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Abstract—With substantially increasing penetration levels of
wind power, electric power system flexibility is needed to address
the variability and uncertainty of wind power output. Thus, it has
become an urgent issue to obtain an optimal tradeoff between eco-
nomics and reliability, and to price system uncertainties. This pa-
per proposes a new electricity market-clearing mechanism based
on locational marginal prices (LMPs) for pricing uncertain gen-
eration and load. The uncertainty contained locational marginal
price (U-LMP) is derived from a distributionally robust chance-
constrained optimal power flow model in which only the first-order
and second-order moments of the uncertain sources’ probability
distribution are needed. Compared with traditional LMPs, the pro-
posed U-LMP formulation includes two new uncertainty compo-
nents: transmission line overload uncertainty price and generation
violation uncertainty price. These LMP uncertainty components
are the price signals reflecting the system costs as a result of wind
generation and demand uncertainty at different locations. Finally,
using parametric case studies, the relationship among uncertainty
levels, system generation cost, and LMP uncertainty components
are established. Case studies performed on the PJM 5-bus and
IEEE 118-bus systems verify the proposed U-LMP method.

Index Terms—Economic dispatch, locational marginal price
(LMP), uncertainty, optimal power flow, chance constrained
optimization.

NOMENCLATURE

ci Bid price of generator at Bus i($/MW·h).
Gi Generation power output of generator at Bus i

(MW).
Di Demand quantity (MW) at Bus i.
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Pi Wind power output (MW) at Bus i.
GSFl−i Generation shift factor of Bus i to Line l.
LUl Line limit of Line l.
Gexp,i Generation output at Bus i for expected wind

power output (MW).
Pexp,i Expected power output (MW) of wind power

plant (WPP) at Bus i.
Dexp,i Expected demand quantity (MW) at Bus i.
Gmax

i , Gmin
i Maximum and minimum power output of gener-

ator at Bus i (MW).
βi Generation balancing factor for the system un-

certainty.
ΔGi Generation response to balance the system un-

certainty.
ΔPi Uncertain wind power output.
ΔDi Uncertain demand quantity.
ξw,i Ratio of the standard deviation of wind power

output to its expected power output.
ξd,i Ratio of the standard deviation of demand to its

expected value.
ε Confidence level in the chance constraints.
PFl Power flow on transmission line l (MW).
γw,i,j Correlation coefficient between WPPs i and j.
γd,i,j Correlation coefficient between load i and j.
μw,k Mean of the forecast error for WPP k.
μd,k Mean of the forecast error for load k.
σw,k Standard deviation of the forecast error for

WPP k.
σd,k Standard deviation of the forecast error for

load k.
σP F ,l Standard deviation of the line power flow.
ηP F ,l Ancillary variable for transmission power flow

standard deviation.
ηg,i Ancillary variable for generation output standard

deviation.
σg,i Standard deviation of the generation power out-

put.
λ Dual variable of the system power balance

equation.
μmax

l , μmin
l Dual variables of the transmission upper and

lower limits constraints.
ωmin

i , ωmax
i Dual variables of the generation upper and lower

bounds.
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ρP F ,l Dual variable of the transmission line power flow
risk component constraint.

ϕg,i Dual variable of the generation power output un-
certainty component constraint.

The other variables will be explained in the manuscript.

I. INTRODUCTION

R ECENTLY, renewable generation, such as wind and solar,
has been substantially increasing in power systems world-

wide because of environmental concerns such as greenhouse gas
emission, and their decreasing investment costs through technol-
ogy developments [1]. In the United States, the U.S. Department
of Energy target of renewable integration is to provide 20% of
energy with wind at the end of 2030 [2]. Consequently, electric-
ity markets managed by independent system operators (ISOs)
have been accommodating significant wind percentage growth
in terms of the generation portfolio capacity procurement. The
Electric Reliability Council of Texas, Midcontinent Independent
System Operator (MISO), and California Independent System
Operator (CAISO) are the top three ISO-managed markets with
the highest levels of wind penetration in the United States [3].

Locational marginal pricing (LMP) is a market-clearing
mechanism that is a dominant approach used to determine op-
timal generation dispatch and energy prices by locations in the
United States. This mechanism has been implemented at a num-
ber of ISOs, such as PJM, New York Independent System Op-
erator, ISO New England, CAISO, MISO, New Zealand, and
others [4]–[8].

Traditionally, LMPs are derived from the security-constrained
economic dispatch (SCED) model, which can be formulated as
an optimal power flow (OPF) model based on DCOPF mod-
els. The power losses can be included in DCOPF model based
on different methods such as the distribution factors shown in
[9]. Then, LMPs are decomposed into three components, in-
cluding marginal energy price, marginal congestion price, and
marginal loss price [9]–[13]. In [14], a risk-based LMP model
with the risk component as a price signal representing the sys-
tem’s overall security level was proposed. The risk components
in this model were the price signal for the system transmission
overloading under normal state and contingency conditions. The
reserve price for the N-1 contingency was proposed in [15]–[17]
in which the reserve and energy markets are co-optimized. In
these models, the uncertainties of the input generation and load
are not modeled, and the system security was represented by
the transmission overload level under normal and N-1 contin-
gency states. In [18], the uncertainty marginal price was derived
from a robust optimization model to co-optimize the energy and
reserve capacity in the day-ahead market considering interval
uncertainty input using the average-up or -down interval of the
variable generation or loads. This model was based on robust
optimization, and the uncertainty set for the variable generation
and load was critical to obtain the reserve.

