βp+1(Ln) = βp(Ln − 1) − Δ
p
β,α(Ln − 1)R−α

p (Ln)αp(Ln), (20)

where, Δ
p
β,α(Ln − 1), R−α

p (Ln) and αp(Ln) are the
auxiliary quantities.

We present one more example to illustrate the update
recursion for correlation auxiliary quantities. Time Update
relation for Δ

p
e,β(Mn− i) is given as the eighth row entry of

Table 4 The fast recursive exact least squares algorithm.

Set all Δs and Rs to 0 at n = 0, e0(Mn − i) = y(Mn − i)

α0(Ln + j) = β0(Ln + j) = x(Ln + j)

For p = 1 to LN , i = 0 to M − 1, j = 0 to L − 1, n = 1 to T

No. of multiplications per recursion

1
Δ

p
α,β(Ln + j) = Δ

p
α,β(L(n − 1) + j))+

αp(Ln + j).δ−1
p (Ln + j − 1).βp(Ln + j − 1)

2

2
Δ

p
β,α(Ln + j − 1) = Δ

p
β,α(L(n − 1) + j − 1)+

βp(Ln + j − 1).δ−1
p (Ln + j − 1).αp(Ln + j)

1

3
Rβ

p(Ln + j − 1) = Rβ
p(L(n − 1) + j − 1)+

βp(Ln + j − 1).δ−1
p (Ln + j − 1).βp(Ln + j − 1)

1

4
Rα

p(Ln + j) = Rα
p(L(n − 1) + j)+

αp(Ln + j).δ−1
p (Ln + j).αp(Ln + j)

2

5
δp+1(Ln + j − 1) = δp(Ln + j − 1)−
βp(Ln + j − 1).R−β

p (Ln + j − 1).βp(Ln + j − 1)
2

6
αp+1(Ln + j) = αp(Ln + j)−
Δ

p
α,β(Ln + j).R−β

p (Ln + j − 1).βp(Ln + j − 1)
2

7
βp+1(Ln + j) = βp((Ln + j − 1) − Δ

p
β,α(Ln + j − 1)R−α

p (Ln + j).

αp(Ln + j)
2

8 Δ
p
e,β(Mn − i) = Δ

p
e,β(M(n − 1) − i) + ep(Mn − i).δ

−1

p (Ln).βp(Ln) 1

9 ep+1(Mn − i) = ep(Mn − i) − Δ
p
e,β(Mn − i).R−β

p (Ln).βp(Ln) 1
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Figure 3 Lattice-Ladder
structure for the MIMO system
identification when L = M = 2.

Table 4 which is obtained by substituting eighth row entries
of Table 3 in Eq. 33, as shown below:

Δ
p
e,β (M(n−1)−i) = y(Mn − i)P ⊥ [

XL(n−1)
p

]
x(Ln − p)T

= y(Mn − i)P ⊥ [
XLn

p

]
x(Ln − p)T − x(Mn − i)

×P ⊥ [
XLn

p

]
πT

[
πP ⊥[XLn

p ]πT
]−1

πP ⊥ [
XLn

p

]
x(Ln−p)T

= Δ
p
e,β (Mn − i) − ep(Mn − i)δ−1

p βp(Ln) (21)

Therefore, we get:

Δ
p
e,β(Mn− i) = Δ

p
e,β(M(n− 1)− i)+ ep(Mn− i)δ−1

p βp(Ln) (22)

Similarly, recursions for other auxiliary quantities can also
be obtained by substituting values from Table 3 in Eq. 33.
Table 4 is a concise presentation of the algorithm. It is
observed that the above recursions lead to a lattice structure,
as shown in Fig. 3, where k

p
β (Ln − i) = Δ

p
β,α(Ln −

1).R−α
p (Ln), kp

α (Ln− i) = Δ
p
α,β(Ln+j).R−β

p (Ln+j −1)

and k
p
e (Mn − i) = Δ

p
e,β(Mn − i).R−β

p (Ln) are the lattice
reflection coefficients.

