Architectural Operations in Cloud
Computing

Ragnar Skulason

ARCHITECTURAL OPERATIONS IN CLOUD COMPUTING

Ragnar Skulason

60 ECTS thesis submitted in partial fulfillment of a
Magister Scientiarum degree in Software Engineering

Advisors
Klaus Marius Hansen
Helmut Wolfram Neukirchen

Faculty Representative
Hjalmtyr Hafsteinsson

Faculty of Faculty of Industrial Engineering, Mechanical Engineering and
Computer Science
School of Engineering and Natural Sciences
University of Iceland
Reykjavik, August 2011

Architectural Operations in Cloud Computing
Cloud ASL
60 ECTS thesis submitted in partial fulfillment of a MSc degree in Software Engineering

Copyright © 2011 Ragnar Skulason
All rights reserved

Faculty of Faculty of Industrial Engineering, Mechanical Engineering and Computer Science
School of Engineering and Natural Sciences

University of Iceland

Hjardarhagi 2-6

107, Reykjavik, Reykjavik

Iceland

Telephone: 525 4000

Bibliographic information:

Ragnar Skulason, 2011, Architectural Operations in Cloud Computing, MSc thesis, Faculty of
Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of
Iceland.

Printing: Haskdlaprent, Falkagata 2, 107 Reykjavik
Reykjavik, Iceland, August 2011

Dedicated to my family
Life’s never dull with you!

Abstract

Rapid scalability is important in cloud computing in order to serve growing communi-
ties and optimize hardware costs. This scalability can be hard to achieve, especially in
software with static architecture. Changing software architecture of running systems on
multiple devices over the Internet is a hard and delicate process as updating live soft-
ware can cause faults and failures while software systems are being restarted. Taking the
study of software architecture to the dynamics of the cloud computing can be beneficial
in this case and increase cloud computing possibilities.

The Architectural Scripting Language (ASL) is a language for expressing the dynamic
aspect of run-time and deployment-time software architecture. In the following thesis,
ASL is taken to cloud computing which enables dynamic software architecture changes
to meet the dynamics of a computing infrastructure. We present Cloud ASL, which is
an external domain-specific language which enables architectural operations and archi-
tectural scripting in cloud computing environments. Cloud ASL is modeled and tested
by the creation of a distributed cloud computing ray tracing system which was built to
utilize Cloud ASL for its distributed and cloud computing mechanism.

Cloud ASL is a framework which enables modelling dynamic aspects of runtime software
architecture with architectural operations in cloud computing and suitable to use for
creating a scalable and modifiable cloud computing software.

Preface

I have been interested in software development and in particular web development and
distributed development for a decade. I spent the academic year 2009-2010 as an ex-
change student at the University of California, Berkeley, and by coincidence I ended
up in a cloud computing course. After attending this course I came very interested in
the subject, so much that when I arrived back in Iceland to do my MSc thesis I started
by looking for possible cloud computing based projects. After discussing project ideas
with professor Klaus Marius Hansen we settled with this very interesting research topic,
which joined cloud computing and software architecture.

vii

Contents

List of Figures

List of Tables
Acronyms and Abbreviation

Acknowledgements

1.

Introduction

1.1.

1.2.
1.3.

Motivation
Problem Statement
Thesis Outline

Background

2.1.

2.2.

2.3.

Cloud Computing

........................

........................

........................

2.1.1. Essential Characteristics v v v v v v v i

2.1.2. Service Models
2.1.3. Deployment Models .
Software Architecture
2.2.1. Architectural Qualities

........................

2.2.2. Architectural Description

2.2.8. Architectural Prototype
Architectural operations . . .
2.3.1. Architectural Change .

2.3.2. Architectural Scripting and Architectural Operations

Cloud Computing and Architectural Operations
8.1. Architectural ScriptinginaCloud

3.2.

3.3.

3.1.1. ASL Operations
Implementing Cloud ASL. . .
3.2.1. Cloud ASL Operations

........................

3.2.2. Architectural Description,

3.2.3. Examplein Use
Binding Cloud ASL to a Cloud
3.3.1. Eucalyptus
3.3.2. Amazon Web Services

........................

........................

33
33
34
37
39
41
48
49
49
49

X

3.4. An Experiment WithCloud ASL.. 50
3.4.1. Architectural Requirements 51

3.4.2. Architectural Design 54

3.4.8. Architectural Description, 54

344. TheTurnip 62

4. Evaluation 69
4.1. Qualitative Evaluation 0 i e 69
4.1.1. Utility and Completeness 69

4.1.2. Quality Attribute Scenarios 71

4.2. Quantitative Evaluation e 88
4.2.1. Performance e e 88

4.2.2. Scalability 90

5. Discussions and Conclusions 97
Bibliography 101
A. Performance Script 105
Al Cloud ASLSeript o o oo e 105
A.2. Groovy manual “ASL”Seript oo oo oo 105

B. Numerical results for performance tests 113
C. Numerical results for scalability tests 115

List of Figures

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

2.12.

3.1.

3.2.

3.3.

3.4.

Cloud computing vs. grid computing trends 5
JaaSvs.PaaSvs.SaaS L o o oo 8
Architectural Design Process oo 15
Quality attribute parts, from Bassetal.[[17] 17
Architectural Description Ontology, from IEEE 147127 20

Model View example, package overview of the web messenger software

SysStem e e e e e e e e e e e e 21
Module View example, decomposition of the Messenger Logic Package . . 22
C&C view example, web based messenger 23
C&C view example, sequence diagram, web based messenger 24
Allocation/Deployment view example, web based messenger 25
Ontology of Architectural Prototypes as seen from (37 26

Ontology of Architectural Scripting Language architecture, according to

CAT oo e e e e 28
Ontologyof Cloud ASL. o o o 34
C&Coverviewof Cloud ASL. 42
C&C Cloud ASL example sequence diagram 43
Packageviewof Cloud ASL.. 44

xi

xii

3.5. Interface view of the ASLL.Package 44
3.6. Interface view of the device Package 45
3.7. Interface view of the component Package 45
3.8. Interface view of the cloud Package 46
3.9. Interface view of the component Package 47
3.10. Deployment view of Cloud ASL. 48
3.11. C&C view of the architectural prototype 56
3.12. C&C sequence diagram displaying a new worker added 57
3.18. C&C sequence diagram displaying the rendering process 58
3.14. Package overview for the architectural prototype 59
3.15. Interface overview for the user interface 59
3.16. Interface overview for the worker factory 60
3.17. Interface overview for the request manager 60
3.18. Interface overview for Clound ASL. 61
3.19. Interface overview fortheworker 61
3.20.Deployment diagram forthe Turnip 63
3.21. Example of Sunflow rendered image 65
3.22.Screenshot of the Manager UT 66
4.1. A scatter chart of startup timing of Cloud ASL script vs. manual script . . 90
4.2. A scatter chart of operations timing of Cloud ASL script vs. manual script = 91
4.3. Bar chart of ASL performance, rendering efficiency with different amount

of workers e e 92

xiii

4.4.

4.5.

4.6.

Error chart of ASL performance, rendering efficiency with different amount
ofworkers 93

Rendering jobwith 3workers 94

Rendering job with 10 workers 95

List of Tables

2.1.

2.2.

2.3.

2.4.

2.5.

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

4.1.

4.2.

4.3.

4.4.

4.5.

Economy of scale in 2006 for medium-size data center vs. very large data

center [5,6] . . . i i i e e e e e e e e e e e 4
Price of electricity by region (5,77 4
Amazon EC2 standard prices, 9
Google App Enginepricing oo 11
Quality attribute scenarioexample L. 17
List of Device ASL operations, 35
List of Component ASL operations 35
List of Service ASLoperations, 36
List of implemented device ASL operations from table 3.1 40
List of implemented component ASL operations from table 3.2 41
Scalability quality attribute o oo oo 53
Storage Features - File System 73
Eucalyptus -> AppEngine 73
Felix-> EQuinox it 74
Storage Features-DB o o oL, 75
Dynamicfactory e 76

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

B.1.

Different raytracing program 76

Startup ofinstances e 78
Shutdown of instances v v i i e 79
UpgradeTurnip it e 80
updated UT e e e 81
New UL e e e e e e 82
NEWUSECASE . . .+ v v vttt et e e e e e e e e e e e e e e e e e e e 83
A new/bug-fixed version of r-OSGiisadded. 84
r-OSGi->Apache CFX e 85
Eucalyptus->EC2 86
Eucalyptus->OpenNebula. 87
List of ASL vs. manual change statistics. 89
List of ASL vs. manual change statistics. 92
List of rendering time compared to number of workers 94

Numerical results for performancetests 113

List of Listings

2.1. Example of ASL script on the WebMessenger 30
3.1. CloudASLExample 36
3.2. Example of Cloud ASL implementation 48
3.3. Start worker Cloud ASL script as used by worker manager 66
4.1. Start new cloud instance Cloud ASLscript 78
4.2. terminate cloud instance Cloud ASLseript 79
4.3. Turnipupgradescript o o oo 80
4.4. Update user interface Cloud ASLseript 81
4.5. Change user interface Cloud ASLscript 82
4.6. BoincCloud ASLscript.ot ii it 83
4.7. 1-OSGiCloud ASL. 84
4.8. Change from r-OSGi to CFX Cloud ASLseript 85
4.9. Migrate from EC2 to Eucalyptus Cloud ASLscript 86
4.10. Migrate from EC2 to other provider 87
4.11. ASL performancetest 88
4.12. ASL device creation scalabilitytest 90
4.13. ASL component scalabilitytest 91
A.l. ASLperformancetest, 105
A.2. Groovymanual ASL Seript L 105

xvil

Acronyms and Abbreviation

AD Architectural Description

ADD Attribute-Driven Design

ADL Architecture Description Language
API Application Programming Interface
AQS Architectural Quality Scenarios
ASL Architectural Scripting Language
ATAM Architecture Trade-off Analysis Method
AWS Amazon Web Services

CPU Central Processing Unit

DSL Domain Specific Language

EBS Elastic Block Storage

EC2 Elastic Cloud Computing

GPU Graphics processing unit

laaS Infrastructure as a Service

JVM Java Virtual Machine

PaaS Platform as a Service

QAS Quality Attribute Scenario

SAAM Software Architecture Analysis Method

XixX

SaaS Software as a Service

SDK Software Development Kit
Ul User Interface

UML Unified Modelling Language

VM Virtual Machine

Acknowledgements

I would first of all like to thank my advisor, professor Klaus Marius Hansen, for the
great guidance he provided me with and what often seemed like unlimited knowledge in
our fields of study. I would like to thank my second advisor, associate professor Helmut
Wolfram Neukirchen, for joining us in the later period of the work and managing the
last parts of the thesis defense.

I also want to thank the University of Iceland Research Fund for allowing me to work
on this project full time, I want to thank Amazon Web Services for giving me funds to
use their public cloud, Reiknisstofnun Haskoéla Islands for a valid try to give us access to
cloud computing services through their hardware, and GreenQloud for giving us access
to their available infrastructure.

Lastly I want to thank all the faculty of the computer science department of University
of Iceland for their dedication to the science.

Thanks
Ragnar Skulason

xx1

1. Introduction

In the following chapter the subject of the thesis will be introduced. First, I motivate the
work by describing some of the problems treated in the thesis. Secondly, the challenges
will be summarized in a problem statement and finally the attempts at solving them will
briefly be outlined.

Itis assumed that the reader of this thesis has a background in computer science and pos-
sesses general knowledge of distributed systems and software architecture; some knowl-
edge of architecture operations, cloud computing, the Java OSGi framework; and com-
puter graphics.

1.1. Motivation

Cloud computing is a new and emerging technology where technical infrastructure is
provided as a “utility”. In this way, users of clouds (software developers) can use virtu-
alized resources as a service, often flexibly scaling resource usage (and payment) up or
down. One of the cloud computing service layers, Infrastructure as a Service (IaaS), gives
developers freedom to develop their own platform and use their software as they would
do on their own infrastructure, but this comes with a cost: managing software architec-
ture on a big cloud at runtime can be a difficult and delicate task, as one small error in
a deployment script or an architectural change can result in serious faults resulting in
denial of service or other severe failures as a consequence.

The work of this thesis is done as an attempt to solve this problem and ease deployment
and architectural change. Enabling software developers to manage software architec-
ture dynamically on top of a cloud computing infrastructure can simplify deployment
processes significantly. This can give software developers a useful tool to update software
and scale software systems which will benefit cloud computing development. Building
complex scripts or programs to deploy and update software on clouds would be replaced
by simple architecture scripts that can be reviewed and tested.

1.2. Problem Statement

With the scalability of cloud computing infrastructure, scalable software architecture
and fault tolerance is equally important in the form of architectural change.

Changing software architecture can be important for scalable software, as for any high
available software. Any change in the software architecture can be a difficult task and
would require shutting down old software components and starting new software com-
ponents, resulting in software downtime. Architectural scripting could be a solution to
this problem. It could allow architectural modification on runtime software, resulting
in minimum downtime in general support for architectural change could be available in
a cloud computing environment, enabling dynamic scaling of cloud computing software
architectures.

In this thesis, we argue that modeling dynamic aspects of runtime software architecture
with architectural scripting complements cloud computing tools/techniques; especially
Infrastructure as a Service (IaaS). Architectural scripting can be the basis of managing
and modeling the dynamic aspects of architectural change.

The Architectural Scripting Language (ASL) has been the focus of two studies, Hydra [~ 87]
and Alloy [C97] but has not been implemented in other cases. Therefore the question
arises: Can architectural scripting be tailored for cloud computing infrastructure? And
if so, how would we implement architectural scripting on cloud computing infrastruc-
ture?

1.3. Thesis Outline

The theoretical and historical background of the concepts this thesis is based on will be
described in chapter 2. Chapter 3 demonstrates the implementation of our approach
and the process of building it. In chapter 4, the work will be evaluated. Chapter 5 will
discuss our work and in the last chapter and we will summarize the work we did for this
thesis.

2. Background

The work in this thesis can be categorized into software architecture and distributed
computing. In this chapter, we will present related work in these areas, mainly cloud
computing, software architecture and its subset architectural operations. Through the
rest of the thesis, the contents of this chapter will be used as input to design and to govern
discussions.

2.1. Cloud Computing

‘Cloud computing’ is a relatively new concept in the computing world, although the idea
has existed for a longer time. A few years after the dot-com bubble, companies like Ama-
zon started leasing out their underutilized and unused hardware with cloud computing
technology, resulting in cloud computing gaining attention and popularity within the
computing industry. Cloud computing has become a viable option in recent years for
several reasons. The “web 2.0” shift can be named as an example, as providers are shift-
ing their services from localy stored and hosted services to external services. A few years
ago a web company would have needed to host and maintain its own billing system and
payment gateway, making long-term and expensive contracts with credit card compa-
nies, banks, security companies, etc. With the emergence of companies like PayPal and
Chargify, any individual can now accept credit cards without a contract or long-term
commitment and use the services on a pay-as-you-go basis. As the Internet has become
a part of almost any household and is viewed as a commodity everyone has access to,
companies can move their software services more securely to the internet, and by that
make cloud computing platforms a possible choice. The economy of scale is greatly in
favor of cloud computing. Cloud users can lease computing power from anywhere and
cloud providers can cut their prices by investing in huge data centers and potentially
save on each server, which makes this service interesting to users, such as small and
medium-sized companies. Table 2.1 shows the cost difference in medium vs. very large
data centers. Companies also have valid reasons to offer cloud computing services. The
big computing companies have similar financial incentives as users, as they can buy and
operate computing instances at a fraction of the price small or medium-sized compa-
nies do and resell them at higher costs. Vendors like Microsoft also need to defend their
franchise by offering cloud computing services on their platform to leverage their users

Cost in medium sized data | Costin Very large data center | ratio
center
Network | $95/Mbps $13/Mbps 7.1
Storage | $26.00/GB/year $4.6/GB/year 5.7
Administration | 140 servers/admin > 1000 servers/admin 7.1

Table 2.1.: Economy of scale in 2006 for medium-size data center vs. very large data
center [5, 6]

Price per KWH | Location | Reasons
3.6¢ Idaho Use of local hydroelectric power
4.0¢ Iceland Use of hydroelectric and geothermal
10.0¢ California | Strict laws on environmental power generation, elec-
tricity sent in long distance
18.0¢ Hawaii No local electricity source, fuel must be shipped

Table 2.2.: Price of electricity by region [C5, 77

to stay within their franchise [[107].

The concept “utility computing”, which cloud computing is in many ways based on, has
been the vision of computer scientists for decades [[117]. In the 1960s, the American
computer scientist John McCarthy stated that

“If computers of the kind I have advocated become the computers of the
future, then computing may someday be organized as a public utility just as
the telephone system is a public utility... The computer utility could become
the basis of a new and important industry” [127]

Utility computing is based on the concept of computing resources as a utility, just as wa-
ter, gas and electricity are. One pays for one’s computing resources (CPU, data storage,
data transfer etc.) while using them. Like tap water, the user turns on his computing re-
sources and when finished using them, turns them off and only pay for the amount used.
This type of computing service has not been available until a few years ago. One of the
factors that influences companies to become cloud computing infrastructure providers is
the accessibility of underutilized computing resources [[107], and for Amazon their web
service (AWS) started for their internal operations [“137]. The on-line book retailer Ama-
zon is a good example of a cloud service provider. Amazon needs to be able to provide
hardware for its peak time usage, which is only fully used a few times per year. On a
regular basis the hardware is sitting at a very low utilization, or on average at 10% [(14]
of its capacity, to leave room for occasional spikes. What Amazon did to use their under-
utilized hardware was start leasing their computing power to users on an hourly basis.
Users are now able to buy a virtualized computing instance, with their software and op-

erating system of choice, and be billed by the hour [[14, 157 as result.

Cloud computing has been a buzzword in the computing industry recently and has been
gaining a lot of atraction, see figure 2.1.

2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010

Figure 2.1.: Cloud computing (blue) vs. grid computing (red) trends'

The term “cloud computing” is a recent concept and it therefore has no single definition
that has been accepted by cloud computing users. However, there are a few key principles
that are generally accepted as central to cloud computing, and the differences between
definitions is usually not great. In this thesis we are going to use a definition made by
the UC Berkeley RAD Lab [[107] which states:

“Cloud Computing refers to both the applications delivered as services over
the Internet and the hardware and systems software in the data centers that
provide those services. The services themselves have long been referred to as
Software as a Service (SaaS), so we use that term. The data center hardware
and software is what we will call a Cloud. When a Cloud is made available in
a pay-as-you-go manner to the public, we call it a Public Cloud; the service
being sold is Utility Computing. We use the term Private Cloud to refer to
internal data centers of a business or other organization that are not made
available to the public. Thus, Cloud Computing is the sum of SaaS and Util-
ity Computing, but does not normally include Private Clouds.”

and the definition from the National Institute of Standards and Technology (NIST) [[16]:

“Cloud computing is a model for enabling convenient, on-demand network
access to a shared pool of configurable computing resources (e.g. networks,
servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interac-

1Google Trends, http://trends.google.com, accessed: 29. July 2010

tion. This cloud model promotes availability and is composed of five essen-
tial characteristics, three service models, and four deployment models.”

These two definitions complement each other and can be used jointly or separately.
Whereas the UC Berkeley definition defines the cloud computing essentials, the NIST
definition defines key elements of cloud computing, or five characteristics, three service
models and four deployment models. These elements will be reviewed below.

2.1.1. Essential Characteristics

In the dawning of cloud computing its definition was disputed and many different com-
puting services defined themselves as cloud computing services, on September 25, 2008
Larry Ellison, CEO of Oracle, argued [[17]:

“The interesting thing about cloud computing is that we've redefined cloud
computing to include everything that we already do. I can’t think of anything
that isn’t cloud computing with all of these announcements. The computer
industry is the only industry that is more fashion-driven than women’s fash-
ion. Maybe I'm an idiot, but I have no idea what anyone is talking about.
What is it? It's complete gibberish. It’s insane. When is this idiocy going to
stop?”

We'll make cloud computing announcements. I'm not going to fight this
thing. But I don’t understand what we would do differently in the light of
cloud computing other than change the wording of some of our ads. That’s
my view.

The NIST definition of Essential Characteristics of Cloud Computing lists those charac-
teristics that are required of a service to make it qualify as true “Cloud Computing”, in
other words, if it doesn’t do this, it isn’t Cloud Computing:

On-demand self-service
Just like electricity, a consumer can provision computing power on-demand such
as computing instances, networking or storage, without human interaction.

Broad network access
Cloud computing is network based and accessible from anywhere by any standard
platform, thin or thick clients (for example desktop computers, mobile phones or
PDAs).

Resource pooling
Resources are shared within the cloud. This means that numerous clients may be
using the same set of resources at the same time, and that clients have no control

or knowledge of exact location or details of provided resources.

Rapid elasticity
Resources can be rapidly end elastically provisioned, giving clients opportunities
to quickly scale up or scale down. To the consumer, the resources seem unlimited
and can be purchased in any quantity at a time.

Measured Service
The cloud provider acts like any utility provider who measures and bills the amount
of service provided.

2.1.2. Service Models

The real highlight of cloud computing is its versatility and adaptability. One can catego-
rize the service provided by cloud computing in three classes, Infrastructure as a Service,
Platform as a Service and Software as a Service where each service category can be lever-
aged independently or consumed in combination with other service tiers:

Service stack Examples

Software
as a Service

Platform
as a Service

Higher level service

Infrastructure

Bare metal hardware

Figure 2.2.: IaaS vs. PaaS vs. SaaS

Infrastructure as a Service

Infrastructure as a Service (IaaS) is one of the service models that cloud computing
is based on. TaaS delivers computer infrastructure to clients as a service, usually in
the form of a virtualized platform. Users can lease server- or networking hardware
as a fully outsourced service instead of purchasing it. Examples of IaaS services
are Amazon EC2?, Rackspace Cloud? and the Eucalyptus Private cloud software
infrastructure [[187]. The Amazon IaaS will be described in more detail as it is the
service we ended up using and it is one of the leading cloud computing service
providers on the market, therefore it is the model many cloud providers follow.