To maintain system reliability with variable renewable gen-
eration resources, chance-constrained optimal power flow (CC-
OPF) has been deployed in the security constrained economic
dispatch (SCED) [19]–[21]. In CC-OPF, the system transmis-

sion network power flow limits and generation output constraints
are modeled to represent the impacts of load and variable gen-
eration uncertainties on the network overloading and generation
violation probabilities [22]–[25]. In [23], the system reserve was
procured based on the CC-OPF model to maintain the system
reliability at a given risk level. Distributionally robust CC-OPF
model was proposed in [26]–[29] in which only the mean and
covariance of the forecast errors or the Wasserstein ambiguity
set were used. This distributional robust solution might lead to
an over-conservative generation dispatch with high operating
cost because the results are robust to any possible distribution
of the forecast errors. Robust optimization and stochastic op-
timization are also applied in the unit commitment and SCED
problems in [30]–[34]. In robust optimization, the worst-case
scenario in the predefined uncertainty sets using the average up
or down intervals for the uncertainty sources such as demand or
variable generation is used to maintain system reliability [35].
In stochastic optimization, a set of probabilistic scenarios rep-
resents the uncertainty. The system should maintain reliability
under these scenarios which might lead to a high computation
burden when the number of scenarios is large.

These models maintain system reliability level by consider-
ing the uncertainty of load or variable generation power outputs,
but they do not give the price signals associated with the un-
certainty levels of the variable generation and load. The system
reserve cost is paid by the system load regardless of their un-
certainty levels. In other words, these models cannot provide
the LMPs under different uncertainty levels. While in the sys-
tem, a generation or load with higher uncertainty levels leads
to a higher system cost because a larger amount of flexibility
resources should be procured to mitigate their uncertainty. In
this case, the generation or load with higher uncertainty levels
should be paid less or pay more considering their uncertainty
cost. Therefore, it is important to obtain the price signals to rep-
resent the uncertainty levels, especially under high penetration
levels of renewable generation.

To overcome the aforementioned disadvantages and give the
price signals associated with the uncertainty levels of input wind
and load, first a distributionally robust chance-constrained op-
timal power flow (DRCC-OPF) model is proposed which can
control the constraints violation levels. In this model, only the
first- and second-order moments of the forecast errors for wind
power and load are needed, which are obtained from historical
data instead of the predefined uncertainty sets. The transmission
power flow limits and generation output constraints are modeled
as chance constraints in which an adjustable coefficient controls
the robustness of the chance constraints to the forecast errors.
Then, the LMP uncertainty components for the transmission
overloading and the generation violations are derived from the
Lagrangian function of the proposed DRCC-OPF model. These
uncertainty components in the LMP represent the marginal con-
tribution of the uncertainty in variable sources such as wind
power and load on the system cost. The major contributions of
this paper are:

1) It extends the current LMP formulation to include two
uncertainty components, resulting from the variable gen-
eration and load forecasting uncertainties.
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2) The uncertainty contained LMPs (U-LMPs) are decom-
posed to four components similar to the current LMP
formulation to give the price signals associated with the
uncertainty levels of variable generation and load fore-
casting.

3) It proposes an DRCC-OPF model that can control the
robustness of the chance constraints in the forecast error
to tradeoff between economics and system security.

The rest of this paper is organized as follows: Section II
presents the DRCC-OPF model, the formulation into the
quadratically constrained programming (QCP) model, and the
adjustable coefficient to control the distributional robustness
of the chance constraints to the forecast errors distributions;
Section III derives the U-LMP uncertainty components for un-
certain demand and wind power; Section IV performs the case
studies on the PJM 5-bus and the IEEE 118-bus systems to
verify the proposed method. Section V concludes the paper.

II. DRCC-OPF

The traditional SCED model is formulated in (1a)–(1e) con-
sidering wind power and demand point forecast values to mini-
mize the system total generation cost:

min
N∑

i=1

ciGexp,i (1a)

N∑

i=1

(Gexp,i + Pexp,i) −
N∑

i=1

Dexp,i = 0 : λ (1b)

N∑

i=1

GSFl−i (Gexp,i + Pexp,i − Dexp,i) ≤ LUl : μmax
l (1c)

− LUl ≤
N∑

i=1

GSFl−i (Gexp,i + Pexp,i − Dexp,i) : μmin
l

(1d)

Gmin
i ≤ Gexp,i ≤ Gmax

i : ωmin
i , ωmax

i (1e)