Stage 2: Least Squares Estimation of MIMO parameters
Since the optimum MIMO coefficients given in Eq. 17

Table 5 Definition of the auxiliary quantities arising in the parameter
estimation algorithm, for 0 ≤ i ≤ M − 1 and 0 ≤ j ≤ L − 1.

e = z + �V1:p z V1:p � ≡ −zV T
1:p(V1:pV T

1:p)−1

ep(Mn − i) y(Mn − i) XLn
p fpi

αp(Ln + j) x(Ln + j) X
Ln+j−1
p cpj

βp(Ln + j) x(Ln + j − p) X
Ln+j
p dpj

are not directly available from the algorithm presented
above we now propose a fast, order and time recursive
algorithm for the estimation of these coefficients from the
lattice reflection parameters. It is pertinent to mention here
that the filter coefficients are computed after the lattice
parameters have converged. The derivation of the required
recursive algorithm essentially involves use of pseudo-
inverse update formula (35) [30], with judicious choices
of variable substitutions. We have briefly discussed the
pseudo-inverse update formula (35) in Appendix.

To concisely present the algorithm, the parameter vectors
involved in the algorithm are defined in Table 5. To obtain
the MIMO system parameters fp+1

i from fpi substitute z =
y(Mn−i), V1:p = XLn

p and νp+1 = x(Ln+j−p) in Eq. 35:

fp+1
i (n) =

[
fpi (n)

0

]
− Δ

p
e,β(Mn − i)R

−β
p (Ln)

[
dp

L−1(n)

1

]
,

0 ≤ i ≤ M − 1 (23)

where Δ
p
e,β(Mn − i).R−β

p (Ln), are the coefficients of the

lattice-ladder structure and dp

L−1 is the backward filter
coefficients of the L-th channel as defined in Table 5. To
obtain the required f′i s recursively, d

p

L−1 recursions are also
required. The order updates of dp

i (n) for 0 ≤ i ≤ L − 1 are

obtained by substituting z = x(Ln + j), V1:p = X
Ln+j−1
p

and νp+1 = x(Ln + j − p − 1) in Eq. 35:

dp+1
j (n) =

[
0

dp

j−1(n)

]
− Δ

p
β,α(Ln + j − 1)R−α

p (Ln + j)

[
1

cp
j (n)

]
,

0 ≤ j ≤ L − 1. (24)



J Sign Process Syst

Table 6 Parameter estimates and error for Example 1, k denotes the number of recursions.

k β11 β12 β21 β22 δ%

F-AM-HSG 10 0.7402 0.6953 0.6979 0.5623 35.72

50 0.9851 0.7241 0.8377 0.8058 18.52

100 1.0775 0.7296 0.9285 0.8501 12.17

300 1.1352 0.7825 1.0208 0.8880 6.10

500 1.1799 0.7852 1.0575 0.9199 3.20

1000 1.1754 0.8178 1.0801 0.9684 1.78

AM-HSG 10 1.0191 0.2212 0.9739 0.0589 53.32

50 1.1221 0.3478 0.9243 0.4163 35.91

100 1.1352 0.4277 1.0189 0.5246 28.60

300 1.1655 0.6061 1.0402 0.6921 16.64

500 1.1664 0.6556 1.0679 0.7306 14.18

1000 1.1618 0.7093 1.0723 0.7868 9.86

FF-AM-HSG 10 0.7188 0.1434 0.6652 0.1209 60.88

50 0.9972 0.5250 0.9342 0.6630 23.74

100 1.0388 0.5553 0.9652 0.7386 19.39

300 1.1032 0.6720 1.0154 0.8155 11.57

500 1.1261 0.7071 1.0336 0.8479 8.84

1000 1.1476 0.7339 1.0601 0.8751 6.41

Proposed algorithm 10 1.5705 1.0534 1.2709 1.2970 28.42

50 1.2039 0.8000 1.0904 0.9800 1.83

100 1.1676 0.8543 1.1067 0.9695 2.51

300 1.2336 0.8422 1.1296 0.9382 2.50

500 1.2306 0.8337 1.1284 0.9658 2.27

1000 1.2158 0.8287 1.1090 0.9647 1.14

True values 1.20000 0.82000 1.10000 0.95000

Similarly, to obtain the order update of cp
j (n), substitute z =

x(Ln+j −p−1), V1:p = X
Ln+j−1
p and νp+1 = x(Ln+j)

in Eq. 35 to get:

cp+1
j (n) =

[
cp
j (n)

