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Highlights

Gaussian mixture modeling is used to fit the probability density function of heartbeats.
Expectation maximization algorithm estimates the parameters of statistical model.
Skewness, kurtosis and 5™ moment of ECG signals express the shape parameters.

RR interval information represent the time-domain characteristics of ECG signals.

An ensemble of decision trees are used to perform the final classification.
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Cardiac Arrhythmia Classification Using Statistical and Mixture Modeling Features
of ECG Signals
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“Faculty of Electrical Engineering, University of Tabriz, Tabriz, Iran

ABSTRACT

In this paper we propose a novel method for accurate classification of cardiac arrhythmias. Morphological and statisti
features of individual heartbeats are used to train a classifier. Two RR interval features as the exemplars of time
information are utilized in this study. Gaussian mixture modeling (GMM) with an enhanced expectation maximizati
solution is used to fit the probability density function of heartbeats. Parameters of GMM together with shape parame
skewness, kurtosis and 5th moment are also included in feature vector. These features are then used to train an e
decision trees. MIT-BIH arrhythmia database containing various types of common arrhythmias is employed

algorithm. The overall accuracy of 99.70% in “class-oriented” scheme and 96.15% 1n “subject-oriented™
Both cases express a significant improvement of accuracy in compare to other methods.
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1. Introduction

The analysis of the electrocardiographic (ECG) signal
provides a detailed information on the patient’s cardiac health
status. Cardiac arrhythmias are group of conditions in which the
electrical activity of the heart is irregular, faster or slower than
normal. While some types of arrhythmias impose an imminent
threat on patient’s life (e.g. ventricular fibrillation and
tachycardia) other types represent long-term threats, which will
still need special care. Cardiac arrhythmias are also one of the
most common causes of death and as a result, their accurate
detection has been of great interest in biomedical studies.

ECG is a simple and specific diagnostic test for assessment of
heart rhythms. In most cases arrhythmias don’t show any
consistent changes in ECG signal, therefore a Holter monitor is
needed. Holter monitor is an ECG recorded over a longer period
time (i.e. longer than thirty minutes), which helps the detection of
dysrhythmias that may happen briefly and unpredictably
throughout that period. While analyzing such a long signal by
physicians is extremely time demanding, signal processing
techniques can offer rapid, real-time categorization with
acceptable accuracies. Our goal in this paper is to introduce a
legitimate method for automatic detection of cardiac arrhythmias
based on novel techniques in signal processing.

Electrocardiographic  based classification of cardiac
arrhythmias has been investigated in numerous papers. These
methods can usually differ in three main aspects, features,
classifiers and evaluation schemes.

Different features used in papers are Hermit coefficients (Jiang &
Kong, 2007). (Lagerholm. et al.. 2002), (Osowski. et al., 2004),
higher order statistical features (de Lannoy, et al., 2012)
(Osowski, et al., 2004), morphological features (de Chazal, et al.,
2004), (de Oliveira, et al, 2011), (Zeng, et-al.;,2011),
independent component analysis and wavelet features (Ince, et
al., 2009), (Jiang, et al., 2006), (Yang & Shen, 2013), (Yel et al.,
2012).

Classifiers such as self-organizing map(SOM) (Lagerholm, et
al., 2002), support vector machine (S¥M) (liang, et al., 2006),
(Osowski, et al., 2004), (Ye. et al., 2012), artificial neural
network (ANN) (Ince, et al., 2009); (Jiang & Kong, 2007),
conditional random field (CRF) (de Lannoy, et al., 2012), linear
discrimination analysis (LDA) (de Chazal, et al., 2004),
(Llamedo & Martinez, 2011), and-ensemble methods (Zeng, et
al., 2011) are considered in different papers.