Then the LMP πi is the partial derivative of the Lagrangian
function of model (1) to the demand at But i [9], [36] and can
be given by:

πi = λ +
M∑

l=1

GSFl−i

(
μmin

l − μmax
l

)
(2)

When the uncertainties of load and wind power forecasts are
taken into consideration, the CC-OPF model is given by the
following model:

min
N∑

i=1

ciGexp,i (3a)

s.t.
N∑

i=1

(Gexp,i + Pexp,i) −
N∑

i=1

Dexp,i = 0 : λ (3b)

Pr

(
N∑

i=1

GSFl−i (Gi + Pi − Di) ≤ LUl

)
≥ 1 − ε : μmax

l

(3c)

Pr

(
−LUl ≤

N∑

i=1

GSFl−i (Gi + Pi − Di)

)
≥ 1 − ε : μmin

l

(3d)

Pr (Gi ≤ Gmax
i ) ≥ 1 − ε : ωmax

i (3e)

Pr
(
Gmin

i ≤ Gi

) ≥ 1 − ε : ωmin
i (3f)

Gi = Gexp,i + ΔGi (3g)

Pi = Pexp,i + ΔPi (3h)

Di = Dexp,i + ΔDi (3i)

ΔGi = βi

(
−

N∑

i=1

ΔPi+
N∑

i=1

ΔDi

)
(3j)

N∑

i=1

βi = 1 (3k)

where (3c)–(3f) are the chance constraints considering the
impact of the wind and load uncertainty on the transmission
overloading and generation output violation; from (3k) the total
generation response equals the total wind and load power
deviation which means that the power balance equation will
be maintained considering the uncertainty; the variables on the
right side of the colons are the dual variables of the constraints
on the left side of the colons; the decision variables are Gexp,i

and βi in this model.
For the transmission constraints in (3c) and (3d), the power

flow can be formulated considering Eq. (3g) to (3j):

PFl =
N∑

i=1

GSFl−i (Gi + Pi − Di)

=
N∑

i=1

GSFl−i

[
Gexp,i + βi

(
−

N∑

j=1

ΔPj +
N∑

j=1

ΔDj

)

+ Pexp,i + ΔPi − Dexp,i − ΔDi

]
(4)

The transmission line power flow, PFl , is also random, and
its uncertain part is formulated as in (5).

N∑

i=1

GSFl−i

⎡

⎣βi

⎛

⎝−
N∑

j=1

ΔPj +
N∑

j=1

ΔDj

⎞

⎠+ ΔPi − ΔDi

⎤

⎦

=
N∑

i=1

⎡

⎣

(
−∑N

k=1 GSFl−kβk + GSFl−i

)
ΔPi

+
(∑N

k=1 GSFl−kβk − GSFl−i

)
ΔDi

⎤

⎦ (5)

Assume that the uncertain part of wind power output ΔP has
the mean μw and the covariance Σw shown in Eq. (9), and the
uncertain part of load ΔD has the mean μd and the covariance
Σd shown in Eq. (10). Then, the standard deviation of the power
flow can be rewritten as Eq. (6).

σP F,l =
√

al,w (β)T Σwal,w (β) + al,d(β)T Σdal,d (β) (6)
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where σP F,l is the standard deviation of the transmission power
flow considering the load and wind power uncertainty, and
al,w (β), al,d(β) are a one-column matrix given by Eq. (7)
and (8) which are derived from Eq. (5).

al,w ,i (β) = −
N∑

k=1

GSFl−kβk + GSFl−i (7)

al,d,i (β) =
N∑

k=1

GSFl−kβk − GSFl−i (8)

Σw =
[

σ2
w,1 γw,1,2σw,1σw,2

γw,1,2σw,1σw,2 σ2
w,2

]
(9)

Σd =
[

σ2
d,1 γd,1,2σd,1σd,2

γd,1,2σd,1σd,2 σ2
d,2

]
(10)

Therefore, (3c) and (3d) can be reformulated [37] as a linear
constraints shown in Eq. (11) and (12).

N∑

i=1

[
GSFl−i (Gexp,i + Pexp,i − Di) + al,w ,i (β) μw,i

+ al,d,i (β) μd,i

]
+ KεσP F,l ≤ LUl (11)

N∑

i=1

[
GSFl−i (Gexp,i + Pexp,i − Di) + al,w ,i (β) μw,i

+ al,d,i (β) μd,i

]− KεσP F,l ≥ −LUl (12)

where Kε is a coefficient on the standard deviation component
and how to choose the value of Kε will be introduced later.

Similarly, in (3e) and (3f), the standard deviation of the gen-
eration output is:

σg,i =
√

bw,i(β)T Σwbw,i (β) + bd,i(β)T Σdbd,i (β) (13)

where σg,i is the standard deviation of the generation output,
and bi(β) is a one-column matrix shown in Eq. (14) and (15)
which are derived from (3j).

bw,i (βt) =
[−βi · · · −βi

]T
︸ ︷︷ ︸

N W

(14)

bd,i (βt) =
[
βi · · · βi

]T
︸ ︷︷ ︸

N D

(15)

where NW is the number of WPPs and ND is the number of
loads.