0

]
− Δ

p
α,β (Ln + j)R

−β
p (Ln + j − 1)

[
dp

j−1(n)

1

]
,

0 ≤ j ≤ L − 1. (25)

Therefore, to obtain the MIMO parameters from the lattice
filter coefficients, Eqs. 23, 24 and 25 are the required
recursions. Having discussed the complete time and order
recursive algorithm, we, now, present some simulation
results to validate the proposed algorithm.

Computational Complexity Third column of Table 4 gives
the number of real multiplications required at each step.
Therefore, at every time instance the proposed algorithm
required (12L + 2M)p real multiplications to compute p-
order lattice coefficients for an L-input M-output system.
Since p = LN in this case, the complexity of the
algorithm becomes (14L + 4M)LN . For the second stage,
the filter coefficients are computed from the converged

lattice parameters using (23), (24) and (25). To obtain the
order update of coefficient vector fp+1

i from fpi we require
p real multiplication. Therefore to obtain fLN

i , dLN
j and

cLN
j for 0 ≤ i ≤ M − 1 and 0 ≤ j ≤ L − 1, we
require LN(LN − 1)/2 ∗ M + LN(LN − 1) ∗ L real
multiplications.

In contrast, if we compute (17) non-recursively, the
number of computations required are (LNK + L2N2K +
L3N3 + L2N2) ∗ M . Where the data instances available are
denoted by K . We have used the fact that the complexity
of matrix multiplication is O(n2) and matrix inversion in
O(n3).

4 Simulations

In this section, efficacy of the proposed MIMO sys-
tem identification algorithm is validated and its perfor-
mance is compared with existing methodologies. The
examples discussed here considers MIMO systems, exam-
ple 1 and 2, as well as SISO systems, example 3
and 4.
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Table 7 Parameter estimates for example 2, k denotes the number of recursions.

Methodology k b11 b12 b21 b22 δ(%)

MISG 100 0.6546 –0.5942 –0.3445 1.4069 20.74

200 0.7658 –0.5361 –0.3221 1.3057 14.05

500 0.9024 –0.4599 –0.3876 1.2348 5.93

1000 0.9334 –0.4873 –0.4017 1.2240 4.45

2000 0.9527 –0.4776 –0.3979 1.2329 3.04

3000 0.9612 –0.4776 –0.3940 1.2106 2.40

4000 0.9697 –0.4827 –0.3886 1.2074 1.87

5000 0.9834 –0.4819 –0.3925 1.2015 1.48

RLS 100 0.9034 –0.4478 –0.3310 1.3878 11.55

200 0.9601 –0.4096 –0.3177 1.2238 6.78

500 1.0284 –0.3802 –0.4114 1.1685 6.36

1000 1.0122 –0.4665 –0.4196 1.1812 2.58

2000 1.0047 –0.4621 –0.4029 1.2207 2.31

3000 1.0012 –0.4662 –0.3951 1.1892 1.86

4000 1.0072 –0.4766 –0.3856 1.1888 1.57

5000 1.0225 –0.4776 –0.3934 1.1830 1.85

Proposed algorithm 100 1.0357 —0.4195 –0.3623 1.1341 6.89

200 0.9765 –0.5434 —0.4203 1.2118 3.24

500 0.9581 —0.4983 –0.3774 1.1952 2.84

1000 0.9800 –0.5373 –0.4365 1.1873 3.39

2000 1.0042 –0.5103 –0.4219 1.2013 1.46

3000 1.0065 –0.5065 –0.4006 1.2145 1.02

4000 1.0100 –0.5021 –0.4014 1.2124 0.96

5000 1.0111 –0.4952 –0.4053 1.2098 0.97

True values 1.00000 —0.50000 –0.40000 1.20000

Figure 4 Frequency response of
FIR approximation of IIR filter
given in Eq. 28.
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Table 8 Parameter estimates using F-AM-RLS [16] and the proposed algorithm for the system given in Example 3.