Two different evaluation schemes, namely “class-oriented” and
“subject-oriented”, are used in literature. Heartbeat segmentation
of extensive ECG signals such as MIT-BIH arrhythmia records,
results in more than” a thousand heartbeats for an individual
record. As a result, it is highly probable that in random selection
of training set for a supervised classifier there will be samples of
the same patients used in both training and testing sets. This
method 1s referred to as “class-oriented” and it is criticized for
poor generalization performance. While class-oriented method is
used in many papers (e.g., (de Oliveira, et al., 2011), (Jiang, et
al., 2006), (Lagerholm, et al., 2002), (Osowski, et al., 2004),
(Prasad & Sahambi, 2003), (Rodriguez, et al., 2005)), having
particularly correlated samples in training and testing sets may
cause the overfitting problem and lead to promising results that
might not be reachable in practice. In contrast, Subject-oriented
method, which was proposed by (de Chazal, et al., 2004), creates

a patient-based division of dataset into training and testing sets
i.e. prior to heartbeat segmentation procedures. This method is
believed to be more realistic and is adopted by (de Lannoy, et al.,
2012), (Llamedo & Martinez, 2011), (Ye, et al., 2012).

Although promising results have already been seen in cardiac
arrhythmia classification, there is a long way to go before
applicable methods and totally automatic classifications can be
employed in practice. This means more accurate and stable
algorithms should be developed.

The paper is organized as follows: Section 2 describes the
dataset, section 3 provides background materials and methods
and section 4 represents the proposed method; in section 5 we
share the simulation results and compare it with previous works
and section 6 has the conclusion.

2. Background
2.1. Higher Order Statistics

Probability distribution mements are the generalization of
concept of the expected value and can be used to define the
characteristics of probability density function (Ebrahimzadeh &
Khazaee, 2011).

Skewness (3™ ordér statisties) and kurtosis (4" order statistics) of
random variable, x¥7are defined respectively as follows,
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Inswhich E denotes the expected value. While skewness gives a
measure of the lopsidedness of the distribution, kurtosis gives a
pomparative  measwement of the signal’s  distribution  with

normal distribution of the same variance. Estimates of the two
are given respectively by,
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where x; is a realization of the random variable x. 7 and & are
estimates of mean and variance for the observed signal with N
samples.

2.2, Gaussian Mixture Model

A Gaussian mixture model (GMM) is a parametric probability
density function represented as a weighted sum of Gaussian
component densitiecs. GMMs with many degrees of freedom
allow arbitrary density modeling. In this model, data
{x1, %5, .., %, } in R? are assumed to arise from a random vector
with density,

f) = Z pid (xlpg, Zo). (5)

In which, K is the number of mixture components, p; is the
mixture weight, i.e. prior probability of a certain component and
¢(x|u,E) is the normal distribution with mean vector and
covariance matrix of g and Z, respectively. Generally, the mixing
parameters 8 = (Py, -, Pis Has - r fir Ly, -, £ ) are estimated by
maximizing the log-likelihood,
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Fig. 1. Block diagram of proposed method for cardiac arrhythmia classification
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A widely used approach for maximum likelihood solution is the
Expectation Maximization (EM) algorithm. EM is an iterative
algorithm that starts from an initial parameter 8°. The E step
computes conditional probabilities of p;(x;) where (1 <i <
K,1<j<n) and x; emerges from the ith mixture component
and the M step updates p;,fi;, E; with maximum likelihood
estimation using p;(x;) as conditional mixing weights
(Biernackia, et al., 2003).

2.3. Decision Trees

A Decision tree (DT) is a classifier expressed as a recursive
partition of the instance space. Discernibility, ability to handle
missing attributes, having characteristics of non-parametric
classifiers and the implementation simplicity are the main
advantages of DTs. A decision tree is made of nodes and edges.
The tree starts from a node called root node, which has no
incoming edge. Nodes with outgoing edges are called internal
nodes or test nodes and all the other nodes are called leaves or
terminal nodes. Internal nodes are a split of their input space into
two or more subspaces according to a certain discrete function of
the input attributes values. Moreover, each leaf node may hold a
probability vector indicating the probability of the target attribute
having a certain value. According to the decisions made “by
internal nodes, instances are navigated from the root-of the tree
down to a leaf and then classified. This process fages the task of
recursive partitioning the input space. The~input, space is
generally represented by a training set like as

L={(x,v)In=1,.., N} )]

This set includes N instances which are, represented by a
feature vector x and its associated-€lass, y. After training the tree
with the set L , the new instances propagate through the tree and
assign to the class which the leaf belongs (Maimon & Rokach,
2010) (Zaunseder, et al., 2011).