Then, (3e) and (3f) can be reformulated as shown in Eq. (16)
and (17).

Gexp,i + βi

(
N D∑

k=1

μd,k −
N W∑

k=1

μw,k

)
+ Kεσg,i ≤ Gmax

i (16)

Gexp,i + βi

(
N D∑

k=1

μd,k −
N W∑

k=1

μw,k

)
− Kεσg,i ≥ Gmin

i (17)

Further, the equality constraints in (6) and (13) can be re-
laxed by adding auxiliary variables, as shown below in Eq. (18)

and (19).
√

al,w (β)T Σwal,w (β) + al,d(β)T Σdal,d (β) ≤ ηP F,l

(18)
√

bw,i(β)T Σwbw,i (β) + bd,i(β)T Σdbd,i (β) ≤ ηg,i (19)

where (18) and (19) can be formulated as second-order cone
constraints as:

∥∥∥∥

[
Σw

1/2

Σd
1/2

] [
al,w (β)
al,d (β)

]∥∥∥∥
2

≤ ηP F,l : ρP F,l (20)

∥∥∥∥∥

[
Σw

1/2

Σd
1/2

] [
bw,i (β)
bd,i (β)

])∥∥∥∥∥
2

≤ ηg,i : ϕg,i (21)

The CC-OPF model is then formulated as

min
N∑

i=1

ciGexp,i (22a)

s.t. Constraints (3b) , (7) , (8) , (14) , (15) , (20) and (21) (22b)

−
N∑

i=1

[
GSFl−i

(
Gexp,i + Pexp,i − Di

)
+ al,w ,i (β) μw,i

+ al,d,i (β) μd,i

] − KεηP F,l ≥ −LUl : μmax
l (22c)

N∑

i=1

[
GSFl−i

(
Gexp,i + Pexp,i − Di

)
+ al,w ,i (β) μw,i

+ al,d,i (β) μd,i

] − KεηP F,l ≥ −LUl : μmin
l (22d)

− Gexp,i −βi

(
N D∑

k=1

μd,k −
N W∑

k=1

μw,k

)
− Kεηg,i ≥ −Gmax

i : ωmax
i

(22e)

Gexp,i + βi

(
N D∑

k=1

μd,k−
N W∑

k=1

μw,k

)
− Kεηg,i ≥ Gmin

i : ωmin
i

(22f)

More details about the CC-OPF can also be found in [19],
[28], [38], [39].

If the forecasting error follows a Gaussian distribution [40],
the value of Kε can be decided by Eq. (23) at a given ε.

Kε = Ψ−1 (1 − ε) (23)

where Ψ(x) is the cumulative distribution function (CDF) of the
Gaussian distribution.

In the above CC-OPF model, the value of Kε can be changed
to control the chance constraints robustness to the wind power
forecast errors as shown in Fig. 1. When the solutions are robust
to the distribution uncertainty of the forecast errors, the values
of Kε in the DRCC-OPF model is chosen as below.

First, the assumption is that the mean and covariance of the
uncertain variables are estimated based on the historical data
[41]. All the possible distributions satisfying the mean and co-
variance values are represented as:

p =
{
P ∈ P0

(
R|v |

)
: EP [ω] = μ,EP

[
ωωT

]
= Σ

}
(24)

Authorized licensed use limited to: University of Skovde. Downloaded on February 13,2020 at 13:45:33 UTC from IEEE Xplore.  Restrictions apply. 



FANG et al.: INTRODUCING UNCERTAINTY COMPONENTS IN LMPs FOR PRICING WIND POWER AND LOAD UNCERTAINTIES 2017

Fig. 1. Wind power forecast error distribution.

TABLE I
Kε VALUES UNDER DIFFERENT DISTRIBUTION ASSUMPTIONS

where ω is the uncertain variable (here is the wind power forecast
error), P0(R|v |) represents the set of the possible probabilistic
distribution on R|v | with mean as μ and covariance matrix as
Σ, and Σ ∈ R|v |×|v | is a positive semidefinite matrix [42].

When the mean μ̂ and covariance Σ of the distribution are ob-
tained from the historical data, for ε ∈ (0, 1), the distributionally
robust chance constraint is:

inf︸︷︷︸
μ∼(μ̂ ,Σ)

Pr
{
μT x̃ ≤ 0

} ≥ 1 − ε (25)

It is equivalent to the second-order cone constraint [37] and
the value of Kε is determined by Eq. (26).

Kεσ (x) + ϕ̂ (x) ≤ 0, Kε =
√

(1 − ε) /ε (26)

where x̃ is the decision variable in the chance constraints; σ(x)
is the standard deviation of the constraint; ϕ̂(x̃) is the mean
value of the constraint. Then the results will be robust to any
distributions with given mean and covariance values for the
forecast errors.

If the distribution is symmetrical, the distributionally robust
CC-OPF is formulated [37] with the value of Kε determined
in Eq. (27). Then the results will be robust to any symmetric
distributions with given mean and covariance values for the
forecast errors.