Amazon offers multiple cloud computing services. Examples are Relational Database

2 Amazon Elastic Cloud Computing. http://aws.amazon.com/ec2
3http://www.rackspacecloud.com

Instance Name | CPUs | Memory | Storage | Platform | Price $/hour
Small 1 1.7 GB 160 GB 32 bit 0.095
Large 4 75GB | 850 GB 64 bit 0.38

Extra Large 8 15GB | 1690 GB | 64 bit 0.76

Table 2.3.: Amazon EC2 standard prices’

Services, Simple Queuing Services, Mechanical Turk, CloudFront and EC2*. All
these services, except EC2 can be though as SaaS or PaaS, see below, but Amazon
EC2 is their main IaaS service. With Amazon EC2, a user can lease a virtualized
computing instance for any time period, from minutes to years. These comput-
ing instances are virtual machines powered by the XEN hypervisor® and bundled
with a customized operating system and software. The operating system can be
anything supported by Amazon, but the operating system’s kernel needs to in-
teract with the XEN hypervisor. Therefore there are limited amount of kernels
available, but there are many pre-installed software bundles available, both open
source and commercial. Users can select multiple sizes of computing instances,
from 1 core to 33.5 EC2 CPU cores, 613 MB to 68.4 GB virtual memory, up to 1TB
per-volume hard drive storage and both 82 bit and 64 bit platforms in preselected
instance types®. When users request an instance, they first need to select the size of
instance needed, then machine image (operating system and bundled software),
next a public/private key-pair to access the virtual machine and lastly the security
group which defines allowed firewall rules. They then get a public IP address and
DNS name from which they can access the instance. This gives them administra-
tor rights to that virtual computer which they can use to install any software on
and use in any way they prefer. When users have finished using the computer in-
stance, they can terminate it and only pay for the amount of time used. All data
stored on the instance will be destroyed unless copied to more permanent storage.

Amazon’s EC2 includes three standard instances, which include different amounts
of CPU memory and are priced differently, see table 2.3. On these instances the
client can choose from multiple virtual images to be pre-installed. These images
include an operating system (e.g. with Debian-based Linux, RedHat-based Linux
and Windows) with different types of software pre-installed (e.g. database, batch
processing, or web hosting software). The user can even create a customized vir-
tual image which can be installed on these instances.

An example of an IaaS service user is GoGoYoKo®, a new Icelandic on-line music
store which sells and streams music in digital audio format and allows users to

*See http://aws.amazon.com/ for details about each service

5The XEN hypervisor is hardware virtualization layer created by the University of Cambridge Computer
Laboratory and licensed under the GNU General Public License. http://www.xen.org

6See http://aws.amazon.com/ec2/instance-types/, accessed 12.04.2011

“Amazon EC2 quotas, http://aws.amazon.com/ec2/pricing/, accessed: 10. June 2010

8g0goyoko music store - Fair Play in Music. http://www.gogoyoko.com/

10

listen to music on-line as well as being a social network site. This site is entirely
hosted on Amazon’s EC2. What is gained by using an IaaS service for this kind of
company are low costs of entrance in terms of hardware, rapid scaling, a reduced
number of initial employee and simplified operations. When startup companies
use cloud computing initially they do not need to invest initial capital in estimated
future hardware requirements. Instead they set up their environment and ser-
vices on few small instances, and when they are ready to go public they simply
increase the running instances or the number of instances. This way the company
can use the capital to make their services better and have a better service to provide
when launched. If the company does not need scalability in their computing envi-
ronment and the computing requirements are quite stable, then cloud computing
would probably not be a financially viable option.

Most startup companies do not gain great popularity on day one, instead it takes
time to gain publicity. At some periods of times they can get very high traction
in a short time, for example if their website is published in the news or gets good
publicity on social networking sites. When this happens, a company will receive
a huge usage spike for a short period of time. If it is using a cloud computing
environment, it can increase its computing power almost instantly and when the
computing load reduces, they simply release some of the computing power. In this
way a company does not need to have all the hardware required to handle this kind
of spike, and would not lose possible customers because of a lack of service if its
hardware could not handle the traffic.

For most new companies it can be very hard and bothersome to recruit capable em-
ployees. However, by not hosting their own hardware and all computing related
interactions being done through the web, they can reduce the number of admin-
istrators needed which can ease some of the start-up human resources problems.

Companies can become constrained by their data centers. Let us take as an ex-
ample a telecommunication company (telco) that starts up in a certain location.
This company uses regular hardware and sets up its data-center at its starting lo-
cation. At a future point in time the telco can have increased in size enough so
that its original location can not hold its operation anymore. It will need to move
to a larger location and will face a hardware problem. Moving a live and oper-
ating data-center can be extremely expensive and might not even be possible in
some cases. This can scatter the company and its administration into multiple lo-
cations and make regular daily operation harder than necessary. This problem can
be solved by using cloud computing.

Platform as a Service

Platform as a Service (PaaS) is another service model of cloud computing. PaaSisa
layer above IaaS in figure 2.2. PaaS delivers a computing platform and/or solution
stack as a service and is often consumed by the IaaS layer and can consume the

11

Resource Unat Unit cost | Free limit

Outgoing Bandwidth | gigabytes $0.12 1 GB per day
Incoming Bandwidth | gigabytes $0.10 1 GB per day

CPU Time CPU hours $0.10 6.5 CPU hour per day
Stored Data gigabytes per month | $0.15 1GB

Recipients Emailed recipients $0.0001 | 2000 Emails per day

Table 2.4.: Google App Engine pricing'®

SaasS layer (see below). Compared to IaaS, a virtual machine as a service, PaaS can
be viewed as programming language environment as a service, e.g. Java Virtual
Machine as a service.

Examples of PaaS service models are Google App Engine?, which supports the Java
and Python programming languages; Microsoft Azure'®, which supports the .Net
programming framework and Heroku", which supports the Ruby programming
language and the Rails framework.

The Google App Engine (GAE) service supports Java and Python and it virtualizes
applications across multiple servers and data centers. GAE only supports Google-
specific data storage and database engines. Like previously stated, programs can
be written in Java, or other JVM languages such as Groovy, JRuby, Scala, Clojure,
Jython, a special version of Quercus, and in Python with Python web frameworks
that run on the Google App Engine such as Django, CherryPy, Pylons, web2py and
Google’s own web app framework.

The programs written for the Google App Engine must use Google-supported
APIs and many common APIs are not supported, e.g. the Java Thread API. In
contrast to Amazon Web Services where you can set up you own database on a
virtual instance or use a Amazon driven non-relational database, Google also only
supports its own non-relational database, based on Google BigTable.

The Google App Engine is free of charge for minimal usage, but for more usage, a
user pays for the CPU time consumed by their software, data it transfers and data
stored. The CPU time is calculated in the number of hours of a 1.4 GHz processor,
running on full capacity. The prices for billable resources are as shown in table 2.4..

The main differences between PaaS and IaaS are ease of scalability, flexibility,
data lock-in and simplicity. For PaaS there is not much need for the user or the

9Google App Engine. http://code.google.com/appengine/
1Windows Azure Platform. http://www.microsoft.com/windowsazure/

Heroku, Ruby Cloud Platform as a Service. http://heroku.com/
2Google App Engine quotas, http://code.google.com/appengine/docs/quotas.html, accessed: 10. June

2010

12

administrator of the service to handle scalability. The platform itself is running on
multiple instances, and even multiple data centers, and it should be able to scale
automatically to needs, but the user or administrator can often set a hard limit
on scalability. For example, if a hard limit on outgoing bandwidth is set and a
picture or a video hosted on this program/platform becomes very popular, instead
of paying a large sum of money for that, outgoing transfer would be suspended
that day, possibly saving money on unnecessary excess bandwidth. In IaaS, a user
needs to terminate or create instances to meet with changes in scalability.

PaaS critics have been warning users about data and functionality lock-in [[107.
If a user creates a program for the Google App Engine for example, the user is
restrained to using the Google App Engine, as no other provider supports that
functionality directly. The data stored in the supported database would also need
to be directly modeled and set up for this kind of database. Moving the data from
GAE would therefore require transformation which again could become hard and
expensive. Although there have been a few projects [[19, 207] aiming at creating an
open source implementation of GAE, they do not provide all the features of GAE
and there is a high risk of these platforms not being stable enough for commercial
computing.

The complexity of TaaS in comparison to PaaS is a factor also. Users of IaaS services
need to know how to work with and configure the underlying operating systems
and middleware, and be sure the their software is scalable enough. With PaasS this
is not a factor and therefore PaaS can be simpler to use in the long run.

Software as a Service

Software as a Service (SaaS) has been regarded as the main aspect of cloud com-
puting, but it is more a product of cloud computing than a definition of cloud
computing. SaaS delivers applications as a service over the internet, usually in the
form of web pages, dismissing the need of installing and running the program on
the user’s computer. SaaS is usually hosted on PaaS or IaaS. Examples of SaaS
services are Google Apps'®, Chargify'* and SalesForce'.

On Google Apps, a SaaS user can register for the service for free or pay for pre-
mium service, which includes support, more storage and a higher uptime guar-
antee. The user can then access an online email client, online office suite, which
includes spreadsheet, presentation and word processing software and more.

13Google Apps, not to be confused with Google App Engine. http://www.google.com/apps/
"Recurring billing Saa$ solution. http://chargify.com/
5Customer Relationship managemnt (CRM) Saa$ service. http://www.salesforce.com/

13

2.1.3. Deployment Models

There are three primary cloud deployment models. Each can exhibit the previously listed
characteristics; their differences lie primarily in the scope and access of published cloud
services, as they are made available to service consumers.

Private clouds

Private cloud infrastructures are operated on the infrastructure and used by a sin-
gle organization. This enables an organization to use existing hardware as a cloud
computing resource. This can be managed by the organization itself or by any third
party. This can be very useful if the organization owns its own hardware which it
wants to enable for cloud usage. An example of a private cloud is a university’s
cloud. The University of Iceland owns a cluster which is set up as a grid, but a grid
is limited to the software currently running on it and can be more complicated for
the end user to operate than cloud instances. Work has been done in setting up
the Eucalyptus'® IaaS software on this grid, which would enable users (students or
faculty) to get computing instances of their own where they can set up their own
software without the need of administrators.

Community clouds

Community cloud infrastructures are cloud infrastructures which are shared by
several organizations that serve a certain community with shared concerns. Sim-
ilar to private clouds, they can be managed by these organizations or by any third
party. An example of a community cloud is NEON", or the North European cloud
computing project, which was a cloud computing project of NDGF'®. Several north
European universities and research facilities share their computing facilities on a
very large grid. The idea of the NEON project is to evaluate the possibility of using
these grids for a large community cloud. If so, private cloud infrastructures will be
set up on each university’s or research center’s grid and these clouds will then be
shared as one common community cloud.

Public clouds
Public cloud infrastructures are available to the general public or large industry
groups. Public clouds are usually owned by a single organization that sells the ser-
vice. Examples of public clouds are the Amazon EC2 and Rackspace clouds

Hybrid clouds
When two types of clouds are connected or used they are termed hybrid clouds.
For example if a private cloud facility has limited amount of resources, when the

16The Eucalyptus private IaaS sytem. http://www.eucalyptus.com/
I"NEON, Northern Europe Cloud computing. http://www.necloud.org/
8Nordic DataGrid Facility, http://www.ndgf.org/

14

demand of resources is greater than those available, they can scale to a public
cloud, instead of having resources for peak usage it switches to a public cloud when
needed.

2.2. Software Architecture

In this thesis we are using software architecture definitions and terminologies from Bass
et al. (1] and Hilliard, R. [27] are used. Software architecture is what is essential or
unifying about a software system: the set of properties which define the software system’s
structure, or form, the behavior, function, value, cost, and risk. Software architecture can
be defined as:

“The fundamental organization of a system embodied in its components,
their relationships to each other and to the environment, and the principles
guiding its design and evolution” [[27].

The view held on software architecture in this thesis, joined with the above definition,
is that an architecture is a conception of a system, an abstract form. Software architec-
ture can exist without any documentation or any concrete or physical representation.
Software architecture embodies the essential or key properties about a software system.
The architecture is understood in the context of the software system, not in isolation. To
understand the architecture it is essential to understand the environment and how the
system relates to it. Software architecture is, on the other hand, not an overall physical
structure of the system.

In other words, every software system has an architecture, just as every house, bridge or
airplane, but it does not need to be documented or understood.

The practice and the study of software architecture is concerned with the tools, methods
and ideas to create fundamental system structure. Just like building a house, it is not
necessary to use architectural discipline or build it with any architectural basis, but do-
ing so makes it more likely that the house withstands more external or internal intrusion
like wind, snow, earthquakes, ageing, etc. The same goes for software architecture, it is
a discipline for increasing the quality of the software, helping the developer work with
the requirements of the system and extend the lifetime and overall quality of the system.
Architectural requirements, architectural design, architectural description and architec-
tural evaluation are examples of techniques and activities a software architect uses for
the architectural design process (see figure 2.3) and defines the software architecture.

There is a whole range of software architectural characteristics that can be of interest to
a software architect. Such as, how does the system perform under load? How does the

15

Architectural Quality Attribute Scenarios
Requirements Functional Requirements
Architectural > Architectural Iterations
Design -

/

Architectural Prototyping

Attribute-Driven Design, Architectural

Architectural Patterns, Description

Styles /
Architecture description L Aéchiltect_ural
language,Viewpoint based valuation

y

Architecture Tradeoff
Analysis Method,

Software Architecture
Analysis Method

System

@

Figure 2.3.: Architectural Design Process

system scale? What is the peak throughput of a software system given certain hardware?
How likely is the software to fail? How easy is it to manage? How can it be used for
people who are disabled? These characteristics are called “quality attributes” and are the
subject of the next section.

2.2.1. Architectural Qualities

Functionality, or the ability of the system to perform the work for which it was intended,
and quality attributes, are closely related but independent from each other. Many archi-
tectural decisions address concerns that are common, driven by the need for the system
to exhibit a certain quality property rather than provide a particular function. Func-
tionality often takes the front seat, and even the only seat, in the development process.
This is short sighted when systems are frequently redesigned, because they are difficult
to maintain, port, or scale or are too slow. Software architecture is the first stage in
software creation where quality requirements can be addressed [[17].

16

The choice of function does not for example dictate the level of security, performance,
availability or usability. However, a software architect can choose a desired level of each,
though this is not to say that any level of any quality attribute is achievable, in the sense
that high modifiability often means lower performance, etc. Furthermore, one can not,
for example, define complete scalability of a given system, but one can set a desired scal-
ability level of the system. A quality attribute can be defined as a relative level of quality
to fulfil a set requirement.

“Achieving quality attributes must be considered throughout design, im-
plementation, and deployment. No quality attribute is entirely dependent
on design, nor is it entirely dependent on implementation or deployment.
Satisfactory results are a matter of getting the big picture (architecture) as
well as the details (implementation) correct.” Bass et al. [[1]

System quality attributes have been of interest to the software community since the
1970s. In this thesis the Bass et al. [[17] description and characteristics will be used.
Here quality attribute scenarios (QAS) are used to define quality attribute requirements.
Bass et al. define quality attribute scenarios as follows: “a quality attribute scenario is a
quality-attribute-specific requirement” [[17]. A quality attribute scenario consists of six
parts:

Source of stimulus. This is who generated the stimulus. This can be some role, such as
developer, a computer system or any other actor.

Stimulus. This is the condition that needs to be considered when the stimulus arrives at
a system.

Artifact. This is the artifact that is stimulated. It can be the system itself or some part of
it.

Environment. This defines the conditions when the stimulus occurs. This might be for
example a running state of the system or a development state.

Response. The response is the activity, or the change, undertaken after the arrival of the
stimulus.

Response measure. This is a measure of the response that the requirement can be tested
against.

Table 2.5 shows an example of a quality attribute scenario simplified from a quality at-
tribute scenario for our prototype. Figure 2.4 shows an example of a modifiability sce-
nario.

17

Scenario(s): A developer wants to allow the user to change
the background color of the user interface.
Relevant Qual- | Modifiability, usability
ity Attributes:
2 Source: Developer
S Stimulus: Wants to allow the user to change background
k= color
§ Artifact System, user interface
3 | Environment: | Development
@ | Response: Code is changed, such that a user can change
user interface background color
Response 5 hours of development time
Measure:

Table 2.5.: Quality attribute scenario example

P
ay;
& ra
i
-
e Artifact:
p
Stimulus:; focess Response:
Unanticipated _ Inform
Message Envi " Operalor
Source: Normal | cojinde - Response
External Operation pe Measure:
to System Mo Downtime

Figure 2.4.: Quality attribute parts, from Bass et al.[1]

Bass et al. [[1] list six main types of system quality attributes along with examples of
business qualities and architectural qualities. The main system quality attributes types

are:

Availability is concerned with a system failure and its associated consequences. Some as-
pects of systems failures are the frequency the system failure may occur and what

happens then, the amount of time the system may be out of operation, when fail-
ures may occur safely, how failures can be prevented, and what kinds of notifica-

tions are required when a failure occurs.

Note that failure and fault is not the same thing, fault is a system state that is not
observed by the system’s users but if not handled correctly it may become a failure,

which will be observable by the system’s users. A fault might be a lack of storage

18

resources, which might be solved by freeing some disk space, but if it is not handled
it might stop the operation of the software system thus leading to a failure.

The availability of a system is the probability that it will be operational when it is
needed. This is typically defined as:

mean time to failure

o = : . : :
mean time to failure + mean time to repair

Modifiability is concerned with the cost of change to a software system. It can be broken

down as what can change and when, and who makes the change (artifact or envi-
ronment). A change can occur to any aspect of the system (artifact), for example
the functions of the system, its platform or its environment. Change can also hap-
pen at any time (environment), for example a developer may change the source
code or a user may change a language settings on his website.

When a change has been specified, a new implementation must be designed, im-
plemented, tested, and deployed. All of these actions take time and money, both
of which can be measured.

Performance is concerned with timing, e.g. with how long it takes the system to respond

when an event occurs. A performance scenario begins with a request for some
service arriving at the system. Satisfying the request requires resources to be con-
sumed. While this is happening, the system may be simultaneously servicing other
requests. An example of a performance scenario is: “A user starts 10 requests a
minute under normal operation, and each operation takes less then a second to
respond.”

Security is concerned with the systems ability to serve its own users while denying any

unauthorized usage. An attempt to breach security is called an attack and can
be an unauthorized attempt to access data, modify data, or deny service to le-
gitimate users. A secure system can be characterized as a system providing non-
repudiation, confidentiality, integrity, assurance, availability, and auditing [[17].

Testability is concerned with the ease with which software can be made to demonstrate

its faults or correctness. Testability refers to the probability, assuming that the
software has at least one fault, that the software will fail on its next test execu-
tion [17].

Usability is concerned with how easy it is for the user to accomplish a desired task and

how the system supports its users. It can be broken down into five areas: learning
system features, using a system efficiently, minimizing the impact of errors, adapt-
ing the system to user needs and increasing users confidence and satisfaction.

19

Along with these main types of quality attributes scenarios, Bass et al. [[17] mention cus-
tom systems quality attributes, such as scalability, portability, and interoperability. They
also define a generic QAS for each quality attribute. For each use of these QAS the user
has to fill out the six parts of the scenario generation framework, that is source, stimulus,
environment, artefact, response, and response measure. The authors also include busi-
ness qualities (cost, schedule, market, and marketing considerations) and architectural
qualities (conceptual integrity, correctness and completeness and build-ability) which
we will not discuss further.

The above mentioned qualities can be a good basis when designing software architec-
ture and working on the architectural description of the software architecture. To create
quality attribute scenarios, as seen in table 2.5, a software architect needs to think about
the software architecture with these quality attributes in mind. These quality attributes
were created to include common quality use cases and to be extended to new and cus-
tomized quality attributes.

2.2.2. Architectural Description

An architectural description (AD) is defined by IEEE as: “A collection of products to
document an architecture.” (2. Architectural description is by definition the descrip-
tion of a software system’s architecture and should be in such a way that its stakeholders
can understand it and it should demonstrate that the architecture meets their require-
ments. This documentation can be from simple text documents to a description using an
architectural description language [[217]. In this thesis, we are going to use the IEEE rec-
ommended practice for architectural description of software-intensive systems [“2, 227].
This recommended practice introduces the concept of a viewpoint from which the sys-
tem’s software architecture is described, see figure 2.5.

20

Mission

fulfills 1..*

influences has an
Environment ‘ Syst Architecture

inhabits
described by
has 1..* L
is important to identifies
1.* 1.* o provides
Stakeholder Arch|te'ct|..|ral Rationale
Description
is addressed to \ participates in
7 / \\
/ . d b \\\
. - /organized by
- Ll selects /1. \
1. 1. B \
1. \
\
conforms to
Concern Viewpoint View \
used to \\
cover 1..* \\\ \
~—_ participates in consists of |
has source T i e
0.1 ~_ \ aggregates
" \\\\ \\ 1.
!.lbrary establishes methods for Model
Viewpoint 1

Figure 2.5.: Architectural Description Ontology, from IEEE 1471 (2]

A concrete architectural description consists of multiple views that each correspond to a
viewpoint [[227. Clements et al. [[237] recommend the use of three viewpoints, Module,
C&C and Allocation viewpoints, for architectural description. Using multiple viewpoints
helps in analyzing the architecture from multiple views and reduces the possibility of over
analyzing the architecture from one specific viewpoint. This thesis will base architectural
descriptions on these viewpoints.