2.4. Ensemble Learners

Ensemble is a supervised learning algorithm that combines
several weak learners (also called base learners) which are
slightly betteérsthan random guessing to construct one strong
learner. Integrating these weak learners can be done by various
methods, like as majority voting or weighted aggregation of
individual results. It is evident that combining several identical
classifiers provides no gain, so this method can be useful only if
there is dissimilarity among learners. Thus, the diversity of weak
learners is crucial in the efficiency of ensemble learners.
Diversity can be achieved by using different presentations of the
input data, as in bagging. Variations in learmner design and adding
a penalty to the output are other methods to encourage diversity
(Maimon & Rokach, 2010), (Opitz & Maclin, 1999), (Zaunseder,
etal., 2011).

Bagging was proposed by (Breiman, et al., 1984) and it is the
most well-known bootstrap ensemble method that processes

samples concurrently. Bagging generates individuals for its
ensemble by training each inducer on a random reconstruction of
the training set. The training set for a particular classifier is
generated by randomly drawing N samples with replacement,
where N is the size of original training set. As a result, each
individual learner in the ensemble is configured with a different
random sampling of the training set. This means that the initial
training samples might appear zero of multiple fimes in a certain
training set. Bagging combines these learners by majority voting,
i.e. the most voted class is selectedy The pbtained strong learner
will have the misclassification, errorylower than a particular
inducer because the dissimilanity.among these learners can
compensate for the increase in error rate of each single learner.
Breiman notes that bagging is more effective on unstable learners
because it can remove their uncertainty. In this context, a learner
is considered unstablevif perturbing the training set can result in
large changes in predictions. He claimed that decision trees are
example of unstable learning algorithms.

3. Method

This_section introduces the methodology used in the paper.
Firstly, we talk about the dataset and then we follow the overall
processing steps illustrated in Fig. 1. After preprocessing, which
is'baseline wandering removal and beat segmentation, we extract
three sets of features; higher order statistical features, RR interval
features and mixture modeling features. These features will then
be fed to the classifier.

3.1. Dataset

We have used MIT-BIH arrhythmia database in our study,
which includes many common and life-threatening arrhythmias.
The database contains 48 half-hour ambulatory ECG recordings,
obtained from 47 subjects. Each record consists of two leads. For
45 of the recordings the first lead is modified limb lead II (MLIT)
and for the others it is modified lead V5. The second lead on the
other hand, is a pericardial lead (V1 for 40 recordings and V2,
V4 or V5 for the others). Twenty-three recordings of this
database were chosen at random from a set of four thousand
ambulatory ECG recordings collected from a mixed population
of inpatients; the remaining 25 recordings were selected from the
same set to include less common but clinically significant
arrhythmias that wouldn’t be well-presented in a small random
set (Mark & Moody, 1997).

The original labeling of the database includes 16 classes of
rhythms shown in Table 1. Despite Standards recommended for
class labeling and results representation of cardiac arrhythmia
classification algorithms by the Association for the Advancement
of Medical Instrumentation (AAMI) (Anon., 1998), (Anon.,
1987), only (de Chazal, et al., 2004), (de Lannoy, et al., 2012),
(Ince, et al., 2009), (Jiang & Kong, 2007), (Llamedo & Martinez,
2011). (Rodriguez, et al., 2003), (Yang & Shen, 2013), (Ye, et
al., 2012), have utilized these standards. The AAMI defines the
five clinically relevant classes as “N” (beats originating in the
sinus node), “S” (supraventricular ectopic beats), “V”
(ventricular ectopic beats), “F” (fusion beats) and “Q7