Kε =
√

1/2ε (27)

The values of Kε in the three cases are listed in Table I for ε
as 5%.

The proposed DRCC-OPF model has the adjustable coef-
ficient (Kε), which can control the robustness of the chance
constraints, which may be set up for the Gaussian distribution,
symmetric distributional robustness, or distributionally robust
cases considering wind and load forecast uncertainty.

III. U-LMP OF THE UNCERTAIN LOAD AND WIND POWER

To obtain the U-LMP for the uncertain load and wind power,
first the Lagrangian function of the model (22) is formulated:

L (x) =
N∑

i=1

ciGexp,i − λ

(
N∑

i=1

(
Gexp,i + Pexp,i

) −
N∑

i=1

Dexp,i

)

−
M∑

l=1

μmax
l

[
−

N∑

i=1

GSFl−i

(
Gexp,i + Pexp,i − Dexp,i

)

− KδηP F,l + LUl

]

−
M∑

l=1

μmin
l

[
N∑

i=1

GSFl−i

(
Gexp,i + Pexp,i − Dexp,i

)

− KδηP F,l + LUl

]

−
N∑

i=1

ωmax
i

(−Gi − Kεηg,i + Gmax
i

)

−
N∑

i=1

ωmin
i

(
Gi − Kεηg,i − Gmin

i

)

−
M∑

l=1

ρP F,l

(
ηP F,l −

∥∥∥∥∥

[
Σw

1/2

Σd
1/2

][
al,w (β)
al,d (β)

]∥∥∥∥∥
2

)

−
N∑

i=1

ϕg,i

(
ηg,i −

∥∥∥∥∥

[
Σw

1/2

Σd
1/2

] [
bw,i (β)
bd,i (β)

])∥∥∥∥∥
2

)
(28)

Then the LMP for the demand at Bus i is derived from the
Lagrangian function in (28) as:

∂L(x)
∂De x p , i

= λ +
M∑

l=1

GSFl−i

(
μmin

l − μmax
l

)
+

M∑

l=1

ρP F,l
1
2

× a2
l, d, i (β)ξ 2

d, i De x p , i +al, d, i (β)ξd, i

∑N D
j = 1 γd, i, j al, d, j (β)ξd, j De x p , j∥∥∥∥∥∥

⎡

⎣Σw
1/2

Σd
1/2

⎤

⎦

⎡

⎣al,w (β)
al,d (β)

⎤

⎦

∥∥∥∥∥∥
2

+
N∑

j=1

ϕg,j
1
2

β 2
j ξ 2

d, i De x p , i +βj ξd, i

∑N D
j = 1 γd, i, j βj ξd, j De x p , j∥∥∥∥∥∥∥

⎡

⎣Σw
1/2

Σd
1/2

⎤

⎦

⎡

⎣bw,i (β)
bd,i (β)

⎤

⎦

)∥∥∥∥∥∥∥
2

(29)
If ρP F,l is larger than 0, Constraint (20) is binding, and the

following equality in Eq. (30) holds:

ηP F,l =
∥∥∥∥

[
Σw

1/2

Σd
1/2

] [
al,w (β)
al,d (β)

]∥∥∥∥
2

(30)

And when ρP F,l = 0,

ηP F,l >

∥∥∥∥

[
Σw

1/2

Σd
1/2

] [
al,w (β)
al,d (β)

]∥∥∥∥
2

(31)
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The relationship is similar between ϕg,i and (21). Then (29)
is transformed as:

U LMPLoad,i = ∂L(x)
∂De x p , i

= λ +
M∑

l=1

GSFl−i

(
μmin

l − μmax
l

)
+

M∑

l=1

ρP F,l
1
2

× a2
l, d, i (β)ξ 2

d, i De x p , i +al, d, i (β)ξd, i

∑N D
j = 1 γd, i, j al, d, j (β)ξd, j De x p , j

ηP F , l

+
N∑

j=1

ϕg,j
1
2

β 2
j ξ 2

d, i De x p , i +βj ξd, i

∑N D
j = 1 γd, i, j βj ξd, j De x p , j

ηg, i

(32)
The third and the fourth parts of the U-LMP formulation in

(32) are the prices associated with the transmission overload and
generation violation because of the uncertainties. For instance,
the third term is the price of the load uncertainty to the transmis-
sion overload (U-LMP_PF). The last part is the price of the load
uncertainty to the generation violation (U-LMP_G). It also can
be observed that if the load at Bus i has no uncertainty, such as
ξd,i = 0, the load on Bus i does not need to pay the uncertainty
price because the third and the fourth components are 0 under
this circumstance. If the load reduces its uncertainty level (de-
creasing ξd,i), the uncertainty prices will also be reduced from
Eq. (32). Therefore, the load will have the incentive to manage
its own uncertainty level.