Module viewpoint is concerned with how the functionality is mapped to the units of
implementation. It visualizes the static view of the systems architecture by showing the
elements that comprise the system and their relationships. A module view contains mod-
ules with their interfaces and their relations. Here a module is a code or implementation
unit, including packages, classes and interfaces in Java. Its relations include associations,
generalizations, realizations and dependencies.

21

Module Viewpoint example The examples in this section will use an imaginary web mes-
senger software system. In this system, users can identify themselves and start or join
a chat session “a chat room”. There they can see everyone joined in the chat and send
messages to the chat session. When a new message arrives at the chat session the client
pulls it from the server. The module view of the web messenger can be described by us-
ing the class diagrams of UML, describing the system top down by starting with the a
top-level diagram and ending at the class or interface level. Figure 2.6 shows a package
diagram for the web messenger software and figure 2.7 displays a class diagram for the
messenger logic package.

WebMessenger)

1 1
_________ Messenger
User Interface > Logic
T
|
— 1 Y

Data Manager

Figure 2.6.: Model View example, package overview of the web messenger software
system

Component and Connectors viewpoint (C&C) is concerned with the runtime function-
ality of the system. In other words, what does the system do? In this viewpoint, the
system’s software consists of components and connectors, where components are units
of functionality which define what parts of the system are responsible for which function-
ality and connectors which are communication and coordination relationships between
components and define how components exchange control and data.

The properties of both the components and the connectors in the architectural descrip-
tions will be described below. This is done with both written explanations and diagrams,
showing protocols, state transitions, threading, concurrency issues or what is relevant to
the architecture at hand.

22

Messenger Logic J
ChatSession
Message -
] sessionName
from - sessionld
time -
body submitMessage()
getSessionMessages()
User
nickname *
fullName
email
ipAddress

Figure 2.7.: Module View example, decomposition of the Messenger Logic Package

C&C Viewpoint example The web messenger has four major functional parts, as shown
in figure 2.8. Components are represented by UML active objects and connectors by
links with association names and possibly role names. The diagram in figure 2.8 cannot
stand alone, as component and connector names are only indicative of the functional
responsibilities related to each. A description of a component’s functionalities in term of
responsibilities should therefore be provided:

* Browser is responsible for 1) Client-side functionality, 2) displaying the UI cor-
rectly, 3) updating new messages by getting new messages from the UI, 4) notify-
ing the UI of new submitted messages from the user.

* User Interface is responsible for 1) rendering the presentation of the user inter-
face, 2) managing requests from the user, mainly submitting new messages and
update all session messages, 3) handling new messages and make sure they are
representable with the Messenger Logic, 4) rendering all chat messages.

e Messenger Logic is responsible for 1) knowing the status of users in conversations,
2) knowing what messages each user in conversation has received, 3) transmitting
messages to/from database.

23

* Database is responsible for 1) storing messages, 2) fetching messages, 3) storing
sessions and, 4) fetching sessions.

Just as the components, the connectors also need to be described in more detail. The
level of detail needed depends on the architecture at hand. For some connectors, it may
be sufficient to have short textual description, but for others it may be best to explain
them by UML sequence diagrams. Our Messenger application has three connectors:

» AJAX. Asynchronous JavaScript and XML, is a web standard for making clients
communicate with servers.

» MVC. A standard Model-View-Controller pattern is the protocol for this connec-
tor that connects the messenger logic serving as the model and the User Interface
serving as View and Controller.

» JDBCis the connector that handles standard SQL queries with the JDBC protocol.
Sequence diagrams can be used either to describe the connectors protocol individually or

to provide the “big picture” showing interaction over a set of connectors. In our example
an overall sequence diagram describes the big picture, see figure 2.9.

user
Browser AJAX A :User Interface

view/
controller

MvC

model

server M ger

JDBC \—|—‘ Logic

DataBase

il

Figure 2.8.: C&C view example, web based messenger

Allocation viewpoint is concerned with how the software elements of the software sys-
tem are mapped to platform elements in the environment of the system.

The allocation viewpoint includes deployment, implementation and work assignment

24

User 1(browser) |

User 2(browser) | ul | MessengerLogic | DB |

SubmitMessage(ms g

submitMessage(msg,user,session)

storeU)\ je(msg,user,session)

N
Message is stored.

getNewMessages()

getSessionMessages(session)

getSessionMessages(session)

’ All messages from conversation retreaved.j

session_messages

session_messsages

User 2(browser) | ul | MessengerLogic DB |

User 1(browser) |

Figure 2.9.: C&C view example, sequence diagram, web based messenger

structure, and a deployment diagram is the main view.
The deployment viewpoint has two element types, software elements and environment
elements, and three relation types, allocated-to relations, dependencies among software

elements and protocol links among environmental elements showing the communica-
tion protocol used between nodes [[17].

Deployment Viewpoint example Figure 2.10 shows the deployment view of the web mes-
senger software system using a UML deployment diagram. The deployment is a three-
tier deployment, where presentation is to run on the client, domain code to run on a Java
application server, and data is stored on a database server.

* Environmental elements (shown as UML nodes)
— The Browser is the input and final output for the messages.

— The Application Server is the machine serving the UI through a web server
and serving all other application level functionality.

- The Database Server provides secondary storage.
 Software elements (shown as UML components)

— The Browser displays the client-side presentation and runs client side scripts
and interacts with the User Interface via AJAX.

— The User Interface renders messages and the presentation layer and delivers

25

messages to/from users from/to the Messenger Logic.

- The Messenger Logic keeps track of chat sessions, users participating in these
sessions and messages associated. It interacts with the Data Manager for
secondary permanent storage.

- The Data Manager takes messages, sessions and users and sends them to a
relational database and retrieves sessions from the database.

- MySQLis an open source SQL database which handles database related func-
tionality of the system.

User 1 —
Application Server

% Browser [-r-1>0O—/ User
F Interface |
User 2 A Messenger O<---
! Logic |

% Browser [|-4----'
Data —O<--

Manager Fmmmmm e
1

Database Server

% MysaL O<

Figure 2.10.: Allocation/Deployment view example, web based messenger

Having made and reviewed an architectural description, the next logical step might be
to create a architectural prototype, which will be the background of the next section.

2.2.3. Architectural Prototype

So far a few theoretical techniques a software architect has at his disposal have been pre-
sented, next an experimental technique will be reviewed, namely architectural prototyp-
ing. Examples of other experimental techniques, that will not be further described, in-
clude simulation and scenario-based methods with explicit stakeholder involvement [“24].

26

Once an architecture has been defined, an architectural description documented and
the architectural quality examined, it can be analyzed and prototyped as a skeletal sys-
tem. Having an executable software system early in our development cycle, can help
us in several ways. First by verifying whether the quality requirements are fulfilled, we
can exchange prototype parts with complete software version allowing us to review and
measure the complete parts and last we can detect performance problems early in the de-
velopment cycle C257]. Bardam et al. [C37] define the concept of architectural prototyping
as:

“An architectural prototype consists of a set of executables created to inves-
tigate architectural qualities related to concerns raised by stakeholders of a
system under development. Architectural prototyping is the process of de-
signing, building, and evaluating architectural prototypes.”

Bardam et al. [[87] also point out a number of architectural prototyping characteristics as
they define an ontology of architectural prototyping, which relates to their definition of
architectural prototyping, see figure 2.11. Below these characteristics will be discussed
along with architectural prototyping in general.

Architectural| 1..” Architectural

Architecture

Quality investigates Prototype
has an 1..*] includes
1.*
1.*
System Concern Executable
motivated by

has | 1.*
is importantto| 1 *

1.7

Stakeholder

has

Figure 2.11.: Ontology of Architectural Prototypes as seen from [(37]

Architectural prototypes can be classified into three general types: exploratory, exper-
imental and evolutionary. Exploratory architectural prototypes are created to explore
the architecture design space, multiple prototypes are usually created, analyzed and ex-
ecuted in order to find a solution to a given problem. Experimental architectural proto-
types are created to evaluate a specific architectural decision, a single prototype is usually
created and evaluated. Evolutionary architectural prototypes are created as a series of
prototypes, where each prototype is built as revision of the last one.

27

The architectural prototypes can be described by five characteristics: Exploration and
learning, Quality attributes, no function per se, architectural risk and knowledge transfer
and conformance [C26, 27, 87]. Exploration and learning prototypes are constructed to
learn about the effect of architectural decisions made, typically ignoring the main func-
tion of the system itself. Quality attributes is often the main motivation for building
architectural prototypes and therefore measuring the quality implications of decisions.
No functionality per se is implemented into the prototype, that is little or no business
or a user functionality is implemented in the prototype. Architectural risk is often ad-
dressed in architectural prototypes. Knowledge transfer and architectural conformance
is addressed by making developers learn about the software architecture through the
prototype’s code.

2.3. Architectural operations

Architectural operations are operations on the runtime architecture of a system. They
can be ways to modify the architecture by patching errors and bugs, updating software
to a new version or even change libraries and connectors used by the software. These
kinds of operations are usually done on software that is not running, but they could be
more useful if done on running software or live systems. In this section we will describe
ways to modify the architecture of running software.

2.3.1. Architectural Change

Software changes range from modifying a tiny part of the system, like a line in a con-
figuration file, to changing the whole system, but these changes can be categorized into
three types [[1]: local, non-local and architectural. A local change is usually a very small
change and can be accomplished by modifying a single element. A non local change can
be bigger and requires multiple element modifications, but leaves the underlying archi-
tectural structure intact. An architectural change affects the fundamental structure of
the system (the elements interact with each other and will likely require change all over
the system, this therefore changes the pattern of the architecture).

Architectural change is about the ability to model and analyze the change of software
architecture, and our interest mainly is in runtime architectural change. That is, how
does a developer change an architecture on a running software system. This change
is the key to building autonomic systems [C4_]. In cloud computing, scalability is a big
factor in running software systems. These systems need to be able to run on multiple
computing instances, they need to be able to scale instantly and need to be able to modify
themselves to adapt to rapidly changing environments. It can be extremely hard to build

28

programs to handle these requirements with a static and solid architecture, which brings
architectural change in as a favorable factor to scalability of a cloud computing software
architecture.

For a developer, administrator, or an end user, an architectural change is usually the
process of shutting down the running instance of the program to be changed, installing
the update by overwriting the program or some of the program components with the
changed version and then running the program again. This process can take time, es-
pecially if the program is big and the change process is complex. For some software this
kind of update, or upgrade, is not possible, e.g. mission critical software and/or high de-
pendence systems such as payment processing gateways for credit-card companies or air
traffic control software. These kinds of systems usually require strict update and change
protocols where a secondary system, a direct duplicate of the original one, takes over
while the original system is being updated. With architectural change that models and
analyzes the change of runtime architecture, which is the focus here, there is no need to
turn the whole software system off for an architectural update. But rather, the system is
built on multiple small modules/components which can be updated individually without
restarting the software. This kind of update step is called architectural operation.

2.3.2. Architectural Scripting and Architectural Operations

Architectural operation is a unit of architectural change and an architectural script is a
sequence of these operations. Architectural operations and architectural scripting have
been the research of [[47], (287, and (87 and is modelled by the ontology in figure 2.12.
As previously stated, little work has been done in modelling the dynamic aspects of soft-

deployed to bound to

+ provided { required

I
[Component] [Device] [interface]

* *

hosts

provides

requires/ requires/ requires/

i " i rovides
provides v vy v X provides 4 p

[Module] [Service] [Connector]

Figure 2.12.: Ontology of Architectural Scripting Language architecture, according to
[4]

ware architecture. Architectural scripting is a way to model the dynamic aspects of run-

29

time and deployment-time software architecture. An architectural script consists of se-
quences of operations on a runtime architecture, such as deploying a binary component
to a device or instantiating a service from a binary component. This set of operations
is named architectural scripting language, or ASL [[47]. As the ontology in figure 2.12
displays, Architectural Scripting Language operations operate on six parts: a device, a
component, a service, a module, an interface and a connector.

Device
A device is a physical or virtual (VM or JVM in Java) device.

Component
A component is a unit of deployment. This can be a package of executable code
with explicit dependencies, usually a binary package. Components can export
modules that other components may require. Components are deployed to devices
and provide services, which can be an instantiated form of the component.

Module
A module is a typed library, a class, an API etc.

Service
A service is a typed unit of instanced software, a running instance of component,
with explicit dependencies in the form of interfaces and explicit capabilities in the
form of provided interfaces.

Interface
An interface is a typed unit of association between services. In many cases imple-
mented as an object reference (required) or as an object (provided)

Connector
A connector is a way to expose a method to show an interface or a service.

An architectural operation is a unit of change for each of these parts. For example an
updated module, new exposed service, added component, etc. The Architectural Script-
ing Language is a scripting language that defines these operations and allows multiple
and sequential change on the software architecture. In the Hydra project [[87] examples
of operations are: deploying a component onto a device, deploy_component(component,
device); starting a component’s service on a device, start_service(service, component, de-
vice); and starting a device start_device(device).

Architectural operations are explained below with the example of the Web Messenger:

From the allocation viewpoint, we can think of the environmental element Application
Server as a device.

—t

30

The software elements from the allocation viewpoint, User Interface, Messenger Logic
and Data Manager would be presented as Components

Libraries that the Web Messenger uses, such as MySQL JDBC connector, are examples
of modules.

The components expose services. For example (from the C&C viewpoint sequence dia-
gram) the messenger logic might have a public interface for the UI to communi-
cate with (with functions like: sendMessage() and getMessages()). The instance
of that class would be exposed as a service.

This MessengerLogic class would be abstracted by an interface.

The connectors from the C&C viewpoint can be represented as connectors.

Now if one would want to update the MessengerLogic component and start it as a service,
one could do so with an ASL script:

update_component(ApplicationServer , MessengerLogic)
start_service (MessengerLogicService, MessengerLogic, ApplicationServer)

Listing 2.1: Example of ASL script on the WebMessenger

This script would 1) update the MessengerLogic component on the device Application-
Server, assuming that it knows where the updated version is and 2) start the service Mes-
sengerLogicService which the MessengerLogic component exposes on the device Appli-
cationServer. As can be seen, although this is a serious architectural change, deploying
this kind of change is easy and given that the ASL implementation is correct, the opera-
tions taken can be tried and proven with mathematical measures. The other components
should not be directly affected by this change and therefore the downtime of the software
is minimal. Modelling runtime change to an architecture with the notion of a script has
several advantages [(4]:

A script can be analysed independently of the particular system config-
uration it is executed on, to asses, for instance, whether it may intro-
duce violations to a certain style.

A script can be reused across different contexts. For instance, in auto-
nomic computing a reconfiguration script may capture a reusable so-
lution to a specific problem.

* A script, as will be demonstrated, is operational enough to support di-
rect implementation while at the same time being amenable to useful
analyses.

31

However, this modelling has its limitations. For example:

A script has its limitation, i.e. an ASL script cannot be used to configure devices,
modules, or services, e.g. by setting web module to use port 443 for SSL.

* An ASL device can hardly fully encapsulate the device it represents, e.g. does the
device have a touch screen? Is the required kernel installed? Does it have firewall
configured? To make an ASL script fully encapsulate the scripting language and
interpreter needs to know the most aspects of the device, such as screen resolution
and type, keyboard buttons available, kernel modules available, etc. No imple-
mentation of ASL can include all possibilities of device types and setups, but given
limited and fixed set of attributes of devices this can however be done.

3. Cloud Computing and Architectural
Operations

After having viewed the background of cloud computing and architectural operations,
it can be argued that the Architectural Scripting Language can provide advantages for
runtime management of cloud computing software systems architecture. As a benefit
of cloud computing scalability, cloud applications need to be changeable to adapt to the
changes of the environment. The Architectural Scripting Language can help with that
adaptation with architectural change on runtime software. Thus it is concluded that
Architectural Scripting Language in cloud computing is a combination worthy of further
investigation. Below our design and implementation of a Cloud Architectural Scripting
Language (Cloud ASL) will be described, in addition to related work done in that field.

3.1. Architectural Scripting in a Cloud

The Architectural Scripting Language and cloud computing could complement each
other and the results of the joined forces might result in scalable cloud computing soft-
ware. However, ASL is not designed for cloud computing, which provides the opportu-
nity to design and developing on ASL implementation specified for our needs for cloud
computing infrastructure. This implementation will hereafter be called Cloud ASL. The
aim is to use the TaaS model for our implementation. The other service models do not
apply as well to our problem, since they do not offer the same freedom to use languages
and libraries and other technology as IaaS does. Other service models in contrast offer
more and simpler scalability options, and do not require knowledge of operating systems
and distribution.

For designing Cloud ASL architecture and operations we can review section 2.3.2 and
see some modifications and simplifications that are possible, for example removing con-
nectors and modules from the ontology, leaving devices, components, services and in-
terfaces.

33

34

Device is mapped to a cloud instance, or a VM running on a cloud instance. There
can be multiple VMs running on each cloud instance, therefore multiple devices on each
instance.

Component is mapped to a unit of deployment, perhaps a binary package with an exe-
cutable code. A component should provide a specific functional behavior. A component
is deployed to Devices and provides services through interfaces.

Service is an instanced component, with explicit dependencies in the form of interfaces
and explicit capabilities in the form of provided interfaces.

Interface is a typed unit of association between services. A component provides a ser-
vice as an interface.

deployed to
requires/
provides
requires/
provides
Service Interface

Figure 3.1.: Ontology of Cloud ASL

3.1.1. ASL Operations

The Cloud ASL operations are the main way to interact with Cloud ASL. The opera-
tions needed to model the architectural change on cloud computing architecture can be
limited to three types of operations: device, component and service operations.

35

Devices

’ Operation

Description

|

device:create_instance_device(type)

Create a new cloud instance of a certain type.
This instance will hold the VM.

device:create_vm_device(device)

Creates a new VM on an already running de-
vice/instance. This can be useful for running
multiple programs on the same instance.

boolean:start_device(device)

Start a stopped device.

boolean:stop_device(device)

Stop a running instance.

boolean:destroy_device(device)

Shuts down and destroys cloud instance. This
action is irreversible and all information on
that device will be lost. If multiple VMs are
running on this device they will be lost.

device:clone device(device)

Creates a direct replica of a device.

Table 3.1.: List of Device ASL operations

Components

Operation

\ Description

|

component:install_component(url, de-
vice)

This installs a component, from a given URL
to a given device

boolean:uninstall_component(compo-
nent, device)

Uninstalls a given component from a given de-
vice

boolean:start_component(component,
device)

Start a given component on a given device

boolean:stop_component(component,
device)

Stops a given component on given device

boolean:update_component(
nent, url, device)

compo-

Updates or upgrades a given component, ona

given device with component from a given
URL

Table 8.2.: List of Component ASL operations

10

12

36

Services

’ Operation \ Description ‘
service:register_service(component, de- | Register a new service from a component on a
vice) device
boolean:unregister_service(service, | Unregister a service from a component on a de-
component, device) vice

boolean:enable_service(service, compo- | Start a stopped service
nent, device)

boolean:disable_service(service, compo- | Stop a running service
nent, device)

Table 8.3.: List of Service ASL operations

As an example of Cloud ASL script, a deployment of the web messenger previously intro-
duced will be used. As seen in section 2.2.2, the example of the web messenger consists
of three deployment modules, or components from now on, User Interface (ui.jar), Mes-
senger Logic (mess.jar) and DataConnector (db.jar). These components all run on the
same server, or device from now on.

Example of Cloud ASL operations:

//creates a small instance referenced as ‘‘server’’
Devive server = create_instance_device (‘‘large’’)
//lets start the device (i.e.\ start the vm image)
start_device(server)

//next we install our components on the server

Component userInterface = install_component(‘‘http://URI/ui.jar’’, server)

Component messengerLogic = install_component (‘“http://URI/mess.jar ",
server)

Component dataConnector = install_component(‘‘http://URI/db.jar’’, server)

//now all the components have been installed on the device, we can start
them one by one

start_component(userInterface, server)

start_component(messengerLogic, server)

start_component(dataConnector, server)

Listing 3.1: Cloud ASL Example

In this example we assume that the component JAR files are located on some location,
http://URI. After running this script the web messenger should be running on the device
“server”. Nothing has to be deployed to the user device as all functionality needed for the
user comes from the user’s browser.

37

3.2. Implementing Cloud ASL

For our implementation of Cloud ASL more implementation decisions had to be made.
The first decision was the programming language of use, because other aspects, such
as frameworks and the Cloud ASL language specifications, might depend on it. When
choosing the programming language, prior knowledge, platform independence, modu-
larity, performance, framework availability, and support had to be kept in mind. Java'
was chosen as the main programming language. Java is an cross-platform, object-oriented,
VM-based programming language, which is easily modular with the use of jar files to
distribute Java applications or libraries, in the form of classes and associated metadata
and resources (text, images, etc.). OSGi? is an modular framework specification for Java
which suites our need to abstract Java modules (JAR) and the Java Virtual Machine.
The author of this thesis has experience of it making development and implementation
faster. As our OSGi implementation Apache Felix OSGi® was used.

Amazon EC2 was chosen as our IaaS cloud computing service provider due to many
factors, see section 3.3. Amazon EC2 and Amazon AWS is the cloud industry’s lead-
ing cloud provider for IaaS and has a large and active community. Amazon AWS has
database and queueing services that could be used directly, and a complete supported
Java client for their APT’s. For this project Amazon AWS provided generous funding to
use for development and testing.