Table 1. MIT-BIH arrhythmia database information

Heartbeat Type Ann | Total #
Normal Rhythm NOR N 74607
Left Bundle Branch Block LBBB L 8069
Right Bundle Branch Block RBEBB R 7250
Atrial Premature Contraction APC A 2514
Premature Ventricular Contraction PVC v 7127
Paced Beat PB / 7020
Aberrated Atrial Premature Beat AP a 150
Ventricular Flutter Wave VF ! 472
Fusion of Ventricular and Normal Beat VEN F 802
Non-Conducted P-wave (Blocked APC) BAP X 193
Nodal (Junctional) Escape Beat NE i 229
Fusion of Paced and Normal Beat FPN f 982
Ventricular Escape Beat VE E 106
Nodal (Junctional) Escape Beat NP ] 83
Atrial Escape Beat AE e 16
Unclassified Beat UN Q 35
Total 109655

" Annotation that is used for each arrhythmia in the database

(unclassified beats). Table 2 shows the mapping from the MIT-
BIH arrhythmia database classes to the AMMI heartbeat classes.
Table 2 also contains the train and test set division schemes (DS1
and DS2, respectively) introduced by (de Chazal, et al., 2004),
for subject-oriented classification. This scheme carefully divides
the dataset in a way that training and testing samples are fairly
distributed among the mentioned five classes and also discards
the four paced records (ie. 102, 104, 107 and 217) as
recommended by AAML
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Fig. 2. Samples of post-RR and previous-RR features for three chosen
classes of arthythmia
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We use all the 48 recordings and 16 classes of MIT-BIH
annotations in class-oriented scheme and 44 non-paced
recordings with 5 classes of Table 2 as recommended by AAMI
in subject-oriented scheme. Thus our proposed method is
comparable with most of algorithms developed for ECG
arrhythmia classification.

3.2. Data Preprocessing

The data of MIT-BIH arrhythmia database are band-pass
filtered at 0.1-100 Hz and digitized at 360 samples per second.
We remove the baseline wandering of these signals using two
stages of median filtering as proposed by (Awodeyi, et al., 2013).

An annotation file comes with each recording, indicating the
occurrence sample of major local extremum for each individual
heartbeat, which generally appears at R-wave peak. In this study
only the information of R peaks are.of interest and since the
detection of these points are not investigated here, we use the
annotation files to automatically ©btain these instances and then
manually correct them on the beat-by-beat basis as suggested by
(de Chazal, et al., 2004).

The QT intervals (measured.from the beginning of the QRS
complex to the end of{the T wave) can vary up to 420 ms in low
heart rates and PR-intervals (measured from the beginning of the
P wave to the beginning of the QRS complex) take values from
120 ms up to-200 ms (Jenkins & Gerred, n.d.). For each heartbeat
knowing thie R location, we take samples from the interval of 250
ms before Rpeak and 400 ms after R peak, i.e. total 0.65 s of
each heartbeat. This choice of fixed size beat segmentation is
long enough to catch the samples representing the repolarization
of ventricles and short enough not to get the samples of T wave
fromugthe previous beat. While usually longer intervals are
selected in studies (e.g. 0.83 s intervals are used by (Ye, et al.,
2012)), our prime concern is to exclude any samples of neighbor
heartbeats. Narrow QRS complexes and higher heart rates are

Table 2. AAMI recommended labeling with training set
(DS1) and testing set (DS2) used in subject-oriented scheme

AAMI Class MIT-BIH Class Total #
N NOR, LBEBB, RBBB, AE, NE 89665
S APC, AP, BAP, NP 2940
v PVC, VE, VF 7478
F VEN 802
Q FPN, UN 17
DS1 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124,
201, 203, 205, 207, 208, 209, 215, 220, 223, 230
Ds2 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212,
213,214,219, 221, 222, 228, 231, 232, 233, 234

skewness

Fig. 3. Samples of higher order statistical features for four chosen classes of arrhythmia
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very common among class “S’ arthythmias. These characteristics
can cause problems in long beat-segmentation schemes and
consequently poor classification results for this class. In the
meantime, fixed size segmentation method helps us avoid
computational complexity of detecting other time-domain
features.