The total load payment to the ISOs is the product of
U LMPLoad and the load amount. This payment can be de-
composed into two parts: energy payment and flexible reserve
payment. The energy payment is the load amount multiplied
by λ +

∑M
l=1 GSFl−i(μmin

l − μmax
l ). The flexible reserve

payment is the load amount multiplied by (U-LMP_PF+U-
LMP_G). The total load payment is the summation of the
energy payment and the flexible reserve payment.

In addition, the price paid to the variable generation, such as
WPPs, at Bus i is:

∂L(x)
∂Pe x p , i

= −λ −
M∑

l=1

GSFl−i

(
μmin

l − μmax
l

)
+

M∑

l=1

ρP F,l
1
2

× a2
l, w , i (β)ξ 2

w , i Pe x p , i +al, w , i (β)ξw , i

∑N W
j = 1 γw , i, j al, w , j (β)ξw , j Pe x p , j

Σw
1 / 2 al, w (β)+Σd

1 / 2 al, d (β)2

+
N∑

j=1

ϕg,j
1
2

β 2
j ξ 2

w , i Pe x p , i +βj ξw , i

∑N D
j = 1 γd, i, j βj ξw , j Pe x p , j

‖Σw
1 / 2 bw , i (β)+Σd

1 / 2 bd, i (β)‖2

(33)
Then, similar to (32), the U-LMPs for WPPs are:

U LMPW ind,i = − ∂L(x)
∂Pe x p , i

= λ +
M∑

l=1

GSFl−i

(
μmin

l − μmax
l

)−
M∑

l=1

ρP F,l
1
2

× a2
l, w , i (β)ξ 2

w , i Pe x p , i +al, w , i (β)ξw , i

∑N W
j = 1 γw , i, j al, w , j (β)ξw , j Pe x p , j

ηP F , l

−
N∑

j=1

ϕg,j
1
2

β 2
j ξ 2

w , i Pe x p , i +βj ξw , i

∑N D
j = 1 γw , i, j βj ξw , j Pe x p , j

ηg, i

(34)
Similarly, the third and the fourth parts are the price the

wind generation should pay for the wind power uncertainty to
the transmission overload and the generation violation. If the

wind generation has no uncertainty, such as ξw,i = 0, it will
not pay these prices, and it will receive payment with the price
πw,i = λ +

∑M
l=1 GSFl−i(μmin

l − μmax
l ) without considering

these uncertainty components. If the variable wind power re-
duces its uncertainty level (decreasing ξw,i), the uncertainty
prices will also be reduced from Eq. (34). Therefore, the vari-
able wind power will also have the incentive to manage its own
uncertainty level.

The total wind power payment from the ISOs is the product
of U LMPWind and the wind power amount. This payment
also can be decomposed into two parts: energy payment and the
flexible reserve payment. The energy payment is the wind power
amount multiplied by λ +

∑M
l=1 GSFl−i(μmin

l − μmax
l ). The

flexible reserve payment is the wind power amount multiplied
by (U-LMP_PF+U-LMP_G). The total wind payment is the
energy payment minus the flexible reserve payment.

For traditional generation, the U-LMP paid to them does not
include the uncertainty components because no uncertainty is
associated with the traditional generation output in this model
because we do not include generation contingency events. How-
ever, this could be included as in [15]–[17]. Therefore, the U-
LMP for traditional generation is:

U LMPGen,i = − ∂L (x)
∂Gexp,i

= λ +
M∑

l=1

GSFl−i

(
μmin

l − μmax
l

)

(35)
In addition to the energy payment from U LMPGen,i , the

traditional generation participating in balancing the system un-
certainty will receive an additional payment for their flexibility
reserve services as:

Rf lex,i = βi

N∑

j=1

[
(U LMP PFD,j + U LMP GD,j ) Dexp,j

+ (U LMP PFW,j + U LMP GW,j ) Pexp,j

]

(36)

From Eq. (36), the revenue adequacy can be maintained be-
cause the total uncertainty revenue of generators equals the total
uncertainty payments of load and WPPs.

Note that the partial derivative of the Lagrangian function to
ηP F,l and the optimal condition is shown below in Eq. (37).
Then the relationship between ρP F,l and μmax

l , and μmin
l is

shown in Eq. (38).

∂L (x)
∂ηP F,l

= μmax
l Kδ + μmin

l Kδ − ρP F,l = 0 (37)

ρP F,l = μmax
l Kδ + μmin

l Kδ (38)

Eq. (38) demonstrates that ρP F,l has a value greater than 0
only when μmax

l , or μmin
l has a value greater than 0. This means

that Eq. (20) will be binding only when Eq. (22c) or Eq. (22d) is
binding. This is intuitive because when Eq. (22c) and Eq. (22d)
are not binding, the transmission line has enough capacity to
accommodate the uncertainty. Therefore, the uncertainty price
from this transmission line will be 0.

Authorized licensed use limited to: University of Skovde. Downloaded on February 13,2020 at 13:45:33 UTC from IEEE Xplore.  Restrictions apply. 



FANG et al.: INTRODUCING UNCERTAINTY COMPONENTS IN LMPs FOR PRICING WIND POWER AND LOAD UNCERTAINTIES 2019

Fig. 2. PJM 5-bus system and generation parameters.