For our Cloud ASL language implementation it had to be decided whether this domain
specific language should be internal or external, and if external should it be Turing com-
plete? The difference of internal or external DS has been described by M. Fowler [[297:

“External DSLs are written in a different language than the main (host) lan-
guage of the application and are transformed into it using some form of com-
piler or interpreter. The Unix little languages, active data models, and XML
configuration files all fall into this category. Internal DSLs morph the host
language into a DSL itself - the Lisp tradition is the best example of this.”

To make an external domain specific language (external DSL) we would need to create
it from scratch. We could, for example, build it in XML, or HTML, making it easily
viewable, or we could use a simple scripting language. Because making the language an
internal DSL could give us a Turing complete language with possible less effort it was
decided that we direct our work there. By using an internal DSL it was possible to use
or extend an existing language implementation, which would be Turing complete and

thttp://www.java.com/

2The OSGi framework is a module system and service platform for the Java programming language that
implements a complete and dynamic component model. http://www.osgi.org/

3 Apache Felix is a community effort to implement the OSGi R4 Service Platform and other interesting
OSGi-related technologies under the Apache license. http://felix.apache.org/

38

would include the features that were needed. As using the Java programming language
had been decided, there were many possibilities of implementations, such as importing
Java code as a script using on embedded compiler, like Janinio* or importing Java classes
dynamically. A Java embedded scripting language was chosen for this project. This en-
ables us to use the full API of Java, interaction to and from Cloud ASL to the software
using it and importing scripts into a running JVM. After comparing Java scripting lan-
guages, such as Groovy, JRuby, Scala, Clojure and Jython, Groovy was chosen to be our
scripting language. Groovy has gained a lot of momentum in the Java world and is now
supported in most Java IDEs and there have been a number of frameworks made for
Groovy, such as Grails®. The Groovy language is a subset of the Java language and sup-
ports the Java Language natively just as the Groovy Language. The Groovy and Java
languages can also be used together. Groovy’s features are similar to those of Python,
Ruby, Perl, and Smalltalk, making it easy for many to use. Groovy has native support for
importing Groovy scripts into a Java program, which makes it ideal for our use.

As we have chosen a programming language and framework, we can map them to our
Cloud ASL ontology:

Devices

Devices are mapped to a JVM running on a cloud instance. There can be multiple JVMs
running on each cloud instance, therefore multiple devices on each instance. The cloud
computing infrastructure used here is Amazon’s EC2 and we interact with it, with the
device operations, through the cloud service API, or Amazon AWS SDK. Details of our
cloud implementation is the subject of section 3.3.

Components

In the OSGi framework, software is modularized into so called bundles. Each bundle
should be focused on specific functionalities, just like a normal Java JAR file is. We
associated a component to a single OSGi bundle, which is deployed to a single running
OSGi framework, on a JVM, on a single device/instance. This component can provide a
service through an interface. The Cloud ASL operations use Telnet as a basis to interact
with the OSGi framework on a device, which gives control over the framework’s API.

Services
Like previously stated, services are instances of components and are registered as in-

*Janino is a compiler that reads a Java expression, block, class body, source file or a set of source files,
and generates Java byte-code that is loaded and executed directly. http://www.janinio.org
5Grails, former Groovy on rails. http://grails.org

39

terfaces. We use OSGi’s declarative services® for our Cloud ASL implementation and
needs, which is responsible for starting, stopping, and registering services as needed.
This makes Cloud ASL operations of services unnecessary and are therefore not imple-
mented in our version.

Interfaces

An Interface is a typed unit of association between services. A component provides a
service through an interface. Since components require the interface of a service to be
available on compile time, creation and registration of interfaces can not be as dynamic
as devices and components. We implemented the Cloud ASL interfaces as an special
bundle, which was installed on all devices, but this can be done in multiple ways.

From the original ASL ontology the following were omitted:

Module
Our implementation relies on bundling libraries, APIs or other modules as or in com-
ponents, so we can leave the module concept from our implementation.

Connector
The OSGi declarative services is used to connect services internally, which takes care of
all internal service connections.

3.2.1. Cloud ASL Operations

Where we are not implementing operations for services, interfaces, models or connec-
tors we need to implement operations for devices and components.

Devices

Table 8.4 does not include start_instance(), stop_instance() and clone_device(). As
Amazon EC2 does not support stopping running instances existing in the “instance store
(S8)” compared to “EBS”, which is the way we started, starting and stopping of instances
was left out. The instance store (S8, Simple Storage Service) is the original way to store
images of virtual machines but EBS (Elastic Block Storage) is a more recent way to store
images and data. Cloning instances is supported by EBS. Therefore, instead of imple-
menting a complex cloning mechanism, that functionality was left out for it to be sup-

60SGi Declarative Services allow automatic registration, activation and deactivation of OSGi services.
http://felix.apache.org/site/apache-felix-service-component-runtime.html

40

Method Summary
Device \ create_instance_device(String type)
This creates a new cloud instance of a certain type, for example “m1.small” for
a regular small Amazon EC2 instance type. Next it installs JVM and OSGi
onto that instance and starts it.
Device \ create_jvm_device(String type, Device device)
This creates a new JVM on an already running device/instance and starts
OSGi on it. This can be useful for running multiple programs on the same
instance.
void \ restart_device(Device device)
This restarts the device, which means stops the OSGi framework, reboots the
cloud instance and starts the OSGi framework again. The OSGi framework
is cached and therefore is started in the same context as it was when shut
down.
void \ destroy_device(Device device)
This stops the OSGi framework and shuts down the cloud instance. This
action is irreversible and all information on that device will get lost.
Device[”] \ get_devices()
This returns array of currently running devices.

Table 3.4.: List of implemented device ASL operations from table 3.1

ported when changing the implementation to support EBS. This limitation is further
discussed in chapter 5.

41

Components

Method Summary

Component\ install_component(Device device, String URI)

This installs an OSGi bundle from a given URI into given device OSGi frame-
work.

void \ uninstall_component(Component component)

This uninstalls an OSGi bundle from a OSGi framework.

void \ start_component (Component component)

This starts an OSGi bundle, by default bundles are not started automatically
when installed.

void ‘ stop_component (Component component)

This stops a OSGi bundle.

void ‘ update_component (Component component, String componentURI)

this updates/upgrades a bundle with a version from given URI.

Component[”] \ get_components(Device device)

This returns an array of components installed on a given device.

Table 3.5.: List of implemented component ASL operations from table 3.2

3.2.2. Architectural Description

Although the architecture of Cloud ASL being designed before implementation, it had
to be changed as the limitations and restrictions in our external environment were dis-
covered. Below the final architecture description will be shown using the methods in
section 2.2.2.

Component and Connectors Viewpoint Cloud ASL has five major functional parts as
shown in the diagram in figure 3.2.

42

:CloudASL
dest
SOAP———— :Cloud API
U .CloudASL
[source
g
3 :CloudDevice
T dest
source
[
E :Device 0S
} :0SGi
source SSH dest Component
dest
Jest| :Component Source Telnet

Figure 3.2.: C&C overview of Cloud ASL

* Cloud ASL. Responsible for interacting with other modules and the main interface
to Cloud ASL. Cloud ASL includes all functions of the Cloud ASL API and should
be a sufficient way for any external module to interact with Cloud ASL. Cloud ASL
scripts can be passed to this component, which parses the script and runs as a
Groovy script with the Cloud ASL framework.

* Device. Responsible for 1) managing devices through Cloud ASL’s device methods
and 2) interacting with cloud API’s through the Cloud component.

» Component. Responsible for 1) managing components through Cloud ASLs com-
ponents methods and 2) interacting with components through OSGi Component

* Cloud API. Responsible for managing cloud instances. This is where all our cloud
functionality lies, currently our EC2 interactions and API. To add or switch cloud
providers only this part needs to be modified. This could be, for example, by adding
a REST or SOAP connector to another cloud platform.

* OSGi Component. Responsible for managing the OSGi framework.

And the connectors associated to the C&C view are

* SOAP or Simple Object Access Protocol is a web service protocol based on XML
messages through HTTP messaging.

» SSH or Secure Shell is a network protocol that allows data to be exchanged using
a secure channel between two networked devices.

43

o Telnet is a network protocol that provides a bidirectional interactive text-oriented
communications facility via a virtual terminal connection.

* Fava method calls are used to communicate between classes, components and li-
braries.

CloudASL Device Component Cloud I‘ CloudDevice OSGi

| create instance device('m1.small') o
Lgd

|
|
|
|
|
L

|

|

|

| Createlnstance(m1.small')
|]

|

|

sshrunScript('stant0OSGP')

w

|
|
|
|
|
|
Ll
|
t
|
|
|

install_compeonentiserver,'http://URNlibrary.jar')

|
Telnet:install_component(http://URibrary.jar')
T

uninstall_compenent{Component)

|
|
Telnet:uninstall_component(Component)

DestroyDevice{Device)

—_——,— T ____w¥T__ |

b
L4

sshirunscript('stopOsSGi')

w
e

]
| destroy(Device)
|]

b
L

CloudASL Device Component Cloud I‘ CloudDevice OSGi

Figure 3.3.: C&C Cloud ASL example sequence diagram

In figure 3.3 a sequence diagram displays the scenario of starting a device, install and
run a component, uninstall the component and then destroy the device.

Module View The module structure of our architecture will be shown by the UML di-
agrams below, starting with the package overview of Cloud ASL in figure 3.4. The ASL
package and its dependencies will be further described in figure 3.5, the device pack-
age in figure 3.6, the component package in figure 3.7, the cloud package in figure 3.8,
the ASL package in figure 3.5, and at last the OSGi package in figure 3.9. Dependen-
cies among packages are also shown; these dependencies arise because of relationships
among classes in different packages.

ASL

—

e ASL
i
! T

1
! :

— — v —1 v —
Cloud <" Device Component ~ --> OSGi

Figure 3.4.: Package view of Cloud ASL

ASL
ASL
DevicesList
create_instance_device(String)
create_jvm_device(String, Device)
clone_device(Device)
start_device(Device)
stop_device(Device)
destroy_device(Device)
getDeviceBylIP(String)
getDeviceByld(String)
getDevices()
install_component(Device, String)
uninstall_component(Component)
start_component(Component)
stop_component(Component)
update_component(Component,
String)
runScriptString(String)
runScriptUrl(String)
i i
[-7
]]
— v —1 Vv
Device Component

Figure 3.5.: Interface view of the ASL Package

45

Device J

Device

create_instance(String)
create_jvm(String)
clone()

destroy()

start()

stop()
get_devices()

Figure 3.6.: Interface view of the device Package

Component J

Component

install(Device, String)
uninstall()
update(String)

start()

stop()

— v

OSGi

Figure 38.7.: Interface view of the component Package

46

Cloud

J

Cloud

runninglnstances

Cloudinstance

createKeyPair(String)
createlnstance(String)
destroy(Device)
runScript(CloudInstance, String)

EC2

copyScript(CloudInstance, String, String)
createKeyPair(String)
createlnstance(String)

destroy(Device)
runScript(CloudIinstance, String)

FingerPrint

Id

Name
PrivDNS
PrivIP
PubDNS
PublP
Reservationld
Type
publicKeyName
state
stateCode
user

\ 4

SimpleDB

getinstance(CloudInstance)
registerinstance(CloudInstance)
updatelnstance(CloudIinstance)

Figure 3.8.: Interface view of the cloud Package

47

OSGi)

Connector

InstallBundle(Device, String)
start()

stop()

uninstall()

update(String)

TelnetConnector

device
bundleld

InstallBundle(Device, String)
start()

stop()

uninstall()

update(String)

Figure 3.9.: Interface view of the component Package

Deployment View Figure 3.10 demonstrates the deployment view of Cloud ASL using
a UML deployment diagram. The deployment diagram shows Cloud ASL to be running
on one server and the OSGi components running on different servers. However, in re-
ality, they could be running on the same server, and multiple OSGi instances could be
running on a single server.

The following elements are of interest:
* Environmental elements (shown as UML nodes)

- Cloud ASL server is the device running the Cloud ASL code. This can be one
of the Cloud ASL nodes.

- The Cloud ASL device is a device or devices Cloud ASL is interacting with and
hosts Cloud ASL components.

48

* Software elements (shown as UML components)
— The Cloud ASL is an executable code that manages Cloud ASL devices. It
communicates with the Cloud through SOAP, the Cloud ASL device through
SSH and the OSGi through telnet.
— Cloud ASL device. This is the cloud device that hosts OSGi.
— OSGi. This is the OSGi framework which hosts Cloud ASL components.

— Cloud API. This is the web service that operates the cloud instances and is
responsible for creating, destroying, starting and stopping cloud devices.

:CloudASL server

------ O— Cloud API

]
CloudASL ==

:CloudASL device £

osai = L)+

Figure 3.10.: Deployment view of Cloud ASL

3.2.3. Example in Use

The web messenger example will be used again in this section, but because our imple-
mentation requires that interfaces be stored in a special library component, that com-
ponent will be added to this example. In listing 3.2 we create a device, install and start
required components to run our web messenger example.

//creates a small instance with the variable name °‘server’’

Device server = create_instance_device(”ml.small”)

//where our implementation devices start on creation we do not need to
start it.

//next we install our components on the server

Component libCmp = install_component(server, “http://URI/library.jar”)
Component uiCmp = install_component(server, “http://URI/ui.jar”)
Component messCmp = install_component(server, “http://URI/mess.jar”)
Component dbCmp = install_component(server, “http://URI/db.jar”)

10

12

49

//now all the components have been installd on the device, we can start
them one by one

start_component(libCmp)

start_component(uiCmp)

start_component(messCmp)

start_component(dbCmp)

Listing 3.2: Example of Cloud ASL implementation

3.3. Binding Cloud ASL to a Cloud

When thinking about binding ASL to clouds, some decisions had to be made. First is
the type of cloud computing to use. The choice was between IaaS or PaaS, but because
Google App Engine is the only PaaS provider that supports Java and it does not support
threading nor our basic model of interchangeable executable components, IaaS was cho-
sen. For IaaS models, private and public clouds could be used, but as there was no ac-
cess to community or hybrid clouds, they were out of question. At the beginning of this
project, access was granted to hardware from the University of Iceland and it was decided
to set up our own private cloud based on the Eucalyptus cloud computing infrastructure
software.

3.3.1. Eucalyptus

In early October 2009 work began on setting up the Eucalyptus open source cloud com-
puting infrastructure on the University of Iceland computer grid. However, due to many
unforeseen problems this work was not successful. At first we had problems getting the
Eucalyptus infrastructure to work with the networking environment, mainly the main
DHCEP server at the University of Iceland. When this problem was solved we could not
carry on due to lack of access to administrators. After unsuccessful attempts at getting
access to hardware from other sources we decided to use a public infrastructure.

3.3.2. Amazon Web Services

On deciding on what public infrastructure to use, we decided to build our prototype
usable with multiple TaaS services. A beta version of Jelouds was used” as a cloud layer
initially, but after few tries in getting it to work for multiple cloud services, it was found

7JClouds is an open source framework based on Java to manage multiple cloud computing services.
http://www.jclouds.org

50

not to be mature and functional enough for our use and therefore Amazons SDK was
chosen. Amazon granted us $100 funding to use with the Amazon Web Services, which
gave us opportunity to use the Amazon cloud as we needed.

First an Amazon Instance Image (AMI) was created, which is a virtual image containing
the operating system (32 bit Ubuntu 9.10) partition, a swap partition and data partition,
and the AMI was stored on Amazon’s instance store. On that virtual image an Open-JDK
was installed, which is an open source community-maintained Java implementation and
Apache Felix, a OSGi implementation and necessary OSGi bundles/ASL components to
start with the ASL implementation.

The cloud ASL implementation in our case implements cloud operations in the following
way:

start_instance_device starts by requesting a new instance with the AMI pre-installed.
After the request has been sent, it can take a couple of minutes for the instance
to start. When the instance has started, JSCH® is used to run a boot-up script
which installs missing required bundles, downloads required components for the
prototype software and starts the OSGi platform. This can all be done beforehand
with a customized instance image, but creating a new AMI for each application is
time consuming whereas setting a boot-up script takes relatively short time.

start_jvm_device requires a running device with OSGi setup. We connect to that ma-
chine via JSCH and copy the already running implementation of OSGi to a new
location and start the OSGi framework from there.

start_device and stop_device : As Amazon’s EC2 does not enable stopping or starting
instances stored in the instance store, these operations were skipped. If the AMI
would be transferred to the Amazon’s EBS these features could be easily enabled.

restart_device : As restarting instances is a feature in Amazon EC2, it was used instead
of starting and stopping devices.

3.4. An Experiment With Cloud ASL

When Cloud ASL is defined and set up it has to be possible to test it in a real world
scenario. Therefore a software system had to be created, capable of running on a cloud
computing infrastructure that has something to gain from Cloud ASL. That is, the soft-
ware system has to be able to run on multiple computing instances at the same time and

8JSch is a pure Java implementation of SSH2, allowing connecting and file transfer to an sshd server
with Java programs. http://www.jcraft.com/jsch/

51

needs to be scalable. For this work the architectural design process from figure 2.3 is
used. Each part of that figure is a topic of a sub section where individual design steps are
show for our software. Thus ending up with an architectural prototype. This prototype
or software was named “The Turnip” and that name will be used from now on.

As the diagram in figure 2.3 displays, the first step is to gather architectural require-
ments, see section 3.4.1, which are then evaluated and become the basis of architectural
design, section 3.4.2. From these designs architectural descriptions are created, 3.4.3.
The evaluation is a part of chapter 4. The resulting system is the topic of section 3.4.4

3.4.1. Architectural Requirements

To evaluate requirements of a software system, two types of architectural descriptions are
significant, functional and quality based requirements as recommended by Christensen
et al. [227]. The functional requirements can be described in the form of use cases and
architectural quality in form of quality attribute scenarios.

Functional Requirements

As the main function of our software prototype have not been revealed, the starting point
will be focusing on underlying requirements that Cloud ASL and our project require.
The approach of Christensen et al. [[227] will be used, by creating architecturally sig-
nificant scenarios containing a subset of the overall scenarios providing the functional
requirements for the system.

In short these requirements are: Cloud ASL support, cloud connectivity and modularity.
As a scenario for our experiment it was decided to implement a distributed ray tracing
application. One which has the advantage of being time and computing intensive, is vi-
sual in the case that a ray tracing job results in a resulting image, can easily be broken
down from one big job into multiple smaller jobs, and might interest third-party indi-
viduals. The disadvantages of using ray tracing are that there are not many active open
source implementations, ray tracing is a complex process and might be hard to distribute
and individuals that have little knowledge of computer graphics might not be familiar
with the concept.

Use Cases

As a developer I can change the runtime architecture through ASL scripts.

52

As a user I can create ray-tracing jobs and choose on how many computing instances
they run at a time, and when a job is finished I can save the results of the ray tracing
job.

As a user I can shut down running computing instances after I have finished working
with them.

As a user I would like to be able to monitor the result of currently running ray tracing
job.

Quality requirements

Our architectural requirements will be described in this section, with a set of significant
quality attribute scenarios. The goal of describing quality requirements is to help with
construction of “test cases”, where architectural quality attributes may be compared and
evaluated, see section 2.2.1.

Driving architectural attributes for our experiment are:

1. Modifiability. The developer shall be able to change the system’s architecture on
runtime.

2. Scalability. The system shall be able to perform satisfactorily from one to hundreds
of computing instances and shall be able to scale both down and up.

3. Performance. The system shall be able to perform as satisfactorily as a a non
Cloud ASL based system.

Here, a quality attribute will be used that is not part the main quality attributes of Bass et
al. [17]. Our definition on a scalability scenario generation framework is shown as Bass
et al. generic scenario:

53

Scenario type: Scalability

2 | Source: Someone requesting more/less computing
5 power

.S | Stimulus: The request of modifying system capacity, for
§ example increasing the number of supported
8 users.

N | Artifact Computing instances, computing monitoring

framework or something similar.
Environment: | Runtime or development for pre-emptive mea-
sures.

Response: What has been done to meet with the change
of scalability, for example there have been more
cloud computing instances deployed.
Response Increased/reduced number of computing in-
Measure: stances, more/less disk space given or in-
creased network throughput.

Table 3.6.: Scalability quality attribute

Here availability, security, testability and usability are left out. The reasons why those
are not thought to be a main quality attribute requirement in our case are:

Availability Although availability is an important factor for cloud computing services,
we did not include it for our project where we did not find it important for an
architectural prototype. Where our project is not running as a service it can be
started or restarted for every usage.

Security As for availability, security is an important attribute in cloud computing, but
our project is not intended for real users and including security would increase the
complexity and difficulty of the project greatly.

Testability Making a distributed and cloud enabled architectural prototype which is run-
ning a foreign domain specific language, testable in a execution-based environ-
ment could be a whole new thesis on it is own, and therefore not in the scope of
this project.

Usability As the goal of this experiment is not to create an easy to use application, but
to create an case study to use our Cloud ASL implementation, Usability was not
defined as a required quality attribute.

As architectural operations are about dynamic architectural changes, the modifiability
attribute is the biggest factor in our quality requirements because our ASL implementa-

54

tion consists of the cloud scalability and performance.

3.4.2. Architectural Design

Now that the requirements are established, a better look can be taken at the architectural
design and decisions made regarding the design. Architectural design can be done as an
architectural prototype, attribute-driven design, architectural patterns and styles.

For architectural prototype decisions several choices are available, see section 2.2.3. The
prototype is the experimental type, which means that only one prototype had to be made
to evaluate whether our architectural decisions are valid. The characteristics of the pro-
totype aimed for are exploratory and learning and quality attributes. For exploration
and learning the goal is to learn about how our prototype works for Cloud ASL and how
architecture can or should be made. As quality attributes are big motivations of this
prototype and help us with attribute-driven design, this is a characteristic that can help.