Algorithm k b1 b2 δ%

F-AM-RLS 100 0.4392 –0.5637 2.45

200 0.4504 –0.5732 3.27

500 0.4601 –0.5748 3.77

1000 0.4542 –0.5645 2.12

Proposed algorithm 100 0.4330 –0.5401 2.77

200 0.4323 –0.5593 2.81

500 0.4457 –0.5619 1.78

1000 0.4485 –0.5519 0.34

True values: 0.45000 –0.55000

Example 1 Wang and Ding [18] considered a two-input
two-output Box-Jenkins system as given below,

[
y1(n)

y2(n)

]
= β(z)

α(z)

[
u1(n)

u2(n)

]
+ D(z)

C(z)

[
v1(n)

v2(n)

]
, (26)

α(z) = 1 + 0.13z−1, β(z) =
[
1.20z−1 0.82z−1

1.10z−1 0.95z−1

]

C(z) = 1 + 0.10z−1, D(z) = 1 − 0.23z−1

For the purpose of simulation studies the inputs u1(n)

and u2(n) are considered as zero mean and unit variance

excitation sequences, v1(n) and v2(n) are white noise
signals with zero mean and variances σ 2

1 = σ 2
2 = 0.402.

Since the proposed algorithm estimates FIR system model,
we assume α(z) = 1 and estimate the matrix β(z).

β(z) was estimated in [18] using three recursive
algorithms namely, auxiliary model based hierarchical
stochastic gradient (AM-HSG) algorithm, filtering based
AM-HSG (F-AM-HSG) algorithm, and forgetting factor
AM-HSG (FF-AM-HSG) algorithm. These results are
compared with the parameter estimates obtained using
proposed algorithm in Table 6. The parameter estimation
errors is defined as δ � ||θ̂k − θ ||/||θ || where θ̂k is the
estimated value of parameter θ at k-th recursion.

Figure 5 The transfer function
coefficients vs the number of
recursions.
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Figure 6 Output of FIR filter of order 100 vs output of FIR system of order 50 estimated using lattice structure.

Example 2 Let us consider the following 2-input, 2-output
system,

[
y1(n)

y2(n)

]
+

[
0.70 0.40

−0.30 0.80

] [
y1(n − 1)
y2(n − 1)

]

=
[

1 −0.50
−0.40 1.20

] [
u1(n − 1)
u2(n − 1)

]
+

[
v1(n)

v2(n)

]
(27)

As assumed in the previous example, the inputs u1(n)

and u2(n) are uncorrelated persistent excitation sequences
with zero mean and unit variances, and v1(n) and v2(n) are
zero mean white noise signals with variances σ 2

1 = σ 2
2 =

1.002. Han and Ding [12] used stochastic gradient (SG)
algorithm and multi-innovation SG (MISG) algorithm for
estimating the parameters of system given in Eq. 27, the
parameter estimates and their estimation errors are given
in Table 7. The parameter estimates obtained using the
proposed algorithm are also included in Table 7.

Example 3 In this example we estimate a SISO system
using the proposed recursive algorithm in presence of
moving average (MA) noise and compare the obtained
parameter estimates with filtering and auxiliary model-
based RLS (F-AM-RLS) identification algorithm [16].
Wang [16] estimated the parameters of the following SISO
system:

y[n] = B(z)

A(z)
u[n] + D(z)v[n], (28)

where,
A(z) = 1 + a1z

−1 + a2z
−2 = 1 + 0.60z−1 + 0.35z−2

B(z) = b1z
−1 + b2z

−2 = 0.45z−1 − 0.55z−2

D(z) = 1 + d1z
−1 = 1 − 0.80z−1.