The relationship between ϕg,i and ωmax
i , and ωmin

i can be
formulated in a similar way shown in Eq. (39).

ϕg,i = ωmax
i Kδ + ωmin

i Kδ (39)

Eq. (39) demonstrates that ϕg,i has a value greater than 0
only when ωmax

i , or ωmin
i has a value greater than 0. This means

that Eq. (21) will be binding only when Eq. (22e) or Eq. (22f)
is binding. When Eq. (22e) and Eq. (22f) are not binding, the
generator has enough capacity to accommodate the uncertainty.
Therefore, the uncertainty price from this generator will be 0.

IV. CASE STUDIES

In this section, the proposed U-LMP and DRCC-OPF model
is performed on a small PJM 5-bus system to illustrate the con-
cept and the large IEEE 118-bus system to show the application
on a large system. The simulation with the proposed U-LMP
model is performed in the General Algebraic Modeling Sys-
tem (GAMS) [43] and the MINOS solver is used to solve the
proposed QCP model [44].

A. PJM 5-Bus System

The test system has been modified from the original PJM 5-
bus system. The system parameters are from [45]. In this study,
the peak load in this system is 1,350 MW, and the total load
is equally distributed among buses B, C, and D. The system is
depicted in Fig. 2. WPPs are connected to Bus B and Bus C.
The wind power forecasted power outputs are 300 MW on Bus
B and C. The probability ε in the chance constraints is 5%. The
value of Kε is from Table I.

B. Implication of the Uncertainty Component

In the traditional LMP model, the LMP at one node is the
same for all the generation and loads connected to this node. For
the system without any uncertainties from generation and load,
this is true. For U-LMPs, the new uncertainty components will
bring new features to the locational prices. The U-LMPs differ
between different generation and loads even at the same node be-
cause of their uncertainty levels. These uncertainty components
are the price signals representing the uncertainty of generation
and load to the system cost.

In this subsection, the impacts of the uncertainty levels of
loads and generation on U-LMP results will be investigated.

TABLE II
LOAD AND WIND POWER FORECAST ERROR MEAN AND STANDARD DEVIATION

Fig. 3. LMP and U-LMP results.

Assume that the mean of forecast error is 0 and the standard
deviation of load and wind forecast represents the uncertainty
level and are listed in Table II. The forecast error is assumed to
be Gaussian distribution. The forecast error of loads and wind
are assumed to be independent. The distributional robustness
will be studied in the next subsection. The LMP and U-LMP
results for loads and WPPs are shown in Fig. 3. U_LMPs for
loads are shown in the blue boxes and U_LMPs for wind power
is shown in the red boxes in Fig. 3.

Fig. 3 demonstrates that in this case considering the chance
constraints does not change the bus LMPs for the traditional
generation because in Fig. 3(a) the LMPs and U-LMPs are
the same. Fig. 3(b) to Fig. 3(d) show that if the load or wind
generation does not have uncertainty—such as Load1, Load4,
Load7 and WF1, WF4—their U-LMP will be the same as the U-
LMP for the traditional generation (no uncertainty components)
at the same bus; however, if the loads have uncertainty—such
as Load2, Load3, Load5, Load6, Load8 and Load9—their U-
LMPs increase with their uncertainty levels. This means that
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Fig. 5. Gen4 power output under different distributions.

Fig. 6. Generation dispatch and balancing factors under different distributions.

From Fig. 4 and Fig. 5, it is obvious that both the transmis-
sion power flow and generation output changes significantly
under different distribution assumptions. With higher distribu-
tional robustness, the actual violation reduces. In Fig. 4, Line
6 limit is 240 MW, and it shows that under the symmetrical
distributional-robust and distributional-robust cases, the actual
power flow realization reduces to less than its limit for most
cases. In Fig. 5, Gen4’s power output range reduces to between
0 and its maximum limit 200 MW in the distributional-robust
case, which reduces its generation violation probability.

Table V shows that the load payment and wind revenue for
energy reduces with the distributional robustness; however, the
payment for the uncertainty increases because of their uncertain-
ties increases the reserve requirements under higher distribution
conservativeness. This is reasonable because larger amounts of
reserves should be procured with higher distributional robust-
ness for the forecast errors. Both the payment of loads and the
revenue of wind show a trend to transfer from the energy ser-
vice to the uncertainty components: the payment or revenue for
the energy service decreases while the payment or the revenue
for the uncertainty components increases with the distributional
robustness.