The architectural pattern we are using is the client and server pattern.

3.4.3. Architectural Description

For the architectural description module viewpoint, component and connector view-
point and allocation viewpoint were used as referenced in Christensen et al. [227]. We
start by describing the C&C viewpoint.

Component and Connectors Viewpoint The experiment has five major functional and
three assisting functional parts, or components, as shown in the C&C view in figure 3.11,
which are presented as UML active objects. Connectors are presented by links with as-
sociation names and possibly role names. As this figure does not explain the C&C view
on its own, descriptions of components functionalities are provided in term of responsi-
bilities:

o User Interfaceis responsible for 1) giving the user available functionalities and 2) giv-
ing the user information about the status of rendering jobs.

* Request Manager is responsible for 1) managing requests from the user; 2) working
as a server in the software layout and being the communication layer between other
critical components where needed and 3) being the front-end for the user interface.

55

» Worker Factory is responsible for managing workers by 1) creating and destroy-
ing cloud computing instances (devices) through ASL and 2) managing workers
services, by registering distributed services on new instances and unregistering on
removed devices.

» ASL is responsible 1) for creating and destroying cloud computing instances (de-
vices) through Cloud API and 2) installing, starting, stopping, updating, stopping
and uninstalling components on devices. This is Cloud ASL from section 3.2.2

* Cloud API is responsible for 1) being the interface and connector to the cloud;
2) Creating and destroying cloud instances and 3) being as independent against
specific cloud provider as possible. This is the package Cloud from section 3.2.2

» Worker is responsible for 1) doing requested work; 2) being independent from
other workers and 3) being fault tolerant.

* Sunflowis responsible for 1) rendering images and 2) exposing basic interfaces and
methods for the rendering process.

» Web Browser is responsible for 1) presenting the User Interface and 2) delivering

the functionalities needed for the user interface to communicate with the request
manager.

The connectors also have to be described in more detail:

» r-OSGi provides a transparent way to access services on remote OSGi platforms.
It uses a very efficient network protocol and has a small footprint [C307].

» A¥AX Asynchronous JavaScript and XML, is a web standard for making clients
(web browsers) communicate with servers.

* SSH or Secure Shell is a network protocol that allows data to be exchanged using
a secure channel between two networked devices.

o Telnet is a network protocol that provides a bidirectional interactive text-oriented
communications facility via a virtual terminal connection.

* Fava method calls are used to communicate between classes, components and li-
braries.

56

The interaction between a set of connectors is not revealed in a single sequence diagram.
Therefore a set of examples is presented, that show the interaction between connectors
in concrete contexts. In figure 3.12 an example of worker creation is shown and in figure

:Web Browser

Client
AJAX
:Manager) Server

:User Interface

va
. _source
:Worker Factory |dest ‘Request Library
source| Manager
library
|dest server source
Java :SunFlow
:ASL) _
—r-0SGi — library
source source
T [Worker]
SSH . Library
Telnet client
[dest einet.
r-OSGi
Java L :Worker
server|
| source
:Cloud

Figure 3.11.: C&C view of the architectural prototype

3.13 the rendering process is displayed.

57

create_instance_device()

.]
| create_device() 'u

i SSH:run_post stz_a;_rtup script

Browser Request Manager Worker Factory | ASL | Cloud Worker
addWorker N i i
4 i i
1 addWorker | !
" :
¢

SSH:start_osgi

install_component(worker) >

| Telnet:install worker bundle N
install_component(library)
E Telnet:install Iibrarly bundle N
start_component(worker) " !
Telnet:start worke:r bundle N
start_component(library) i
Telnet:start IibraryI bundle »

register worker senice 4__|

register worker senice H‘—_l 1
. i
| AnnounceRequestManger() »

register RequestManager Senice :l

o

Browser | Request Manager | Worker Factory ASL Cloud Worker

Figure 3.12.: C&C sequence diagram displaying a new worker added

58

| vecemen | ooy | | mewsrons || weRmEEnE | s | | wwwomws | | mvom | | seemmevem | ey
[T Opuzebew
(" "ejep ")eyepdnabeuw!
(" “eyep “)ajepdnabew
~ejep)ajepdnabew!
¢ (" 9%0nq ‘Aejdsigajowal)idoxonglapual
(193ongixeu = 3939nq
I(Reidsigejowal)iapual >

:Nm_aw_n_ﬁosm‘_ JOMIOM “7)Ispual

(Juns

(")eusogies

_ I NEISE]

()Buuspuayyels

[speaiypiaqiop |1e] dooj

_ [eue Jabeu — Rejdsigaiowsy _ _ JapusygeYong

_ Telepuaygesong

EVER _

_|Jv ()speatyliasuopnieb

_|Jv (Ae|dsip [puedabew)iapusai

_ Idvymolqung _ _ TOMIOM __ PESIULIOYIOM — Jobeuepyysenboy _

(SISO WNU "YIpIM JuyBIay o[14ous0s)jsenboygesew

_ I NEISE]

ing process

C&C sequence diagram displaying the render

Figure 3.13.

59

Module View. The module view of our architecture will be described from top-down
starting with the most top-level diagram, beginning with the package overview on figure
3.14. Then, a better look at individual packages will be taken, starting with the user
interface, figure 3.15; the worker factory, figure 3.16; the request manager, figure 3.17;
Cloud ASL, figure 3.18 and ending on the worker, figure 3.19.

Turnip)
—
u e .
i i
Worker Factory |< - - I\F/I{eexg:g:: ————— > Library
| i} R
——1 v — v
CloudASL | -->| Worker Fococococoooo :

Figure 3.14..: Package overview for the architectural prototype

Web
HttpActivator
AJAXServlet
setServlets
setRequestManager
unsetRequestManager
IndexServlet

Figure 3.15.: Interface overview for the user interface

Worker Factory J

«interface»

WorkerFactory

createWorker
registerWorker
terminateWorker

Figure 3.16.: Interface overview for the worker factory

RequestManager)

«interaface»

RequestManager

addWorker
announceExeption
getimageUpdate
getNextBucket
getResults
getSunflowLog
getSunflowStatus
getSunflowStatusPercentage
getWorkers
makeRequest
registerWorker

Figure 3.17.: Interface overview for the request manager

61

ASL)

REEEEEE ASL e
]]
| T |
1 ! 1
v v v
Device Component Service

i

I

]

i

e > Cloud

Figure 3.18.: Interface overview for Cloud ASL

Worker)

«interface»

Worker

announceRequestManager
getld

setld

getWorkerld

setScene

run

stop

Figure 3.19.: Interface overview for the worker

Deployment View Figure 3.20 shows the deployment of the architectural prototype.
The deployment is based on the client-server architectural pattern. The following el-
ements are of interest:

* Environmental elements (shown as UML nodes)

- The Manager is the server in the client-server pattern and acts as job dis-
tributer for the software.

62

— The Workeris the client in our client-server pattern and acts as ajob processor
for the software.

 Software elements (shown as UML components)

— The Request manager is the server in the client-server pattern and acts as job
distributer for the software.

— ASL. See figure 3.18. This is our ASL implementation from section 3.2.

3.4.4. The Turnip

The experiment ended with a working prototype, that got the working name “the Turnip”.
The Turnip is a distributed ray-tracing software built for cloud computing usage. It is
made to be used with Cloud ASL and utilizes it for cloud operations, mainly for creating
and destroying workers.

Setup The overall setup of the Turnip starts with two types of software deployments,
“manager” and “worker”, which behave in a client-server architecture where the manager
acts as a server and the worker acts as client. The manager is responsible for interacting
with the user, managing the workers, creating and destroying workers and distributing
work. The worker’s only responsibility is to process the work from the manager.

The system is made from several components, which are:

User Interface
The Ul is web based stateless terminal, i.e. it does not include any concrete logic.
It uses the Request Manager for all communication and business logic. See the
User Interface paragraph below. This component exists on the manager.

Request Manager
The Request Manager is the heart of the manager. It is used by the UI and com-
municates to other components/servers for results. For example if the user wants
to add more workers, the Request Manager calls the worker factory to add or re-
move workers. If the user adds a new job, the Request Manager takes the job and
splits it into buckets and activates the worker for that job. This component exists
on the manager.

Worker Factory
The worker is responsible for taking care of the worker instances. It uses Cloud ASL

63

Manager

User Interface

]

g] g]
WorkerFactory [—(Q)-4 RequestManger —()-- WorkerManager

i

f%

|
I
I
I
|
I
g 1 :
ASL |
I
| Sunflow
N |
]]]
1 | 1 !
Lo |
1 : 1 !
, I
L :
799 ?
T|Worker N
|Worker2
|
Worker 1
;-1 WorkerManager
I
g 1 | .
Worker —Q)-- ,?
—
Sunflow

Figure 3.20.: Deployment diagram for the Turnip

to create or destroy instances and r-OSGi to register worker instances as a service.
This component exists on the manager.

64

Library
The Library is one of the critical parts of Cloud ASL and the Turnip. The Library
holds all interfaces for Cloud ASL. Services are registered as interfaces through
the Library. The Library also holds any external libraries used by the system, like
Sunflow for the rendering. The Library exists on both manager and worker.

ASL
This is our ASL implementation, Cloud ASL. It takes care of devices (creating, ter-
minating, starting and stopping) and components (installing, uninstalling, start-
ing and stopping). This component exists on the manager.

Worker
The worker is responsible for processing the jobs. The worker communicates with
the Request Manager, through r-OSGi, and pulls new buckets to render from
there. It utilizes Sunflow from the library component to render active bucket.
When finished rendering, it sends the bucket back to the Request Manager as an
array of colors.

Ray Tracing The ray-tracing software used as a basis for the Turnip is Sunflow?, which
needed some modification to be able render on a distributed system. Helios'® was chosen
in this project as a model for Sunflow job distribution. An example of Sunflow rendered
image can be seen in figure 3.21.

A rendering job consists of a scene file and textures. The scene file defines objects in the
scene, such as a ball model with a texture here, a teapot model there with other texture
etc., and properties, such as camera location and direction and light sources. The texture
files are plain images which are applied to objects giving them a texture.

Rendering jobs are rendered with a bucket rendering technique. This means that each
job is split into multiple smaller jobs or buckets, and each of these buckets is a small part
of the resulting image. For example, if one decides to render a 100 pixel wide and 100
pixel tall image, that image could be split into 100 smaller images where each image is
10x10 pixel width/height. This rendering method is convenient for distribution.

Sunflow was leveraged by including the class files in the library component. This makes
sure that Sunflow is always available on all workers and the manager, however this makes
updates of Sunflow more complex than necessary. The rendering work-flow starts by the
user giving the Turnip a job to process. This means that the UI sends a message to the

9Sunflow is an open source rendering system for photo-realistic image synthesis. It is written
in Java and built around a flexible ray tracing core and an extensible object-oriented design.
http://sunflow.sourceforge.net/

OHelios is an distributed rendering system based on Sunflow and made for grid systems.
http://sfgrid.geneome.net/

65

Figure 3.21.: Example of Sunflow rendered image

worker manager, which then analysis the job, extracts information such as job complex-
ity and image size, and then creates image buckets for the job at hand. When this process
is over the worker manager sends a signal to the workers, through r-OSGi connection, to
start rendering. Each worker interacts with the request manager by requesting a bucket
to render and then sends a part of the image to the request manager when it has been
rendered. The request manager arranges the image parts to a result image based on the
bucket location. The current status of the image is regularly saved so that the user can
see the current status of the job. This process can be seen in figure 3.13.

Cloud operations The Turnip uses Cloud ASL as its basis for cloud computing opera-
tions. The cloud operations that the Turnip uses are starting one cloud computing in-
stance or terminating a cloud computing instance. This is done through the UI, where
a user starts a new rendering job or adds a new worker to the pool of running workers.

When the user adds a new worker, the Ul sends a request to the worker manager, which
then runs a set of ASL operations; which starts a cloud instance and installs the com-
ponents required for the worker. The list of operations are shown at listing 3.3. The
worker factory starts a thread that waits for the new worker to come on-line. When it is

66

on-line it is registered through r-OSGi as a new worker service, which then again makes
the worker register the request manager as a service. This process can be viewed in figure
3.12.

Device device = asl.create_instance _device(”ml.small”);

Component c1 = asl.install_component(device, “http://bjolfur.com/
turnip_library.jar”);

Component ¢2 = asl.install_component(device, “http://bjolfur.com/remote
—1.0.0.RC4. jar”);

Component c¢3 = asl.install_component(device, “http://bjolfur.com/com.
springsource.org.codehaus.janino —2.5.15.jar”);

Component c4 = asl.install_component(device, “http://bjolfur.com/

turnip_worker.jar”);

asl.start_component(cl);
asl.start_component(c2);
asl.start_component(c3);
asl.start_component(c4);

Listing 8.3: Start worker Cloud ASL script as used by worker manager

The User Interface The User Interface(see figure 3.22) of the Turnip was designed to

TURNIP MANAGER

Add Worker
Register Worker
Submit Work
Display Log

Figure 3.22.: Screenshot of the Manager Ul

be simple but functional enough to do all required work in a “web 2.0” way. That is, it is
a simple HTML page, created and registered as a Java servlet through the OSGi HTTP

67

admin. All functionality of the web page is provided through AJAX" interfaces which
include updating the status of a working job, adding workers, and viewing the Log. The
status update is done by the request manager call, which takes the current status of the
rendered image and saves it over the original image. This way the user can set the interval
of updates for the status.

" Asynchronous JavaScript and XML

4. Evaluation

After designing and implementing Cloud ASL and our prototype, the results can be
evaluated and the system can be tested by running real jobs and observing how it per-
forms. Firstly a qualitative evaluation will be carried out to measure how the architec-
ture stands. Secondly, the system will have to perform a few tasks and its performance
is measured.

4.1. Qualitative Evaluation

In the work done for this thesis, Cloud ASL has been created. It is a system to modify
software architecture through architectural operations, a prototype was also created to
utilize Cloud ASL. The question that now can be raised is, are these systems usable and
have they solved the set requirements? In this section we are going to answer this ques-
tion by evaluating the architecture by first utility and completeness and secondly quality
attributes

4.1.1. Utility and Completeness

Utility denotes the applied use of the system for the goal of modelling and managing run-
time architecture of cloud computing applications, i.e. does the system enable others to
make dynamic software on cloud computing infrastructure and manage it with archi-
tectural operations, and if so how difficult is it? Completeness is evaluated in the terms
of the requirements of the system. The system should have resolved the requirements
presented in 8.4.1. The Turnip was created to demonstrate and argue for the utility of
the system.

Utility Utility is determined in terms of how the system, Cloud ASL, allows other de-
velopers to build dynamic software on clouds and manage it by architectural scripting.
The main parts of Cloud ASL have been implemented, and this process is the main foun-
dation for discussing utility. Cloud ASL has not been used or tested by other software

69

70

developers, which might be necessary to get a good picture of its utility. Now the utility
will be examined from views other than direct usage of others, a developer scenario will
be described and Cloud ASL compared to alternative ways of developing and modelling
architectural change.

Developer scenario: A developer is making a distributed imaging rendering application
to be used on cloud instances. He/she uses Helios, a Jini' based Sunflow rendering ap-
plication system.

The developer creates two separate Java applications, one to manage the cloud environ-
ment and other to be able to manage Helios/Sunflow through a web interface. This is a
similar approach as in the prototype, but Cloud ASL was used to manage the cloud.

When the developer has finished the implementation and has the system running, he/she
needs to update the software, e.g. upgrade Jini to a newer version. What the developer
would do in this case is to shutdown all the virtual instances, through the cloud managing
software, update the code on the virtual machine template and start with fresh instances
and updated code. Another, less intrusive but more complex way would be to update the
code on all running instances, which would then again require shutdown of the running
code. A better long term solution would be to create a configuration script or application
to do this automatically, which is again the aim of Cloud ASL.

As this specific scenario shows, Cloud ASL can have an advantage compared to no con-
figuration aimed solution.

Completeness To determine if the architecture for this system is complete, two ques-
tions need to be answered. One, does the architecture satisfy all of the requirements
identified in section 3.4.1? Second, is it possible to build cloud computing software us-
ing this implementation of Cloud ASL?

At first we should examine the functional requirements for the architectural prototype
from section 3.4.1.In short these requirements are:

Cloud ASL support, cloud connectivity and modularity.

As these requirements were the basis of the design they were followed closely. The pro-
totype was built on top of Cloud ASL and is closely integrated to it, which again enables
cloud connectivity by default. Because developing for Cloud ASL forces modular de-
velopment if done correctly, this requirement is accepted. Taking a closer look at these
requirements by analysing the use cases from section 3.4.1 a better picture can be painted

1Jini is a network architecture for the construction of distributed systems in the form of modular co-
operating services. http://jini.org

71

of how these requirement are met.

As a developer I can change the runtime architecture through ASL scripts:
As discussed earlier, the prototype was closely integrated with Cloud ASL, so all
Cloud ASL functionality was therefore enabled for this project. Tests were done
on changing runtime architecture on the code with successful results.

As a user I can create ray-tracing jobs and choose on how many computing instances

they run at a time, and when a job is finished I can save the results of the ray trac-
ing job.
If we take a look at this use case in a literal context the requirements are met, but
there are few things that could have been done better. Currently the job selection
mechanism is hard-coded into the program, so the end user can not easily select
or modify a scene to render. This can however be done through Cloud ASL but a
better solution would be to distribute the rendering job through a file based dis-
tribution mechanism, such as Amazon S3 in case of AWS, but there does not seem
to be a standard distributed storage with cloud providers. The final result of a ren-
dering process is a picture which is easily stored. This result is not stored in the
cloud but should have been stored with the rendering job, which would be simple
if the distributed file based mechanism would have been implemented.

As a user I can shut down running computing instances after I have finished working
with them.
This feature was not fully integrated with the user interface, although it was fully
completed and tested for Cloud ASL scripts.

As a user I want to be able to monitor the result of the currently running ray tracing
job.
This use case was completed successfully. With a certain user specified interval a
picture with the current status of the rendering job, see figure 3.22, is presented
displaying which buckets are in process with workers and the log from the manager
can be viewed with a click of a mouse.

After we created the first version of the prototype a list was made of possible changes
that could or should be done that might improve the prototype, and this list became the
basis of quality attribute scenarios. These scenarios will be discussed in the following
section.

4.1.2. Quality Attribute Scenarios

To describe and measure the quality of Cloud ASL, we made a list of possible change
scenarios early in the implementation phase, based on quality attribute scenarios for the

72

Turnip. These scenarios describe, for example, the change that has to be done to achieve
certain quality requirements, improved features or some other architecture change. Sec-
ondly, these scenarios were evaluated in regards to whether Cloud ASL could support
them and lastly it was concluded how these changes would be implemented through
Cloud ASL scripts if it could support them.

These scenarios are evaluated by:
1. Can the scenario be supported (through Cloud ASL) and how?
2. Is the scenario important?
3. How should the architecture be changed to support the change scenario?

These scenarios were evaluated, and based on the outcome Cloud ASL scripts were cre-
ated.

Evaluation of Scenario Attributes The evaluation of scenarios needs to be viewed on the
basis of which of them can be supported by the implementation, which of them are not
supported by the implementation and which of them do not fall into our focus and are
therefore not important for this evaluation. Of those scenarios that are not supported it
has to be examined why they are not supported and whether this project can be altered
in some way to enable support for those scenarios.

Unsupported scenarios:
Scenarios that can not be supported by Cloud ASL and the prototype are:

1. File-system storage support, table 4.1.

2. Change of cloud layer from IaaS to PaaS, table 4.2.

3. Change of OSGi platform, from example Apache Felix to Equinox, table 4.3.
Here each scenario will be discussed in more detail.
File-system storage support:
In this case, a change on the operating system level and even on the cloud instance image

would be necessary, therefore adding this scenario would require more than a software
architecture change to work.

73

Scenario(s): A developer wants to add a storage feature to
store result images in a file system.

Relevant Quality | Modifiability

Attributes:

,E Source: developer

8 Stimulus: Wants to add storage functionality

.S | Artifact System

§ Environment: | Development

8 | Response: Filesystem image store is added

@ | Response 5 Hours of development time and only storing

Measure: component affected
Priority: Medium
Difficulty: Medium

Table 4.1.: Storage Features - File System

Change of cloud layer from IaaS to PaaS:
Changing a cloud computing layer is a very complex task. Because Google App Engine
does not support OSGi or threads, Cloud ASL would not directly fit this kind of model
and therefore this scenario is not supported.

Scenario(s): A developer wants to change runntime plat-
form from eucalyptus to Google App Engine
(Java based PaaS)

Relevant Quality | Modifiability, Availability

Attributes:

& | Source: Developer

5 Stimulus: Wishes to change cloud platform

.S | Artifact Code, System, Infrasturcture

§ Environment: | Development

8 | Response: Turnip is running on AppEngine

@ ["Response

Measure:
Priority: Low
Difficulty: High
Table 4.2.: Eucalyptus -> AppEngine
Change of OSGi platform:

Changing OSGi platforms is theoretically possible, but the implementation of Cloud ASL

T4

does not support it, because Cloud ASL uses a Apache Felix specific remote shell to in-
teract with the OSGi framework, our virtual image has pre-installed Apache Felix, and
changing OSGi platform would require modification on the virtual image thus making
it too complicated for this scenario.