The input, u[n], is taken as a persistent excitation signal
sequence with zero mean and unit variance, and v[n] is a
white noise sequence with zero mean and σ 2 = 0.402.
The frequency response of FIR system estimated using the
proposed algorithm and the actual system B(z)/A(z) is
shown in Fig. 4. We have considered the filter parameters
after 1000 iterations and the order of the filter is 25.

To compare the accuracy of the parameter estimation
obtained using the proposed algorithm with [16], we modify
the system by consideringA(z) = 1. The results so obtained
are consolidated in Table 8. From Fig. 5 we illustrate the
faster convergence rate of the proposed algorithm.

Example 4 The lattice structure obtained from the proposed
algorithm can be used to reduce order of the estimated
model. Here, we consider a low pass FIR filter of order
100 and cut off as 0.4π . We estimated this system using a
lattice filter of order 55, the output of the true system and
the estimated system are shown in Fig. 6.

Discussion on simulation results:

1. Example 1 compares the performance of proposed algo-
rithm with AM-HSG, F-AM-HSG, and FF-AM-HSG
which are different versions of hierarchical stochas-
tic gradient algorithm. The hierarchical identification
algorithms based on the decomposition technique are
used for parameter estimation of MIMO systems. HSG
algorithm have lower computational complexity than its
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RLS counterparts, however the estimation accuracy is
poor and convergence rate is relatively slow. The fil-
tering technique has been used in [18] to improve the
estimation accuracy through filtering the input-output
data of the systems. Forgetting factor has also been
used for speeding up the convergence performance.
For parameter estimation, algorithms in [18] require
the orders/structures of the system. From Table 6, we
observe the following:

a) For k = 10, the estimation error δ is minimum for
proposed algorithm.

b) The proposed algorithm displays the sharpest decay
of estimation error from k = 10 to k = 50.
Therefore, the proposed algorithm converges faster
than AM-HSG, F-AM-HSG and FF-AM-HSG.

2. In Example 2 we compare the convergence rate and
estimation accuracy of proposed algorithm with MISG
algorithm [12] and RLS algorithm. RLS converges
faster than MISG but the computation burden of RLS is
more than stochastic gradient based algorithms. From
Table 7 we observe:

a) The proposed algorithm offers the best estimation
accuracy at k = 100 i.e. after hundred recursions.

b) The convergence speed of the proposed algorithm
is better than both RLS and MISG. It should
be noted here than unlike RLS, the algorithm
developed in this work only performs scalar
computations at each recursion.

3. In Example 3 and 4 we discuss the performance of
the proposed algorithm for SISO systems. Although
the proposed algorithm has been developed to estimate
FIR model for a given system we can extend this to
obtain IIR systems. Also, the FIR models can be used
to approximate IIR system response as shown in Fig. 4.

4. Figure 5 illustrates the convergence property of the
proposed algorithm. Since the proposed algorithm is
based on exact least squares, the convergence rate is
faster compared to RLS and SG algorithms.

5 Conclusions

In this work we converted an L × M MIMO system into
a SISO form, which is shown to be a generalized version
of an M-channel synthesis filter bank when L = M . Thus,
the algorithm proposed to identify a MIMO system can also
be used to obtain synthesis filters. The proposed algorithm
can also estimate LPTV systems when L = 1 and M is the
period of the system. A computationally efficient, fast, time
and order recursive exact least squares algorithm has been

developed for the same, with better convergence rate and
smaller steady state error than recursive algorithms existing
in the literature. Simulation results have been presented to
compare the performance of the proposed algorithm with
some latest works. The recursions of the proposed algorithm
give rise to a lattice structure, which can be used for model
order reduction.