Table VI lists the revenue of traditional generation for the
energy and reserve services to mitigate the system uncertainty.
The revenue from the reserve increases significantly with the
distributional robustness. For instance, this revenue increases
from $1,095.5 under the Gaussian distribution case to $4,139.7
under the distributional-robust case (an increase of 277.9%)
because the flexible reserve requirement increases with the dis-

TABLE VII
LOAD AND WIND POWER FORECAST ERROR MEAN AND STANDARD DEVIATION

tributional robustness. However, the revenue from providing
energy changes slightly (and increase of 5.5%) because the total
energy needed in the system does not change under different dis-
tribution assumptions. The small energy cost change is because
the energy provided by each generator varies under different
distribution assumptions, as shown in Fig. 6(a). The distribu-
tion of the uncertainty revenue varies among different genera-
tors shown in Table VI. For instance, the uncertainty revenue
of Gen1 decreases with the distributional robustness, whereas
Gen5 increases this revenue tremendously. This variation of the
uncertainty revenue is because of their participation in balanc-
ing the system uncertainty, as shown in Fig. 6(b). It is clear that
Gen1 decreases and Gen3 and Gen5 increases the balancing fac-
tors with increasing distributional robustness. Therefore, under
the U-LMP framework, the generators can receive payment for
the flexible reserve service efficiently and fairly based on their
participation to mitigate the system uncertainty.

Increasing the distributional robustness in the dispatch model
significantly reduces the system violation regarding both the
transmission power flow and generation output, whereas this
distributional robustness changes both the load payments and
the revenue of wind power and traditional generation, as shown
in Table V and Table VI. Therefore, system operators should
choose an appropriate distribution assumption to set the value
of Kε to control the chance constraints robustness to trade off
the system security and economics.

D. IEEE 118-Bus System

The IEEE 118-bus system is studied to verify the proposed
model in a large-scale system. The system data can be found
in [47]–[50]. Four WPPs are connected at Bus 2, Bus 5, Bus
53, and Bus 86, and their expected power output is equal to
300 MW. The forecast error parameters of loads and WPPs are
listed in Table VII. The system violation and economic results
are shown in Table VIII. Fig. 7 and Fig. 8 are the transmission
power flow and generation output realization considering the
forecast errors. U-LMP results for WPPs, load, and traditional
generators are shown in Fig. 9 to Fig. 11.

Table VIII, Fig. 7, and Fig. 8 demonstrate that considering the
distributional robustness reduces the system violation for both
the transmission overloading and generation output; however,
this dispatch conservativeness increases the system cost. The
load payment for energy does not change significantly under dif-
ferent distribution assumptions. While the load payment for the
uncertainty increases with the robustness, but the wind payment
for uncertainty decreases in the symmetric distributional-robust
case. This is because in the symmetric distributional-robust and
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TABLE VIII
IEEE 118-BUS SYSTEM RESULTS UNDER DIFFERENT DISTRIBUTIONS

Fig. 7. Transmission power flow of Line 38 under different distributions.

Fig. 8. Generation output of Gen8 under different distributions.

the distributional-robust cases the wind curtails its power out-
put, and therefore both the energy payment and the uncertainty
payment of wind reduce.

U-LMPs for WPPs, load, and traditional generators will
change with the distributional robustness, as shown in Fig 9
to Fig. 11. At some locations, these U-LMPs increase with
the distributional robustness, whereas for other locations, they

Fig. 9. U-LMP for WPPs under different distributions.

Fig. 10. U-LMPs for loads under different distributions.

Fig. 11. U-LMPs for traditional generators under different distributions.

decrease with the conservativeness. Some loads that have small
impacts on the system constraints will have the U-LMPs changes
slightly under different distribution assumptions. It can be ob-
served that U_LMPs are decided by the system risk aversion
levels, the locations and uncertainty levels of load and wind
power generation.

V. CONCLUSION

This paper proposes a U-LMP model based on a DRCC-OPF
model considering wind and demand uncertainties. The U-LMP
uncertainty components are derived, which demonstrate the cost
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of the demand and wind uncertainty on the transmission over-
loading and generation violation by their locations and uncer-
tainty levels. The system overloading and generation violation
probabilities can be significantly reduced using the proposed
model. The load with a higher uncertainty levels will pay more
because its U-LMP increases with its uncertainty level. The
wind with a higher uncertainty factor will be paid less because
its U-LMP decreases with its uncertainty level. The generators
that provide the flexible reserve to balance the system uncertain-
ties can obtain a reasonable revenue for their services according
to their participations and locations.

In the electricity market operation under high penetration lev-
els of renewable generation, such as wind power, the uncertainty
in the wind power and load forecasts brings challenges to system
operation and leads to high LMPs because of the flexible capa-
bility shortage. Although the reserve procured in the SCED can
relieve this problem, how to allocate the reserve cost efficiently
and fairly is a challenge. The proposed U-LMP model offers an
alternative approach to price the uncertainty of variable genera-
tion and load and compensate the generators’ flexibility service.
This model allocates the reserve cost to the system uncertainty
sources efficiently and can maintain the system security level
through the adjustable coefficient in the distributional-robust
chance constraints.

Note that the U-LMP is proposed for the forward market
such as the day ahead market to price the uncertainty of vari-
able generation and demand and pay the flexible reserves of the
conventional generation mitigating the uncertainty. The actual
power deviation of variable generation and demand will be set-
tled in the real time market with the real time price similar with
the present two-settlement mechanism.
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