Scenario(s): As a developer I want to change OSGi platfrom
from Felix to Equinox
Relevant Quality | Modifiability
Attributes:
g Source: Developer
S Stimulus: wants to be able to change OSGi platform
S | Artifact Code
§ Environment: | Development
9 | Response: Turnip is running on Equinox
@ ["Response Some development time
Measure:
Priority: Low
Difficulty: Medium

Table 4.3.: Felix -> Equinox

Unimportant scenarios:

For each scenario two importance factors were made, priority and difficulty, and they
were measured from low to high. Scenarios were thought as important if importance
was more than 4 where importance = priority + dif ficulty and high difficulty = 1,
medium = 2 and low = 8 and high difficulty = 3, medium = 2 and low = 1. If a scenario
was thought to be both difficult and with low priority they were marked to be out of the
scope of the project. Scenarios that were not deemed important enough for the project
were:

1. Adding a Database based storage feature, table 4.4.

2. Distributed request manager, table 4.5.

3. Changing the underlying tracing platform to Pov-Ray, table 4.6.
Here, each scenario will be discussed in more detail.
Adding Database based storage feature:

Adding a database storage feature would require standard available distributed storage
or some sort of embedded database, which would then require a storage feature which

75

is not currently in our scope.

Scenario(s): A developer wants to add a storage feature to
store images, job files, a program status and
other information in a DataBase.

Relevant Quality | Modifiability, Usability

Attributes:

,E Source: Developer

8 Stimulus: wants to add a database storage functionality

.S | Artifact Code, System

§ Environment: | Development

8 | Response: Program status, resulting images and other in-

N formation is stored in a DB

Response

Measure:
Priority: Medium
Difficulty: High

Table 4.4..: Storage Features - DB

Distributed request manager:

Distributing the request manager is not supported by the architecture design and im-
plementing that would require a change of most of our components and therefore too
difficult for our scope.

76

Scenario(s): A developer wants to be able to run multiple
instances of the request manager on multiple
nodes

Relevant Quality | Modifiability

Attributes:

| Source: Developer

= : —

S Stimulus: wants to be able to run multiple instances of the

° factory

§ Artifact Code

9 | Environment: | Development

@ | Response: Multiple factorys are running simultaneously
running the same task

Response Medium development time
Measure:

Priority: Low

Difficulty: Medium

Table 4.5.: Dynamic factory

Changing the underlying ray-tracing platform to Pov-Ray:

Changing the ray-tracing platform to Pov-Ray included moving the process from a Java
module to a compiled C program. Because OSGi is a Java platform a new method to
bundle and load/unload external libraries on demand would be needed, and as there is

no simple way to do this, this scenario is too complicated to support.

Scenario(s): As a developer I want to use Pov-Ray as a ray-
tracer instead of Sunflow

Relevant Quality | Modifiability

Attributes:

y;i Source: Developer

S Stimulus: Wants to use Pov-Ray for ray-tracing

S | Artifact Code

§ Environment: | Development

9 | Response: Turnip is running PovRay as a ray-tracer

9@ | Response Some development time, faster ray-tracing
Measure:

Priority: Low

Difficulty: High

Table 4.6.: Different raytracing program

77

Supported Scenarios: The rest of the scenarios are supported by Cloud ASL, they are:

9.

10.

. Start new cloud instances on demand, table 4.7.

Shutdown cloud provider on demand, table 4.8.

. Turnip upgrade, table 4.9.

Update the User Interface, table 4.10.

Change the User Interface, table 4.11.

Use BOINC for processing, table 4.12.

Updating r-OSGi, table 4.13.

Change r-OSGi to other distributed OSGi framework, table 4.14.

Migrate from Amazon EC2 public cloud to Eucalyptus private cloud, table 4.15.

Change cloud providers, table 4.16.

For each of these scenarios, the original quality attribute scenario and the Cloud ASL
script supporting it will be listed and the scenario discussed.

Start new cloud instances on demand:

This scenario is a basic requirement of Cloud ASL and has been tested thoroughly and
is used in the prototype to create workers. In table 4.7 our quality attribute scenario is
displayed and in listing 4.1 we start a new cloud instance and install and run required
components.

78

Scenario(s): As an operator I want to be able to start new
instances of workers on demand
Relevant Quality | Modifiability
Attributes:
,{é Source: Operator
S Stimulus: Wants to be able to increase the numbers of
k= workers running
§ Artifact Code
9 | Environment: | Development
n Response: Turnip can now start new instances of workers
on demand
Response Some development time, number of instances
Measure: should be in consistent with workers.
Priority: High
Difficulty: Medium
Table 4.7.: Startup of instances
Device device = asl.create instance device(”ml.small”);
Component c¢1 = asl.install_component(device, “http://bjolfur.com/
turnip_library.jar”);
Component c2 = asl.install_component(device,”http://bjolfur.com/remote
—1.0.0.RC4. jar”);
Component c3 = asl.install_component(device,”http://bjolfur.com/com.
springsource.org.codehaus.janino —2.5.15.jar”);
Component c4 = asl.install_component(device,”http://bjolfur.com/

turnip_worker. jar”);

asl.start_component(cl);
asl.start_component(c2);
asl.start_component(c3);
asl.start_component(c4);

Listing 4.1: Start new cloud instance Cloud ASL script

Shutdown of instances:

Although this scenario was tested and implemented in the project, it did not make it
into the final version of the user interface. In table 4.8 our quality attribute scenario is
displayed and in listing 4.2 we destroy a given device.

79

Scenario(s): As a developer I want to be able to run shut
down instances and therefore reduce the num-
ber of workers running

Relevant Quality | Modifiability

Attributes:

_E Source: Operator

8 Stimulus: Wants to be able to reduce the numbers of

2 workers running

§ Artifact Code
8 | Environment: | Development
@ [Response: Turnip can now gracefully shut down instances
and therefore reducing the number of workers
Response Some development time, number of instances
Measure: should be in consistent with workers.
Priority: High
Difficulty: Medium

Table 4.8.: Shutdown of instances

//pre: device is running

destroy_device (device);

Listing 4.2: terminate cloud instance Cloud ASL script

Turnip upgrade/update:

Here we might update a single component or upgrade the whole project. For a single
component a simple component update should be enough. But for a whole project more
drastic measures are needed. For our Cloud ASL script it is assumed that we are upgrad-
ing the whole software and will therefore shut down all instances and set everything up
from scratch. Here it is assumed that Cloud ASL is running from an external location,
i.e. not from the manager, and OSGi and basic required components are available on
the created cloud instance. In table 4.9 our quality attribute scenario is displayed and in
listing 4.3 we start by destroying all our devices and then create one instance and install
and start required components to run the manager.

10

12

14

16

18

20

22

24

26

28

30

80

Scenario(s): A Developer wants to upgrade Turnip
Relevant Quality | Modifiability
Attributes:
% | Source: Developer, System administrator
E‘ Stimulus: Wants to upgrade turnip to newer version
.S | Artifact Code, System
§ Environment: | Runtime
9 | Response: Turnip is updated
@ | Response Minimum downtime
Measure:
Priority: High
Difficulty: Medium

Table 4.9.: Upgrade Turnip

//first we terminate all instances.

Device[l] devices = asl.getDevices ()

for(device in devices)
asl.destroy_device(device)

//then we create a manager

Device manager = asl.create_instance_device(”ml.small”)
//and install required components
// Library

Component c1 = asl.install_component(manager, “http://URI/library.jar”);

// Cloud~ASL

Component c2 = asl.install_component(manager, “http://URI/asl.jar”);

// User interface

Component c3 = asl.install_component(manager, “http://URI/rosgi.jar”);

// User interface

Component c4 = asl.install_component(manager, ”http://URI/UI.jar”);

// Request Manager

Component c5 = asl.install_component(manager, “http://URI/req_manager.jar’

)3
//Worker Factory

4

Component c6 = asl.install_component(manager, “http://URI/w_factory.jar”);

//And then we start the components
asl.start_component(cl);
asl.start_component(c2);
asl.start_component(ec3);
asl.start_component(c4);
asl.start_component(c5);
asl.start_component(c6);

//As the manager is capable of starting workers
//there is no need to to that manually

Listing 4.3: Turnip upgrade script

Update the User Interface:

The user interface is a stateless component and therefore updating it would not have
any external consequences. Examples of user interface updates are a modified look with
new background image and new UI functional features done through JavaScript. In
table 4.10 our quality attribute scenario is displayed and in listing 4.4 we update the
user interface by stopping the UI component, update the component and start it again.

Scenario(s): A developer wants to update the web interface

Relevant Quality | Modifiability, Usability

Attributes:

_E Source: Developer, System administrator

S Stimulus: Wants to update the user interface

S | Artifact Code, System

§ Environment: | Runtime

8 | Response: The user interface has been changed

@ ["Response No downtime, the only noticeable change is the
Measure: Ul

Priority: High

Difficulty: Low

Table 4.10.: updated UI

//pre: Component ui exists on Device manager

asl.stop_component(ui);

asl .update_component(ui,
asl.start_component(ui);

“http ://URI/updatedUl. jar”);

Listing 4.4: Update user interface Cloud ASL script

Change the User Interface:

An example of change of user interface is a change from web based UT to systems client
user interface, i.e. Java Swing, an upgraded Ul v.s. updated Ul In table 4.11 our quality
attribute scenario is displayed and in listing 4.5 we assume that the new Ul communi-
cates to the manager through a new rest API and therefore install and start a new rest
interface alongside our current UIL. Now a Java Swing client can communicate to our

manager via the new REST interface.

82

Scenario(s): A developer wants to change the user interface
from web interface to Java Swing on a desktop
Relevant Quality | Modifiability, Usability
Attributes:
| Source: Developer
"::' . :
S Stimulus: Wants to change the user interface from web
k= based to Java Swing desktop interface
§ Artifact Code, System
9 | Environment: | Runtime
@ | Response: New interface is available
Response No downtime, the only noticeable change is the
Measure: Ul, current program state is preserved
Priority: Low
Difficulty: Medium

Table 4.11.: New UI

//pre: Component ui exists on Device manager

Component rest = asl.install_component(device,”http://URI/newRESTService.
jar”);

asl.start_component(rest);

//now the new user interface can communicate via REST services

Listing 4.5: Change user interface Cloud ASL script

Use BOINC? for processing:

BOINC can be implemented in multiple ways, using local or external severs, but in this
case it will be assumed that the server is going to be running on the manager and the pro-
cessing component is going to be located on the library, like the current implementation
of the Turnip. In table 4.12 our quality attribute scenario is displayed and in listing 4.6
we change our implementation by stopping, updating and starting the Request Manager
and the Library.

http://boinc.berkeley.edu/: The Berkeley Open Infrastructure for Network Computing (BOINC) is a
non-commercial middle-ware system for volunteer and grid computing

83

Scenario(s): As adeveloper I want to use Turnip as a BOINC
process
Relevant Quality | Modifiability, usability
Attributes:
2 Source: Developer
8 Stimulus: Wants to use Turnip for other processes than
k= ray-tracing, like BOINC
§ Artifact Code
3§ | Environment: | Development
@ | Response: Turnip is running BOINC or other distributed
process
Response Some development time,
Measure:
Priority: High
Difficulty: High

Table 4.12.: new use case

//to change the service the library
//and the request manager need to be switched.
//pre: Component rManager runs request manager and Component lib runs

asl
asl
asl
asl

asl

Library

.stop_component(lib);

.stop_component(rManager) ;

.update_component(lib, ”http://URI/boinc_lib.jar”);
.update_component(rManager, ”http://URI/boinc_request_manager”);
asl.

start_component(lib)

.start_component(rManager)

Listing 4.6: Boinc Cloud ASL script

Updating r-OSGi:

Because r-OSGi runs on all devices and connects all workers to the manager and it can
not be assumed that the new version reconnects lost connections correctly, all workers
will be terminated and the manager allowed to be in charge of recreating all workers.
In table 4.18 our quality attribute scenario is displayed and in listing 4.7 we start by
terminate all of our workers and stopping, update and starting r-OSGi again.

84

Scenario(s): A new/bug-fixed version of r-OSGi is added.
Relevant Quality | Performance, security
Attributes:
% | Source: Developer
‘E Stimulus: A new improved version of r-OSGi is available
.S | Artifact System
§ Environment: | Runtime
9 | Response: A new and improved version of r-OSGi is added
\ with low downtime
Response Minimum downtime
Measure:
Priority: High
Difficulty: Low

Table 4.13.: A new/bug-fixed version of r-OSGi is added.

//pre: Component rOSGi runs r—OSGi on the manager device,
//workers is a array of all worker devices
for(worker in workers)
asl.terminate_device (worker)
asl.stop_component(rOSGi);
asl.update_component(rOSGi, “http://URI/new_rosgi.jar”);
asl.star_component(rOSGi)
//the manager ts running the new version of r—OSGi and will create new
//workers with the new r—OSGi version

Listing 4.7: r-OSGi Cloud ASL

Change r-OSGi to other distributed OSGi framework:

As the difference between the new framework and r-OSGi can not be defined beforehand
it is assumed that the only change will be with a new component instead of r-OSGi and
different ways for the worker factory to create workers. Here we will use Apache CFX as
an example of a new distributed OSGi framework. In table 4.14 our quality attribute sce-
nario is displayed and in listing 4.8 we start by terminating all workers, stopping Worker
Factory and r-OSGi, update the Worker Factory and install CFX and finally starting the
updated/installed components again.

11

13

85

Scenario(s): A change of distributed OSGi framework is
needed, for example r-OSGi to Apache CFX
Relevant Qual- Modifiability, performance, security, usability,
ity Attributes: availability
» | Source: Developer and System Administrator
T . :) —
g Stimulus: Wishes to change underlying distributed
k) framework
§ Artifact System
9 | Environment: | Runtime
@ | Response: Apache CFX is running instead of r-OSGi and
the manager is still operating
Response Minimum downtime
Measure:
Priority: Low
Difficulty: Medium-High

Table 4.14.: r-OSGi -> Apache CFX

//pre: Component rOSGi runs r—OSGi on the manager device,
//Component wFactory runs worker factory on the manager device,
//workers is an array of all worker devices

for(worker in workers)

asl.terminate_device (worker);

asl
asl

asl
efx

asl.
asl.

.stop_component(wFactory) ;
.stop_component(rOSGi) ;
asl.

uninstall_component(rOSGi);

.update_component(wFactory, “http://URI/worker_factory.jar”);

= asl.install_component(manager, “http://URI/cfx.jar”);

start_component(cfx)

start_component (wFactory)
//the manager is running CEX and will create new
//workers with CFX instead of the new r—OSGi version

Listing 4.8: Change from r-OSGi to CFX Cloud ASL script

Migrate from Amazon EC2 public cloud to Eucalyptus private cloud:
As Amazon EC2 and Eucalyptus have the same API a simple configuration modification
in the Library is enough to change the these providers, but all devices still have to be shut
down to migrate them to the new cloud. Before the new instance are started the local
Cloud ASL needs to be updated. In table 4.15 our quality attribute scenario is displayed
and in listing 4.9 we start by destroying all running devices, then we update running
Cloud ASL implementation and last we install and start required components to run
the manager.

10

12

14

16

18

20

22

24

26

28

30

86

Scenario(s): A developer wants to change runtime platform
from eucalyptus to EC2

Relevant Quality | Modifiability, Availability

Attributes:

g Source: Developer

S Stimulus: Wishes to change cloud platform

.S | Artifact System

§ Environment: | Development

9 | Response: Turnip is running on EC2

9 | Response Few development hours and development on
Measure: new VM images

Priority: High

Difficulty: Medium

Table 4.15.: Eucalyptus -> EC2

//first we terminate all instances.

Device[[] devices = asl.getDevices ()

for(device in devices)
asl.destroy_device (device)

//the local Cloud ASL implementation is updated
asl_update_component(this, http://URI/cloud_asl.jar);

//then a manager is created

Device manager = asl.create_instance_device(”ml.small”)

// Library

Component c1 = asl.install_component(manager, ”http://URI/library.jar”);

// Cloud~ASL

Component c2 = asl.install_component(manager, “http://URI/asl.jar”);

// User interface

Component c¢3 = asl.install_component(manager, “http://URI/rosgi.jar”);

// User interface

Component c4 = asl.install_component(manager, ”http://URI/UI.jar”);

// Request Manager

Component c5 = asl.install_component(manager, “http://URI/req_manager.jar’
)3

//Worker Factory

Component c¢6 = asl.install_component(manager, ”http://URI/w_factory.jar”);

4

//And then we start the components
asl.start_component(cl);
asl.start_component(c2);
asl.start_component(c3);
asl.start_component(c4);
asl.start_component(c5);
asl.start_component(c6);

87

32 | //Because the manager is capable of starting workers
//there is no need to that manually

Listing 4.9: Migrate from EC2 to Eucalyptus Cloud ASL script

Change cloud providers:

As in the previous scenario, all instances have to be shut down and recreated at the new
cloud provider. Because the cloud API would change, the Cloud ASL implementation
needs to be modified to work with the new provider.

Scenario(s): A developer wants to change runtime platform
from eucalyptus to OpenNebula (or some other
TaaS)

Relevant Quality | Modifiability

Attributes:

_‘E Source: Developer

S Stimulus: Wishes to change cloud platform

.S | Artifact Code, System

§ Environment: | Development

8 | Response: Turnip is running on OpenNebula

@ | "Response Few development hours and development on

Measure: new VM images
Priority: Medium
Difficulty: Medium

Table 4.16.: Eucalyptus -> OpenNebula

1 |//first all instances are terminated.
Device[] devices = asl.getDevices ()
3 | for(device in devices)
asl.destroy_device (device)

//then a manager is created

7 | Device manager = asl.create_instance_device(”ml.small”)

//and install required components

9 |// Library

Component c1 = asl.install_component(manager, ”http://URI/library.jar”);
11 | // Cloud ASL

Component c¢2 = asl.install_component(manager, ”http://URI/asl.jar”);

18 |// User interface

Component c¢3 = asl.install_component(manager, “http://URI/rosgi.jar”);
15 | // User interface

Component c4 = asl.install_component(manager, ”http://URI/UIL.jar”);

17 | // Request Manager

Component c¢5 = asl.install_component(manager, ”http://URI/req_manager.jar”);
19 | //Worker Factory

21

23

25

27

29

31

88

Component c6 = asl.install_component(manager, “http://URI/w_factory.jar”);

//And then the components are started
asl.start_component(cl);
asl.start_component(c2);
asl.start_component(c3);
asl.start_component(c4);
asl.start_component(c5);
asl.start_component(c6);

//Because the manager is capable of starting workers
//there is no need to to that manually

Listing 4.10: Migrate from EC2 to other provider

4.2. Quantitative Evaluation

Quantitative evaluation is an important factor in evaluating the usefulness of the sys-
tem. The focus was on two distinct yet relevant measures on quantitative evaluation:
performance and scalability.

4.2.1. Performance

The performance of systems can become a critical factor if it is going to be useful for real
world usage. The performance of Cloud ASL was measured by measuring it in compar-
ison to scripting manual architectural change. Two scripts were created, one Cloud ASL
script and one manual script, which had the same functionality. The manual script used
the same third party components as Cloud ASL to minimize the factor of uncertainty be-
tween different libraries. These scripts began by creating device instances and then did
a few component operations. These operations can be seen in the ASL script in listing
4.11:

Device device = asl.create _device(”ml.small”)

Component com = asl.install_component(device, “http://bjolfur.com/
turnip_library.jar”)

asl.start_component(com)

asl.stop_component(com)

asl.update_component(com, "http://bjolfur.com/turnip_library.jar”)

asl.start_component (com)

Listing 4.11: ASL performance test

89

The groovy script was designed to do the exactly the same, with same libraries, see ap-
pendix A. In short, both the scripts do the following: start, by creating a Amazon EC2
instance through the Amazon AWS SDK; wait for the instance to run, when running it
used SSH to access the machine; set configuration switches and run the OSGi platform.
Next it uses telnet to interact with the OSGi platform and install, update start and stop
bundles/components. The time it took the scripts to run instances was measured as well
as the time it took to do operations on the OSGi platform (configuring components).
The results are listed in table 4.17, in figure 4.1 a scatter chart displays the startup times
of Cloud ASL scripts versus the manual startup times, and in figure 4.2 a scatter chart
displays the operations timing of Cloud ASL scripts versus the manual script times.

ASL Device | Manual ASL Com- | Manual
Startup Device ponent Op- | Com-
Startup erations ponent
Operations

Count 56 56 50 50
Average 01:48.2 01:36.8 00:07.7 00:06.6
Standard Deviation | 00:47.6 00:38.2 00:01.1 00:01.1
Min 01:12.7 01:00.7 00:06.8 00:05.7
Max 04:33.3 03:51.8 00:13.2 00:09.5

Table 4.17.: List of ASL vs. manual change statistics.

The scripts were run on many instances, and the number of instances was increased for
each iteration, with the average number of instances equalling 10. The time of starting
each instance was measured as well as the time of running the Cloud ASL,/Manual op-
eration on these instances. Detailed measurements of timing can be found in appendix
B. Basic statistical analysis were done on the measurements; standard deviation, aver-
age, minimum and maximum data points; and they are listed in table 4.17. From these
results it can be observed that there is about one second penalty of using the Cloud ASL
script for creating devices and a one second penalty in component operations, but where
the standard deviation is higher than this difference it can be assumed that the time dif-
ference is not significant. It can be argued that as the system is more complex and has
more functional properties, it should result in less performance than a manual archi-
tectural change script. With basic code refactoring and optimization current difference
could be lowered. The error in these numbers is quite high, indicating a high uncer-
tainty factor in external environments. Because the cloud infrastructure does not have
uniform capability and timing, doing uniform tests would become very expensive and
time-consuming. Creating uniform testing would require a controlled private cloud or
a much larger sample from a public cloud as standard deviation and standard error for
creating devices with greater certainty would have to be figured out.