3.3. Feature Extraction

Disorders in electrical activity of the heart can affect the time
needed for repolarization and/or depolarization (e.g. bundle
branch blocks cause prolonged QRS complexes). In order to
exploit these characteristics of different heart rhythms, we add
two RR interval features. We also believe that statistical features
can delineate the ECG signal good enough for an accurate
classification, so we focus on higher order statistics and mixture
modeling to extract eight statistical features.

1) RR Interval Features

We have chosen RR interval information as the only time-
domain features in our study. Two RR intervals are calculated
directly from the R locations named as previous-RR and post-RR
intervals. Previous-RR is defined as the time distance between
current and previous R location while post-RR is the time
distance between current R location and the following.one.

RR interval features can hold indispensable information about
heart rhythms so they were adopted by various studies such as
(de Chazal, et al., 2004), (de Lannoy, et al., 2012), (de Oliveira,
et al., 2011), (Ince, et al., 2009), (Lagerholm, et al., 2002),
(Llamedo & Martinez, 2011), (Osowski, et al., 2004), (Prasad &
Sahambi, 2003), (Yang & Shen, 2013), (Ye, et al., 2012) . In
Fig. 2 we have illustrated these features for 50 randomly selected
heartbeats of three chosen arrhythmias.

2) Higher Order Statistical Features

It was proved that higher order statistics (HOS) are less
sensitive to morphological changes of ECG and the nonlinear and
dynamic nature of these features help to extract the subtle
changes in ECG data (Martis, et al., 2011). Three statistical
features as skewness, kurtosis and 5™ moment are calculated for
each heartbeat. Fig. 3 shows these three features for 80 randomly
selected heartbeats of four chosen arrhythmias.

3) Mixture Modeling Features

We perform an intrabeat Gaussian mixture modeling for each
individual heartbeat. It’s knownithat each arrhythmia can cause a
particular change in the recorded voltage of ECG signal. Thus, a
prudent mixture modeling of single heartbeat samples can
provide applicable information to be used in the main
classification. Wesuse, a 2<component EM based Gaussian
mixture modeling for.each signal. Since EM is to be calculated
for over 100,000 heartbeats, we set a relatively relaxed threshold
to stop theteration, which is,

19 — 19t
Ia

where 19 denotes the observed log-likelihood at gth iteration
mentioned in (6).

<1075, (8)

The EM algorithm usually starts from some initial estimate of
model parameters, 8, (e.g. random) and then proceeds (©
iteratively updating @ until a certain convergence criteria is
detected. However, an important drawback of EM is that in a
multivariate context its solution highly relies on the starting

: a) Average NOR heartbeat . b} Average FVC heartbeat . c) Average PACE heartbeat
12 13 1
. [T}
& o g™ g
[F]
.. g g,
[] I I
23 0 ) 150 E) = 3y @ o 150 E = ‘o @ ] 150 E =
Sample Sample Sample
mean Std MP | mean std MP | mean std MP
Compl 0.020 v’ 0259 | Compl -0.022 0029 0248 | Compl -0.769 0128 0.054
Comp2 0.090 - 0.741 Comp2 0.070 ' 0.752 Comp2 0.101 ' 0.946
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06 02 : .
L. o
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Samples Samples Samples
mean std MP | mean std MP | mean std MP
Compl -0.004 0016 0353 | Compl -0.089 0011 0316 | Compl -0.108 025 0.131
Comp? 0.088 ) 0647 | Comp2 0.028 ' 0.685 | Comp2 0.144 : 0.869

Comp 1&2 are the mixture components; std is the standard deviation and MP is the mixing proportion for each component