In this paper, we estimated an FIR model for the given
MIMO system, the algorithm can also be used to identify
IIR systems and multivariable systems. In future work, we
will estimate the given MIMO system with an IIR transfer
function model with ARMA noise.
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Appendix: Formulae Used in the Algorithm

We call a signal v(n) to be in a pre-windowed form if
v(n) = 0 for n < 0. A given discrete time signal, v(Ln− i),
is defined as 1 × K (K is a fixed number) vector, with
K � Ln − i, :

v(Ln − i) ≡ [
0 · · · 0 v(−i) v(L − i) · · · v(Ln − i)

]

and the set of vectors, {v(Ln − k)|i ≤ k ≤ i + p}, forms
a (p + 1) × K matrix, denoted as V Ln−i

p+1 , and is given as
follows:

V Ln−i
p+1 ≡

⎡

⎢⎢
⎢
⎣

v(Ln − i)

v(Ln − i − 1)
...

v(Ln − i − p)

⎤

⎥⎥
⎥
⎦
. (29)

Here the superscript denotes the top row vector used and
the subscript p + 1 denotes number of rows. The span of
row-space of V Ln−i

p+1 is given as:

S = span{v(Ln − i), v(Ln − i − 1), · · · , v(Ln − i − p)}
If the rows vectors are linearly independent, the span S can
be written as:

S = span{v(Ln − i), v(Ln − i − 1), · · · , v(Ln − i − p)P ⊥ [
V Ln−i

p

]
}.

The projection on span of V Ln−i
p+1 can be written as:

P
[
V Ln−i
1+p

]
= P

[
V Ln−i

p

v(Ln − i − p)P ⊥
[
V Ln−i

p

]
]

= P [V Ln−i
p ] + P

[
v(Ln − i − p)P ⊥

[
V Ln−i

p

]]
(30)
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Since the projection operator is defined as P [X] =
XT [XXT ]−1X, we can re-write the above equation as:

P
[
V Ln−i
1+p

]
= P [V Ln−i

p ] + P ⊥
[
V Ln−i

p

]
vT (Ln − i − p)[v(Ln − i − p)

×P ⊥
[
V Ln−i

p ]vT (Ln − i − p)
]−1

v(Ln − i − p)P ⊥
[
V Ln−i

p

]
(31)

and the projection onto the orthogonal complement space,

P ⊥
[
V Ln−i
1+p

]
, can be written as

P ⊥
[
V Ln−i
1+p

]
= I − P

[
V n−1
1+p

]

= P ⊥[V Ln−i
p ] − P ⊥

[
V Ln−i

p

]
vT (Ln − i − p)[v(Ln − i − p) ×

P ⊥
[
V Ln−i

p ]vT (Ln − i − p)
]−1

v(Ln − i − p)P ⊥
[
V Ln−i

p

]
(32)

Pre-multiply (32) with v and post-multiply with wT to get:

vP ⊥
[
V Ln−i
1+p

]
wT = vP ⊥[V Ln−i

p ]wT − vP ⊥
[
V Ln−i

p

]
vT (Ln − i − p) ×

[
v(Ln − i − p)P ⊥

[
V Ln−i

p

]
vT (Ln − i − p)

]−1 ×

v(Ln − i − p)P ⊥
[
V Ln−i

p

]
wT (33)

The above equation is known as the inner-product update
formula, for more detail refer [29]. We now briefly discuss
the projection update formula from [30]. This update
relation is used to compute recursions for (17). Let us define
KLn−i

p+1 , the pseudo-inverse of XLn−i
p+1 i.e. XLn−i

p+1 KLn−i
p+1 = I ,

as follows:

KLn−i
p+1 =

[
XLn−i

p+1

]T
[
XLn−i

p+1

[
XLn−i

p+1

]T
]−1

(34)

Pre-multiply (31) with z and post-multiply by KLn−i
p+1 , we

get:

zKLn−i
p+1 =

[
zKLn−i

p

0

]
+ zP ⊥[V1:p]νT

p+1[νp+1P
⊥[V1:p]νT

p+1]−1.

[ −νp+1K
Ln−i
p

1

]
. (35)

For more information and derivation of (35) refer [30].
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