90

05:00.0
r @ EE

04:00.0

03:00.0

X
X%
XXX

02:00.0
X x ¥
xxxx§%**x

x XX X X X X X
Xxxx*xxxx*xx"**xxxxgé
w oy KK X X X KK X XX

X
o 33X X ¢ X 6K X R XXX XXANANX

x X X

01:00.0 | XXXXXXXX

00:00.0

A ASL Startup Timing % Manual Startup Timing

Figure 4.1.: A scatter chart of startup timing of Cloud ASL script vs. manual script

4.2.2. Scalability

After comparing Cloud ASL to performing manual architectural change through Groovy
and OSGi, it can be assumed that ASL performance is efficient, but it might be useful
to know how it scales. Because Cloud ASL is created to run and operate on multiple de-
vices, simultaneously doing that will be the next subject of evaluation. It was measured
by running ASL scripts on 1, 2, 4, 8, 16 and 32 instances at once. First a script was run
that created a device and did a few component operations, then a script was run four
times that did a few component operations on a currently running device to measure
any statistical difference by devices.

The first script used was a script which creates a device and does a few basic operations
on components:

Component com = asl.install_component(device, “http://bjolfur.com/
turnip_library.jar”);

asl.start_component(com);

asl.stop_component(com);

asl.stop_component(com);

asl .update_component(com, "http:// bjolfur.com/turnip_library.jar”);

asl.start_component(com);

Listing 4.12: ASL device creation scalability test

91

00:14.0
00:12.0

00:10.0 7
;QXX
X

00:08.0 77+—'§X

I %
TR N S + F kX

X
XXX KX
00:06.0 XxxxxxxxxxxxxXXXXXXXXXXXXXXX
00:04.0
00:02.0

00:00.0

+ ASL operations timing ~ *<Manual Opretions timing

Figure 4.2.: A scatter chart of operations timing of Cloud ASL script vs. manual script

And a second script that did more advanced operations on components:

Component com = asl.install_component(device, “http://archive.apache.org/
dist/felix /org.apache. felix.ipojo —1.6.0.jar”);

asl.start_component(com);

asl .stop_component(com) ;

asl .update_component(com, ”http://apache.osuosl.org/felix/org.apache. felix
.ipojo —1.6.2.jar”);

asl.stop_component(com) ;

asl.uninstall_component(com) ;

Listing 4.13: ASL component scalability test

The first script is the same as in the performance test, but this time the difference in
multiple number of instances was measured.

The results are shown in table 4.18 and full raw data of the tests are provided in appendix
C. Figure 4.3 displays a bar chart of averaged worker efficiency, i.e. average runtime,
minimum runtime, maximum runtime and standard deviation averaged over number
of workers running set job, and figure 4.4 displays an error chart of same data.

92

Number of devices

created 1 2 4 8 16 32
#Devices successfully | 1 2 4 8 13 19
running

number of Cloud ASL | 4 8 16 32 52 76
processes

Average timing of each | 00:05.7 | 00:05.4 | 00:05.9 | 00:06.0 | 00:06.1 | 00:05.9
process

Min 00:05.3 | 00:04.4 | 00:04.5 | 00:04.3 | 00:05.0 | 00:04.9
Max 00:05.9 | 00:06.2 | 00:07.6 | 00:08.2 | 00:09.4 | 00:07.8
Standard deviation 00:00.2 | 00:00.7 | 00:00.8 | 00:00.8 | 00:00.7 | 00:00.7

Table 4.18.: List of ASL vs. manual change statistics.

00:10.0

00:08.0

00:06.0

00:04.0

00:02.0

00:00.0

8

16

Number of successful devices running

Number of devices started

32

& Average timing of

each run

“min

o max

stdev

Figure 4.3.: Bar chart of ASL performance, rendering efficiency with different amount

of workers

93

00:10.0

00:08.0

00:06.0 o
! TL

00:04.0

00:02.0

00:00.0

3
devices successfully running

Figure 4.4.: Error chart of ASL performance, rendering efficiency with different amount
of workers

What was found out by doing these measurements is that Amazon has a limit of running
20 instances at a time, but up to 24 instances were running at a time (where we started
our instances all at once the Amazon API seems to be unable to detect the exact number
of running instances at given time), which limited the 32 device run, and trying to start
this many instances, 16 or 32, at once usually resulted in failures in starting some of
the devices. From what can be seen in table 4.18, there is not much penalty for running
Cloud ASL on multiple devices, however the variance runtime increases as the amount
of devices increases.

The prototype was also tested by rendering an image on different numbers of devices. A
rendering job was set up, which ran three times on 2, 4, 8 and 10 workers at the same
time, where each worker had an independent device for itself. The job was to render an
image of three aliens, with a resolution of 648x480, anti aliasing (4 samples), Gaussian
filter, etc. The result of this rendering can be seen in table 4.19. An example of rendering
a job with three workers can be viewed in figure 4.5 and figure 4.6 for rendering with ten
workers. In the rendering figures each coloured box represents a different worker and
the area under the box is the current bucket the worker is rendering.

94

Number of Workers | avg. Render time | avg. Render time per worker
3 06:44.3 20:12.9
5 04:08.8 20:44.2
8 02:34.0 20:31.7
10 02:04.2 20:41.7

Table 4.19.: List of rendering time compared to number of workers

Figure 4.5.: Rendering job with 3 workers

95

Figure 4.6.: Rendering job with 10 workers

The results from the prototype rendering are quite promising. It scales well where the
time it takes to complete a job is almost linear compared to the number of workers. From
the logs of the Amazon EC2 cloud it could be seen that in all cases the worker’s CPU was
fully utilized, while the manager was running on average 50% utilization. Serving the
user interface was what made the most impact on the manager, as for each user the UI
serves the current state of the rendering job to his/her preferences. This behavior does
not scale effectively but could be fixed with simple optimization.

Although Cloud ASL scripting is slower than the measured alternative, manual architec-
tural change script, the development time of writing Cloud ASL script is less then man-
ual script. In the example from section 4.2.1, a 5 line ASL script was created. However,
the alternative manual script consisted of more than 300 lines of code. While develop-
ing Cloud ASL, no performance optimizations were made, and it is predicted that with
simple optimizations, Cloud ASL would perform as well as manual scripts.

All the tests were made on Amazon EC2 “ml.small” type of instances on customized 32
bit Ubuntu 9.04 Linux. As all the measurements were done on complete rendering work
of all workers combined, there is no detailed information on the efficiency of individual
workers. In future work this could be an interesting part of analysing the difference
of efficiency between different types of cloud providers, cloud instance types and cloud
instances.

5. Discussions and Conclusions

In this section the results of this thesis will be discussed and summarized, what went
wrong, what might have been done better and future work on Cloud ASL and the Turnip.

In this thesis, Cloud ASL has been presented. It is an architectural scripting language
focused on infrastructure as a service (IaaS) cloud computing services. This tool, or
framework, enables controlling dynamic aspects of runtime software architecture with
architectural operations in cloud computing. This is a suitable framework to use for cre-
ating a scalable and modifiable cloud computing software. On top of this framework,
a prototype was created to evaluate the features of Cloud ASL for dynamic scaling and
runtime architectural changes. Although Cloud ASL is not a feature complete system,
and it might be difficult for inexperienced users to understand, it has a good educational
perspective by thinking of architectural changes with an architectural framework. Using
architectural scripting can help and simplify updates on software systems and software
architecture. When software developers are making software systems nowadays, modi-
fiability and scalability tend to become lower priority than they should. This is because
og costs, lack of time, and the fact that the tools used do not require thoughts on fu-
ture modifications and scalability. Cloud ASL could help here, as it requires a different
kind of thought, by forcing developers to create modular software where each module
is independent, in terms of it being able to maintain its state, while other modules are
not present, and as devices are a part of the framework, allowing developers to design
scalability from the start, making modifiability and scalability the core of the framework.

For this thesis, RHI (Reiknistofnun Héskola [slands) promised access to a part of a com-
puter cluster, a few nodes to start with. Full root access was not granted to these ma-
chines. Instead an administrator was relied on to set them up and install required soft-
ware for and with us, but due to how busy this administrator was and due to the complex
network and software setup it was not possible to finish setting up Eucalyptus. Having
a private cloud could have eased the first phase of the development given a steady access
to a cloud environment, but it could also have slowed down the work in later phases as
these solutions are not as complete and stable as the public cloud used in this project.
Since the main work on this thesis was completed, NASA (US Space Agency), in coop-
eration with the IaaS service provider Rackspace, introduced a new private IaaS service
software, OpenStack’. This IaaS software is simpler than Eucalyptus and might have

1OpenStack is a robust EC2 compatible IaaS software layer which includes an object store compatible

97

98

gotten a private cloud running if that offer had been available when this project started.

As the private cloud did not work, a few public cloud providers were signed up for, and
in the the end Amazon AWS was chosen for this project as it seemed the most supported
by other software libraries. Later, financial support was provided by Amazon to use their
service for the project. A virtual machine image was created with the software bundles
needed and stored in Amazon’s Simple Storage Service. This was a complex task and
very time consuming. Later, we found out a newer service from Amazon could have
been used, Elastic Block Storage, to store the virtual images which would have provided
more flexibility. For example it could have been possible to start and stop instances and
creating a new virtual machine image from an existing image could have been possible.
This would have given Cloud ASL more modifiability and eased development and test-
ing. Another Amazon AWS service that would have helped is Amazon Virtual Private
Cloud: with that service a virtual network could have been created and all network pro-
tocols enabled within that network. R-OSGi relies on multicast over SLP? to be able to
automatically discover OSGi services over the network. Because multicast is disabled
on Amazon’s regular network, it was necessary to create the service connection manu-
ally, which caused more overhead and complexity. Although these services would have
helped in many ways, it would also force us to rely more on Amazon as a service provider
and make switching service providers a more difficult task.

The cloud computing integration into Cloud ASL began by using a cloud computing
abstraction framework, JCloud, which exposes interfaces to operate on multiple cloud
frameworks. This framework was not complete enough and did not expose common
cloud computing interactions well enough, so to use common cloud operations, such as
starting a virtual instance, it was necessary to go through the framework and interact di-
rectly with the Amazon API. A final version was not foreseeable in the near future and the
Amazon API was used directly instead. This problem brings a question for Cloud ASL:
Can Cloud ASL be used to support multiple IaaS providers?

Integrating more cloud computing providers into Cloud ASL would improve modifiabil-
ity, and that could be done by extracting cloud functionality into a Cloud ASL interface
and cloud operations into a Cloud ASL component and exposing specific cloud oper-
ations as a Cloud ASL service through the common cloud interface. This will limit the
functionality of Cloud ASL as cloud providers do not support the same functionality, and
therefore the cloud interface would only include common cloud provider operations.

Testing applications in cloud environments can be difficult, as one application can be
running on multiple instances and be using multiple components and services. To be
able to test and debug Cloud ASL and the Turnip it was necessary to connect to each

with Amazon’s S3. http://openstack.org/
2Service Location Protocol is a service discovery protocol that allows computers and other devices to find
services in a local area network without prior configuration.

99

virtual machine via SSH and monitor the components by running OSGi and viewing logs
and outputs. This is a time consuming and hard process, and becomes more complex
with a larger cloud. A future feature for Cloud ASL would be added testability, by remote
logging, remote debugging on multiple instances and/or distributed unit tests.

After this thesis was completed, Amazon EC2 introduced a new type of cloud computing
instance, cluster GPU instance, which is an instance containing powerful GPU’s includ-
ing multiple CPU’s. An interesting approach would be to optimize the Turnip to use
these GPU’s for rendering and measure any improvements and compare the efficiency
to other instances. This could also be the basis of some sort of benchmark, rendering
time compared to cost of instance.

For the implementation of the Turnip done in this project there was room for improve-
ment. Firstly, all libraries and interfaces were put in a single module, the library, which
existed on all devices. This simplified deployment, as only a single module had to be
deployed for all libraries and interfaces, but this made the library an oversized and com-
plicated module with difficult maintainance which could make updates on any library
or interface a relatively big task. A better solution would have been keeping all libraries
in separate modules and interfaces in one or more modules. Due to limited time, UT and
auto-scaling features were not implemented, such as automatic startup and shutdown of
devices, storing resulting images and uploading and customizing rendering jobs. These
features were not important for the Cloud ASL implementation but would have made
the Turnip more complete.

Making a ray-tracing program prototype for Cloud ASL took too much effort and time,
as the complexity of this prototype was too great, and this time should have been spent
focusing on the ASL implementation. The architecture of the prototype did therefore
not become as good as it should have been. Features were missing, and stability and
testability might have been better. Evolutionary architectural prototype would have been
useful in this situation, that is taking the good working parts of the prototype and iterate
the prototype a few times.

We have demonstrated with our work that Cloud ASL can be used as a high level ar-
chitectural framework for cloud computing and is a valid architectural language. With
some modifications and improvements Cloud ASL can become a basis for a Platform as
a Service with Java and OSGi as the platform.

At the end, a question arises. As our Cloud ASL implementation is based on Java and
does not support other programming languages, would a programming language neutral
implementation be a feasible and/or possible advance of Cloud ASL?

Bibliography

[17] L. Bass, P. Clements, and R. Kazman, Software architecture in practice. Addison-
Wesley Professional, 2 ed., 2003.

[27] R. Hilliard, “TEEE recommended practice for architectural description of
software-intensive systems,” IEEE Std 1471-2000, pp. i -23, 2000.

8] J. Bardram, H. Christensen, and K. Hansen, “Architectural prototyping: An ap-
proach for grounding architectural design and learning,” in Proc. 4th Working
IEEE/IFIP Conference on Software Architecture, pp. 15-24, Citeseer, 2004.

47 M. Ingstrup and K. M. Hansen, “Modeling architectural change: Architectural
scripting and its applications to reconfiguration,” in WICSA/ECSA, pp. 337-340,
2009.

5] J. Hamilton, “Internet-scale service efficiency,” in Large-Scale Distributed Systems
and Middleware (LADIS) Workshop (September 2008), 2008.

[67] Visiris, “Verne greidi fjogur sent a Kkilovattstund.” http://www.visir.is/
article/20100216/FRETTIRQ1 /606626051 /-1, February 2010.

771 S. Helgason, “Loks upplyst um raforkuverd.” http: //www.herdubreid.is/?p=
1487, February 2010.

[87] M. Ingstrup and W. Zhang, “D4.8 self-* properties ddk prototype and report,” tech.
rep., Hydra, 2008.

97 J. Kim and D. Garlan, “Analyzing architectural styles with alloy,” in Proceedings of
the ISSTA 2006 workshop on Role of software architecture for testing and analysis,
p. 80, ACM, 2006.

[107] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, 1. Stoica, et al., “Above the clouds: A Berkeley view of
cloud computing,” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/EECS-2009-28, 2009.

[117] D. Parkhill, The challenge of the computer utility. Addison-Wesley Reading, MA,
1966.

101

http://www.visir.is/article/20100216/FRETTIR01/606626051/-1
http://www.visir.is/article/20100216/FRETTIR01/606626051/-1
http://www.herdubreid.is/?p=1487
http://www.herdubreid.is/?p=1487

102

[127] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud Computing: An Overview,” Cloud
Computing, pp. 626-631, 20009.

C187] W. Vogels, “A Head in the Clouds? The Power of Infrastructure as a Service,” in
First workshop on Cloud Computing and in Applications (CCA'08)(October 2008),
October 2008.

[147] D. Robert, “Jeff Bozes’ risky bet,” Business Week:, vol. 4009, p. 53, 2006.

[[157] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599-616,
2009.

[167] P.Mell and T. Grance, “The NIST Definition of Cloud Computing. National Insti-
tute of Standards and Technology,” Information Technology Laboratory, Version,
vol. 15, pp. 10-7, 2009.

[17] C. Boulton, “Oracle CEO Larry Ellison Spits on Cloud Computing Hype,
eWeek.com, September, vol. 29, pp. 11-14, 2009.

187 D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov, “The eucalyptus open-source cloud-computing system,” in Pro-
ceedings of the 2009 9th IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid-Volume 00, pp. 124-131, IEEE Computer Society, 2009.

[197 N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R. Wolski,
“AppScale Design and Implementation,” Computer Science Department University
of California, Santa Barbara, Research Report, 2009.

[207] J.C. Anderson, “Announcing AppDrop.com (host Google App Engine projects on
EC2)) http://jchrisa.net/drl/_design/sofa/_show/post/announcing_
appdrop_com__host_go, April 2008.

217 N.Medvidovic and R. Taylor, “A classification and comparison framework for soft-
ware architecture description languages,” IEEE Transactions on software engineer-
ing, vol. 26, no. 1, pp. 70-93, 2000.

[227] H. Christensen, A. Corry, and K. Hansen, “An approach to software architec-
ture description using UML,” Computer Science Department, University of Aarhus,
2004.

[237] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little, Doc-
umenting software architectures: views and beyond. Pearson Education, 2002.

[247] R. Kazman, M. Klein, and P. Clements, ATAM: Method for Architecture Eval-
uation,” Tech. Rep. CMU/SEI-2000-TR-004, Software Engineering Institute,
2000.

http://jchrisa.net/drl/_design/sofa/_show/post/announcing_appdrop_com__host_go
http://jchrisa.net/drl/_design/sofa/_show/post/announcing_appdrop_com__host_go

103

257 N. Rozanski and E. Woods, Software Systems Architecture: Working With Stake-
holders Using Viewpoints and Perspectives. Addison-Wesley Professional, 2005.

[267] H. Christensen and K. Hansen, “An empirical investigation of architectural pro-
totyping,” Fournal of Systems and Software, vol. 83, no. 1, pp. 183-142, 2010.

[277] H. Christensen and K. Hansen, “Architectural prototyping in industrial practice,”
Software Architecture, pp. 196-209, 2008.

[287 K. M. Hansen and M. Ingstrup, “Modeling and analyzing architectural change
with alloy,” in SAC ’10: Proceedings of the 2010 ACM Symposium on Applied Com-
puting, (New York, NY, USA), pp. 2257-2264, ACM, 2010.

[297] M. Fowler, “Language workbenches: The killer-app
for domain specific languages,”’ Accessed online from:
http://www.martinfowler.com/articles/languageWorkbench.html, 2005.

[307] J. Rellermeyer, G. Alonso, and T. Roscoe, “R-osgi: Distributed applications
through software modularization,” in Proceedings of the 8th ACM/IFIP/USENIX
international conference on Middleware, pp. 1-20, Springer-Verlag, 2007.

11

13

15

17

19

21

23

A. Performance Script

A.1. Cloud ASL Script

Component com = asl.install_component(device, “http://bjolfur.com/
turnip_library.jar”)

asl.start_component(com)

asl.stop_component(com)

asl .update_component(com, "http:// bjolfur.com/turnip_library.jar”)

asl.start_component(com)

Listing A.1: ASL performance test

A.2. Groovy manual “ASL” Script

import
import
import
import
import
import
import

com.
com.
com.
com.

amazonaws

amazonaws.
amazonaws.
amazonaws.
.TelnetWrapper

de.mud. telnet

com.

amazonaws.