Fig. 5. Average heartbeat for six different arrhythmias and parameters of GMM estimation for each one



parameters and consequently the algorithm generates poor
maximum likelihood estimates (Biernackia, et al., 2003).
Considering our enormous database, the goal is to find a simple
method that would give the highest likelihood in the least
possible number of iterations. We examine the statistics of one
thousand heartbeats extracted randomly from the training set.
Fig. 4, shows the probability density function (PDF) of this signal
which has the mean and standard deviation of 0.065 and 0.45,
respectively. It is apparent that the PDF has a dominant peak
around zero, as the most samples of ECG signal have the voltage
near zero with the tendency toward positive voltages, resulting
from QRS and T peaks. Consequently, we considered initiating
the EM algorithm with one assertive Gaussian centered at the
origin and an auxiliary Gaussian with a small positive mean.
Empirically we found an optimum set of initiation parameters, as
8° = (0.6,0.4,0,0.1,0.01,0.01) (ie. 60% and 40% mixing
proportions with 0 and 0.1 mean for each component,
respectively and the two GMMs share the same variance, Z;, with
initial value of 0.01). Proposed initiation parameters and log-
likelihood threshold of EM algorithm leads to a fast convergence
within less than 6 iterations for each heartbeat. Final parameters
of the two Gaussians are considered as the GMM features,
including two mean values, two mixing proportions and one
standard deviation. Fig. 5, shows the average signal of training
set for six chosen arrhythmias with their calculated GMM
parameters.

3.4. Classification

Bootstrap aggregating ensemble method is used to combine
100 decision tree learners and make a more stable and accurate
classifier. While a single decision tree has a high variance and is
considered as unstable, bagging reduces the variance and helps to
avoid overfitting problem. A research by (Wang, et al., 2009)
showed that bagging outperforms basic decision trees and
decision trees improved by boosting.

As mentioned in section II, each signal in MIT-BIH database
includes two leads. All the procedures such as feature extraction
and classification that are illustrated in Fig. 1, are independently
applied to both leads. Preferably the two outcomes:for each
heartbeat should point to the same class, $o,we consider any
inconsistency of the results as a misclassification errof.

4. Evaluation and Results

Results of classification are evalvated in two schemes: class-
oriented and subject-oriented, which differ only in dataset
divisions and class labeling:

4.1. Performance Metrics

Various approaches are adopted in literature to evaluate the
results. In this study, senmsitivity and positive predictivity are
used. Sensitivity (Se) be defined as a measure of successfully
classified samples,

Se 100, &)

= —
TP+ FN

where FN is the total number of falsely missed negative samples
and TP is the total number of correctly classified positive

samples. Positive predictivity (Pp) measures exclusive
classification of different samples and can be defined as,
TP
Pp = ————x 100 10
P=TP+FpP ' (10)

where FP is the total number of falsely classified positive
samples.

4.2, Class-Oriented Evaluation

The class-oriented evaluation is performed on the original 16-
class labeling of MIT-BIH database. As shown in Table 4, total
number of 109655 heartbeats from different classes are divided
into training and testing sets. 12% of normal rhythms, 40% of
common arrhythmias (LBBB, RBBB, APC and PVC) and 50%
of less common arrhythmias are randomly selected to make the
training set, which includes 23984 samples (21.87% of all data).
Table 4 also contains the number of rejected instances (i.e.
number heartbeats that got different labels from classifying each
lead).

4.3. Subject-Oriented Evaluation

The subject-oriented evaluation has /been introduced in
literature to get more realistic results with help of patient-based
division of database (i.e. DS1 and DS2+in Table.2). This scheme
is based on the AAMI recommendations to use the five-class
labeling standard and discard, the, four paced records.
Subsequently, the size of database reduces to 100902 samples as
in Table 3, while the training set holds 51507 samples (51.05%
of all data). Table 3 alse. has the classification results for this
scheme.

Table 3. Resalts for subject-oriented classification scheme

Class _Total #_  Train Test Se (%) Pp (%) Rn
N 80065 | 45826 43839 97.37 98.40 1153
5 2940 999 1941 86.50 90.90 262
v 7478 4260 3218 95.99 77.63 129
P 802 414 388 11.86 24.21 342
Q 17 8 9 0 - 9

total 100902 51507 49395 96.16 96.15 1895

Table 4. Results for class-oriented classification scheme

Rhythm Total# Training Test Se (%) Pp(%) Rn’
NOR 74607 8953 656054  99.77 99.92 148
LBBB 8069 3228 4841 99.98 100 1
RBEB 7250 2900 4350 98.76 96.68 54
APC 2514 1006 1508 100 98.69 0
PvC 7127 2851 4276 100 100 0

PB 7020 3510 3510 99.97 99.97 1
AP 150 75 75 81.33 85.92 14
VF 472 236 236 100 100 0
VFN 802 401 401 97.51 99.74 10
BAP 193 97 96 100 100 0
NE 229 115 114 94.74 88.52 6
FPN 982 491 491 100 98.00 0
VE 106 53 53 86.79 97.87 7
NP 83 42 41 100 100 0
AE 16 8 8 0 - 8
UN 35 18 17 41.18 100 10
Total 109655 23984  B3671  99.70 99.69 259

" Number of rejected heartbeats for each class

Table 5. Comparative results of class-oriented classification

Reference Features Accuracy
(Jiang, et al., 2006) Wavelet + ICA 98.86
(Ye, etal., 2012) Wavelet + ICA + RR 99.71
(Lagerholm, et al., 2002) Hermite 98.49
(Osowski, et al., 2004) HOS + Hermite 98.18
(Prasad & Sahambi, 2003) Wavelet + RR 96.77
(Rodriguez, et al., 2005) Waveform 96.13

(de Oliveira, et al., 2011) Waveform + RR 98

Proposed HOS + Mixture Model + RR 99.70




4.4. Results

Table 4 shows the results of class-oriented scheme, all 8 cases
of atrial escape beats (AE) in the training set has got different
labels from each lead and flagged as rejected (Rnye = 8),
leading to zero accuracy for AE class. Unclassified beats (UN)
doesn’t show good results either, 10 beats out of 17 has been
flagged as rejected but for other 14 classes the results are very
accurate. Total 259 beats are rejected which shows a significant
improvement in compare to 2054 rejected beats of (Ye, et al.,
2012). Table 5, shows methods and overall accuracy of different
studies with class-oriented schemes. Total accuracy of our
proposed method for this scheme is 99.70% and it’s worth
mentioning that unlike (Ye, et al., 2012), we have included
rejected beats in calculation of accuracy, sensitivity and positive
predictivity.

Subject-oriented scheme, as shown in Table 3, has 1895
rejected instances. The truth table for subject-oriented scheme is
illustrated in Table 6. As Table 3 shows, classification of F and Q
classes show poor results, which is the case in other papers as
well. For three main classes of N, S and V our method certainly
outperforms previous works as compared in Table 7.

5. Conclusion

In this paper, we have presented a novel feature selection
method for classification of cardiac arthythmias. The
comparative results of our proposed method, as shown in Table 5
and Table 7, indicates the high performance of Gaussian mixture
models to fit the data and preserve the essential information for
an accurate classification. Ensemble learning methods which are
seldom used in biomedical signal processing are adopted in this
work and the statistical advantages of these classifiers helped in
the classification of unevenly distributed arrhythmia groups.

Using both class-oriented and subject-oriented schiemes
enables us to compare the results with other methods in this area
of research. It is apparent that statistical features and mixture
model parameters need to get more attention eh processing
biomedical signals.

In the classification of ECG arrhythmias, different types of
features are usually treated the same, training theiclassifiers. For
the future studies we suggest categorizing features based on their
characteristics and then combining ‘ensembles of classifiers

Table 6. Confusion matrix for subject-oriented scheme

Predicted Results

N S v F Q

N 426867, 152 859 138 0

g S 935 1679 22 5 0

= v 121 4 3089 1 0
—

2 F 332 4 6 46 0

Q 5 1 3 0 0

Table 7. Comparative results of subject-oriented
classification

N s v

Method Se Pp | Se Pp | Se Pp

(Llamedo &
Martinez, 2011)
(Ye, et al., 2012) 88.6 975 | 608 523 | B15 631
(de Chazal, et al.,
2004)
Proposed 974 984 | 86.5 909 | %0 716

95 98 77 39 81 87

87.1 992 | 759 385 | 77.7 8le

trained with each group of features for a final classification.
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