.auth. AWSCredentials

auth . BasicAWSCredentials
services .ec2.AmazonEC2
services .ec2.AmazonEC2Client

services .ec2.model.*

com. jeraft.jsch.*

// Manual OSGi update through following script:

class test {
public def testld

public static void main(String[l] args) {

for (i in 1..1)
println i;
def newTest =
newTest.testld = 1;
def th = Thread.start {
newTest.doTest ()

}

b

new test();

105

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

106

public def doTest() {

//variables
String accessKeyld = “access key here”;
String secretKey = ”secret key here”;

String ami = “ami—4552bb2c¢”; // linux server with Java + OSGi
String keyPrefix = "g—test—";

String availabilityZone = “us—east—1a”;

String type = ”"ml.small”

def id = null

def state = "pending”

private AmazonEC2 ec2;
Instance instance = null

private long startTime
private long instanceTime
private long preTelnetTime
private long endTime

System . ge () ;
startTime = System.currentTimeMillis();

AWSCredentials credentials = new BasicAWSCredentials(accessKeyld ,
secretKey);
ec2 = new AmazonEC2Client(credentials);

// create one EC2 Instance

System.out.println ("EC2. create_instance”);
RunInstancesRequest request = new RunlInstancesRequest();
request.setInstanceType (type);

// set to zone

Placement placement = new Placement();
placement. setAvailabilityZone (availabilityZone);
request.setPlacement(placement);

//Set the image ID to a custom generated AMI, which include Java +
OSGi
request.setImageld (ami);

// Create key pair for user..
CreateKeyPairRequest kpReq = new CreateKeyPairRequest();

String newKeyPairName = keyPrefix + mew Random() .nextInt();
kpReq . setKeyName (newKeyPairName) ;

CreateKeyPairResult kpres = ec2.createKeyPair (kpReq);
KeyPair keyPair = kpres.getKeyPair();

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

119

107

request .setKeyName (newKeyPairName);// assign Keypair name for this
request

// make sure to have access to SSH port 22 on the default group on the
EC2console

RunInstancesResult runInstancesRes = ec2.runlnstances(request);

System.out. println (”run instance results: ” + runlnstancesRes);

def Reservationld = runlInstancesRes.getReservation().getReservationld
OF

DescribeInstancesResult describeInstancesResult = ec2.
describeInstances () ;

List<Reservation> reservations = describelnstancesResult.
getReservations () ;

Set<Instance> instances = new HashSet<Instance >();

for (Reservation reservation: reservations) {
instances.addAll(reservation. getInstances());
if (reservation.getReservationld().equals(ReservationId)) {
id = reservation.getInstances().get(0).getInstanceld();
state = reservation.getInstances().get(0).getState ().getName();
System.out.println(”instance found!”);

b
b

while (!state.equalsIgnoreCase(”running”)) {
println 7state: ” + state
println 7id: 7 + id
def describelnstancesRequest = new DescribelnstancesRequest();
Collection <String > instancelds = new ArrayList<String >();
instancelds.add(id);
describelnstancesRequest.setInstancelds (instancelds);

describeInstancesResult = ec2.describelnstances(
describeInstancesRequest);
reservations = describelnstancesResult.getReservations();

for (Reservation reservation: reservations) {
for (Instance j: reservation.getInstances()) {
if (j.getInstanceld().equals(id)) {
state = j.getState().getName();
instance = j;
b
b
}
¥

System . gc () ;
instanceTime = System.currentTimeMillis();

//instance is running

121

123

125

127

129

131

133

135

137

139

141

143

145

147

149

151

153

155

157

159

161

163

165

167

108

//Lets start OSGi and do some SSH magic
def postStartupSecript = 7 \n” +
//”sudo apt—get install coreutils &
ed /turnip\n” +
“wget bjolfur.com/sunflow.tar \n” +
“tar xvzf sunflow.tar \n” +
”ed /turnip/bundle\n” +
wget http://apache. deathculture.net/felix/org.apache. felix.
shell .remote —1.0.4.jar\n” +
ed /turnip\n” +
“echo osgi.shell.telnet.ip=" + instance.getPrivateIpAddress()
+ ”>> /turnip/conf/system.properties\n” +
“nohup ./run.sh\n”;

System .out. println ("EC2. runScript”);

Channel channel;

ChannelSftp channelSftp;

final byte[[] privateKey = keyPair.getKeyMaterial ().getBytes();
final byte[] emptyPassPhrase = new byte[07;

String user = “ubuntu”;

String host = instance.getPublicDnsName ()

try {
JSch jsch = new JSch();

jsch.addIdentity (

user , // String userName
privateKey , // byte[[] privateKey
null | // byte[] publicKey

emptyPassPhrase // byte[[] passPhrase
)

Session session = jsch.getSession(user, host, 22);
java.util.Properties config = new java.util.Properties();
config.put(”StrictHostKeyChecking”, ”"no”);
session .setConfig(config);
session.connect();
channel = session.openChannel(”shell”);
ByteArrayInputStream bi = new ByteArrayInputStream(postStartupScript
.getBytes ());
channel.setInputStream (bi);
channel.setOutputStream (System . out);
channel.connect();
} catch (JSchException e) {
e.printStackTrace () ;
¥

System . gc () ;
preTelnetTime = System.currentTimeMillis();

TelnetWrapper telnet = new TelnetWrapper();
def bundleld = 0;

169

171

173

175

177

179

181

183

185

187

189

191

193

195

197

199

201

203

205

207

209

211

213

109

try {
telnet.connect(instance.getPubliclpAddress(), 6666);
System.out. printf(”telnet.connect(%s, 6666);”, instance.

getPublicIpAddress ());

telnet.setPrompt(”—> 7);
System.out. println (telnet.waitfor(”—> 7));

String newBundleText = telnet.send(”install http://bjolfur.com/

turnip_library.jar”);
System.out. println (newBundleText) ;
bundleld = getOnlyNumerals(newBundleText);
System.out. println (bundleld);
telnet.disconnect();
//to be sure that connection has ben properly terminated,
for a sec.
Thread . sleep (1000);
} catch (java.io.IOException e) {
e.printStackTrace () ;
} catch (InterruptedException e) {
e.printStackTrace () ;

¥
System.out.println(”telnetConnector.stop 7 + bundleld);

telnet = new TelnetWrapper();

try {
telnet.connect(instance.getPublicIpAddress (), 6666);
System.out. printf(”telnet.connect(%s, 6666);”, instance.

getPublicIpAddress ());

telnet.setPrompt(”—> ”);
System.out. println (telnet.waitfor(”—> 7));
System.out. println(telnet.send(”start > + bundleld));
telnet. disconnect();
//to be sure that connection has ben properly terminated,
for a sec.

Thread . sleep (1000);

} catch (java.io.IOException e) {
e.printStackTrace () ;

} catch (InterruptedException e) {
e.printStackTrace () ;

¥

telnet = new TelnetWrapper();

try {
telnet.connect(instance.getPublicIpAddress(), 6666);
System.out. printf(”telnet.connect(%s, 6666);”, instance.

getPublicIpAddress ());

telnet.setPrompt(”—> 7);

System.out. println (telnet.waitfor(”—> 7));
System.out. println(telnet.send(”stop ” + bundleld));
telnet.disconnect();

lets wait

lets walit

215

217

219

221

223

225

227

229

231

233

235

237

239

241

243

245

247

249

251

253

255

257

259

110

//to be sure that connection has ben properly terminated, lets wait
for a sec.
Thread . sleep (1000);
} catch (java.io.IOException e) {
e.printStackTrace () ;
} catch (InterruptedException e) {
e.printStackTrace () ;

}

System.out.println(”telnetConnector.update ” + bundleld + ” URI: http
://bjolfur.com/turnip_library.jar”);

telnet = new TelnetWrapper();

try {
telnet.connect(instance.getPubliclpAddress(), 6666);
System.out.printf(”telnet.connect(%s, 6666);”, instance.

getPublicIpAddress());

telnet.setPrompt(”—> 7);
System.out. println (telnet. waitfor("—> 7));
System.out. println(telnet.send(”update > + bundleld + ” http://
bjolfur.com/turnip_library.jar”));
telnet.disconnect();
//to be sure that connection has ben properly terminated, lets wait
for a sec.
Thread . sleep (1000);
} catch (java.io.IOException e) {
e.printStackTrace () ;
} catch (InterruptedException e) {
e.printStackTrace () ;

b

telnet = new TelnetWrapper();

try {
telnet.connect(instance.getPubliclpAddress(), 6666);
System.out. printf(”telnet.connect(%s, 6666);”, instance.

getPublicIpAddress());

telnet.setPrompt(”—> 7);
System.out. println (telnet. waitfor("—> 7));
System.out. println(telnet.send(”start ” + bundleld));
telnet.disconnect();
//to be sure that connection has ben properly terminated, lets wait
for a sec.

Thread . sleep (1000);

} catch (java.io.IOException e) {
e.printStackTrace () ;

} catch (InterruptedException e) {
e.printStackTrace () ;

¥

System . gec () ;

261

263

265

267

269

271

273

275

277

279

281

283

285

287

289

111

endTime = System.currentTimeMillis();

System.out. println (testld + 7 startTime = ” + startTime);

System.out. println (testld + ” instanceTime = ” + instanceTime);

System.out.println(testld + ” preTelnetTime = 7 + preTelnetTime);

System.out.println(testld + ” endTime = 7 + endTime);

System.out. println (testld + ” instance startup took 7+ (
instanceTime — startTime));

System.out. println (testld + ” ssh startup took ”> + (preTelnetTime —

startTime));
System.out. println (testId +
startTime));

»

whole startup took

¥

private static String getOnlyNumerals(String str) {

if (str == null) {
return null;

}

StringBuffer strBuff = new StringBuffer();
char c;

for (int i = 0; i < str.length(); i++) {
¢ = str.charAt(i);

if (Character.isDigit(c)) {
strBuff.append(c);
¥
¥

return strBuff.toString();

> + (endTime —

Listing A.2: Groovy manual ASL Script

B. Numerical results for performance tests

Table B.1.: Numerical results for performance tests

ASL Manual ASL Manual
startup startup operations operations
timing timing timing timing
01:12.7 01:00.7 00:06.8 00:05.7
01:16.0 01:03.8 00:06.9 00:05.7
01:17.3 01:04.7 00:07.0 00:05.8
01:21.0 01:05.2 00:07.0 00:05.8
01:21.2 01:05.7 00:07.0 00:05.8
01:23.4 01:06.0 00:07.1 00:05.8
01:23.8 01:06.0 00:07.1 00:05.8
01:23.9 01:06.9 00:07.1 00:05.9
01:24.2 01:07.1 00:07.1 00:05.9
01:24.9 01:09.3 00:07.1 00:05.9
01:25.0 01:10.2 00:07.1 00:06.0
01:25.1 01:10.9 00:07.1 00:06.0
01:25.1 01:11.4 00:07.1 00:06.0
01:25.3 01:11.5 00:07.2 00:06.0
01:26.6 01:11.6 00:07.2 00:06.0
01:27.7 01:11.7 00:07.2 00:06.0
01:27.9 01:12.0 00:07.2 00:06.0
01:28.6 01:12.6 00:07.2 00:06.0
01:29.2 01:16.0 00:07.3 00:06.1
01:30.2 01:16.0 00:07.3 00:06.1
01:30.6 01:16.7 00:07.3 00:06.1
01:31.5 01:16.7 00:07.3 00:06.2
01:31.5 01:16.7 00:07.3 00:06.2
01:31.7 01:16.9 00:07.3 00:06.2
01:32.5 01:17.0 00:07.3 00:06.2
01:33.3 01:17.8 00:07.3 00:06.2
01:35.4 01:17.8 00:07.3 00:06.3
01:35.5 01:17.8 00:07.4 00:06.3
Continued on Next Page...

113

114

ASL Manual ASL Manual
startup startup operations operations
timing timing timing timing
01:35.7 01:19.2 00:07.4 00:06.3
01:36.3 01:22.3 00:07.4 00:06.3
01:37.5 01:27.1 00:07.4 00:06.3
01:39.1 01:32.6 00:07.4 00:06.4
01:39.2 01:32.9 00:07.4 00:06.4
01:39.2 01:33.2 00:07.4 00:06.4
01:39.6 01:34.2 00:07.4 00:06.5
01:40.0 01:39.4 00:07.5 00:06.6
01:40.1 01:39.6 00:07.5 00:06.8
01:41.0 01:40.7 00:07.6 00:06.9
01:42.0 01:43.0 00:07.8 00:07.0
01:42.0 01:43.7 00:07.8 00:07.2
01:43.2 01:43.8 00:08.0 00:07.3
01:43.4 01:44.2 00:08.0 00:07.5
01:43.5 01:45.0 00:08.1 00:07.8
01:43.6 01:48.3 00:08.3 00:08.2
01:45.0 01:49.1 00:08.3 00:08.5
01:46.2 01:54.2 00:09.2 00:08.9
01:48.7 02:09.9 00:09.4 00:09.1
01:51.4 02:14.7 00:10.1 00:09.1
01:53.0 02:14.8 00:10.4 00:09.3
01:56.6 02:19.7 00:13.2 00:09.5
02:16.8 02:22.9

02:29.8 02:27.6

04:30.0 02:46.6

04:30.6 03:20.9

04:33.1 03:41.3

04:33.3 03:51.8

C. Numerical results for scalability tests

Column 1: Number of devices started
Column 2: Device number

Column 3: Startup time

Column 4: ASL runtime

Column 5: ITteration 1

Column 6: Iteration 2

Column 7: Iteration 3

Column 8: Iteration 4

Column 9: Average iteration timing
Column 10: Complete timing

1|2 [3 E |5 6 L7 E 9 [10 |

(1 |1 [01:26.2 | 00:06.7 | 00:05.9 | 00:05.8 | 00:05.3 | 00:05.9 | 00:05.7 | 01:32.9 |

2 |1 [01:258 [00:07.4 | 00:05.6 | 00:04.4 | 00:04.4 | 00:04.9 | 00:04.8 | 01:32.6
2 | 01:251 | 00:10.1 | 00:06.0 | 00:05.8 | 00:06.0 | 00:06.2 | 00:06.0 | 01:35.1

4 [1 |o1251 |00:07.3 [00:07.4 | 00:05.9 | 00:06.0 | 00:06.2 | 00:06.4 | 01:32.4
2 | 01:25.0 | 00:07.3 | 00:06.1 | 00:05.6 | 00:05.2 | 00:05.9 | 00:05.7 | 01:32.3
3 | 02:29.8 | 00:07.3 | 00:07.6 | 00:05.9 | 00:06.0 | 00:06.2 | 00:06.4 | 02:37.1
4 | 01:12.7 | 00:07.1 | 00:05.4 | 00:04.5 | 00:04.6 | 00:04.9 | 00:04.9 | 01:19.9

8 [1 [01:839.2 [00:07.2 [00:06.2 | 00:05.9 | 00:06.1 [00:06.0 | 00:06.0 | 01:46.4
2 | 01:37.5 | 00:07.8 | 00:06.2 | 00:06.0 | 00:05.9 | 00:06.2 | 00:06.1 | 01:45.3
8 | 01:32.5 | 00:07.4 | 00:05.9 | 00:06.0 | 00:05.9 | 00:05.9 | 00:05.9 | 01:39.9
4 | 01:26.6 | 00:07.6 | 00:06.1 | 00:05.8 | 00:05.3 | 00:05.9 | 00:05.8 | 01:34.2
5 | 01:40.0 | 00:07.1 | 00:06.1 | 00:05.9 | 00:05.9 | 00:05.8 | 00:05.9 | 01:47.1
6 | 01:21.0 | 00:09.2 | 00:06.2 | 00:06.1 | 00:06.1 | 00:06.0 | 00:06.1 | 01:30.2
7 | 01:41.0 | 00:07.2 | 00:06.2 | 00:05.8 | 00:05.9 | 00:05.2 | 00:05.8 | 01:48.2
8 | -02:07.4 Instance failed to start

8 |1 |01:239 | 00:08.1 | 00:05.4 | 00:04.5 | 00:04.3 | 00:05.0 | 00:04.8 | 01:32.0
2 | 01:48.5 | 00:074 | 00:06.2 | 00:05.9 | 00:06.2 | 00:06.2 | 00:06.1 | 01:50.9
3 | 01:23.8 | 00:07.1 | 00:08.2 | 00:05.8 | 00:05.8 | 00:06.0 | 00:06.3 | 01:30.9
4 | 01:27.7 | 00:07.1 | 00:06.7 | 00:05.9 | 00:06.0 | 00:07.1 | 00:06.4 | 01:34.8
5 | 01:24.2 | 00:08.3 | 00:07.4 | 00:06.0 | 00:05.9 | 00:05.8 | 00:06.3 | 01:32.4
6 | 01:35.7 | 00:08.0 | 00:06.0 | 00:05.9 | 00:05.8 | 00:05.1 | 00:05.7 | 01:43.6

115

116

7 | o01:817 | 00:07.4 | 00:06.0 | 00:05.3 | 00:06.0 | 00:05.9 | 00:05.8 | 01:39.1
8 | 01:279 | 00:07.4 | 00:07.4 | 00:05.9 | 00:05.9 | 00:05.9 | 00:06.3 | 01:35.3
16 |1 | 0L:24.4 | 00:07.1 | 00:06.3 | 00:06.4 | 00:06.0 | 00:06.1 | 00:06.2 | 01:31.5
2 -18:52.8 Instance failed to start
8 |01:26.4 | 00:07.0 | 00:07.6 | 00:06.1 | 00:06.0 | 00:05.9 | 00:06.4 | 01:33.4
4 | 01:26.0 | 00:08.0 | 00:08.8 | 00:05.9 | 00:06.0 | 00:06.0 | 00:06.5 | 01:34.0
5 | 01:26.3 | 00:06.8 | 00:07.6 | 00:06.0 | 00:05.9 | 00:06.1 | 00:06.4 | 01:33.1
6 -18:52.7 Instance failed to start
7 | 01:52.8 | 00:07.1 | 00:05.9 | 00:05.2 | 00:06.2 | 00:05.8 | 00:05.8 | 01:59.3
8 -18:52.7 Instance failed to start
9 |01:47.0 | 00:10.1 | 00:05.7 | 00:05.0 | 00:05.0 | 00:05.4 | 00:05.3 | 01:57.1
10 | 01:22.9 | 00:07.5 | 00:06.9 | 00:05.9 | 00:05.8 | 00:05.3 | 00:06.0 | 01:30.4
11 | 01:84.4 | 00:07.3 | 00:06.2 | 00:06.2 | 00:06.1 | 00:06.3 | 00:06.2 | 01:41.8
12 | 01:44.8 | 00:07.7 | 00:06.0 | 00:05.7 | 00:06.1 | 00:05.8 | 00:05.9 | 01:52.5
18 | 01:84.3 | 00:06.9 | 00:05.8 | 00:05.8 | 00:05.8 | 00:05.8 | 00:05.8 | 01:41.2
14 | 01:84.5 | 00:08.6 | 00:06.4 | 00:09.4 | 00:06.1 | 00:05.8 | 00:06.9 | 01:43.1
15 | 01:34.4 | 00:06.9 | 00:06.0 | 00:06.1 | 00:06.1 | 00:06.2 | 00:06.1 | 01:41.3
16 | 02:06.9 | 00:07.1 | 00:06.2 | 00:06.1 | 00:05.4 | 00:05.2 | 00:05.7 | 02:14.0
32 1 |o01:234 | 00:071 | 00:077 | 00:07.0 | 00:07.8 | 00:07.1 | 00:07.3 | 01:30.5
2 | 01:43.6 | 00:07.4 | 00:06.6 | 00:06.0 | 00:05.9 | 00:06.3 | 00:06.2 | 01:51.0
3 | 01:46.2 | 00:07.2 | 00:06.2 | 00:05.7 | 00:05.0 | 00:05.0 | 00:05.5 | 01:53.4
4 -31:00.7 Instance failed to start
5 | 01:39.2 | 00:074 | 00:06.2 | 00:06.0 | 00:06.0 | 00:05.8 | 00:06.0 | 01:46.7
6 -31:00.8 Instance failed to start
7 | 01:24.9 | 00:07.2 | 00:07.8 | 00:05.9 | 00:05.8 | 00:05.1 | 00:06.1 | 01:32.1
8 | 01:42.0 | 03:46.5 | -86:29.3 | 00:00.0 | 00:00.0 | 00:00.0 | -24:07.3 | 05:28.5
9 |01:89.6 | 00:07.3 | 00:06.2 | 00:05.9 | 00:06.0 | 00:05.8 | 00:06.0 | 01:46.9
10 | 04:38.8 | 00:07.1 | 00:06.4 | 00:05.7 | 00:05.8 | 00:05.9 | 00:05.8 | 04:40.4
11 | 01:51.4 | 00:06.9 | 00:07.2 | 00:05.8 | 00:05.8 | 00:05.1 | 00:06.0 | 01:58.3
12 | 04:30.6 | 00:07.0 | 00:06.1 | 00:05.8 | 00:05.8 | 00:05.4 | 00:05.8 | 04:37.6
13 | -31:00.9 Instance failed to start
14 | -81:00.9 Instance failed to start
15 | -31:01.0 Instance failed to start
16 | 01:21.2 | 00:07.2 | 00:06.5 | 00:05.7 | 00:05.7 | 00:06.1 | 00:06.0 | 01:28.4
17 | 01:85.5 | 00:26.2 | 00:05.9 | 00:05.1 | 00:04.9 | 00:05.2 | 00:05.3 | 02:01.6
18 | 01:43.4 | 00:07.1 | 00:07.4 | 00:05.8 | 00:05.8 | 00:05.8 | 00:06.1 | 01:50.4
19 | 01:48.7 | 00:07.4 | 00:06.4 | 00:05.7 | 00:05.2 | 00:05.7 | 00:05.7 | 01:56.1
20 | 01:43.2 | 00:07.3 | 00:06.5 | 00:05.9 | 00:05.8 | 00:05.1 | 00:05.8 | 01:50.5
21 | -81:01.1 Instance failed to start
22 | 01:56.6 | 00:08.3 | 00:06.7 | 00:05.8 | 00:05.9 | 00:05.1 | 00:05.9 | 02:04.9
23 | 01:86.3 | 00:01.0 | 00:01.0 | 00:01.1 | 00:0L1 | 00:01.0 | 00:01.0 | 01:37.3
24 | -31:01.2 Instance failed to start
25 | 04:33.1 | 00:07.1 | 00:06.0 | 00:05.0 | 00:05.0 | 00:05.0 | 00:05.8 | 04:40.2

117

26
27
28
29
30
31
32

01:42.0
-31:01.3
-31:01.4
01:17.3
-31:00.6
04:30.0
01:15.5

00:06.8 | 00:06.1 | 00:05.8 | 00:05.2 | 00:05.9 | 00:05.8 | 01:48.8
Instance failed to start
Instance failed to start

00:01.9 | 00:01.0 | 00:01.0 | 00:01.1 | 00:01.0 | 00:01.0 | 01:19.2
Instance failed to start

00:07.0 | 00:06.0 | 00:05.8 | 00:05.0 | 00:05.0 | 00:05.5 | 04:87.0

00:07.0 | 00:06.0 | 00:05.6 | 00:04.9 | 00:05.3 | 00:05.4 | 01:22.6

	List of Figures
	List of Tables
	Acronyms and Abbreviation

	Acknowledgements
	Introduction
	Motivation
	Problem Statement
	Thesis Outline

	Background
	Cloud Computing
	Essential Characteristics
	Service Models
	Deployment Models

	Software Architecture
	Architectural Qualities
	Architectural Description
	Architectural Prototype

	Architectural operations
	Architectural Change
	Architectural Scripting and Architectural Operations

	Cloud Computing and Architectural Operations
	Architectural Scripting in a Cloud
	ASL Operations

	Implementing Cloud ASL
	Cloud ASL Operations
	Architectural Description
	Example in Use

	Binding Cloud ASL to a Cloud
	Eucalyptus
	Amazon Web Services

	An Experiment With Cloud ASL
	Architectural Requirements
	Architectural Design
	Architectural Description
	The Turnip

	Evaluation
	Qualitative Evaluation
	Utility and Completeness
	Quality Attribute Scenarios

	Quantitative Evaluation
	Performance
	Scalability

	Discussions and Conclusions
	Bibliography
	Performance Script
	Cloud ASL Script
	Groovy manual ``ASL'' Script

	Numerical results for performance tests
	Numerical results for scalability tests

