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Abstract—Recently, digital coding metasurfaces have attracted 

significant attention due to their capability to dynamically control 

electromagnetic waves in programmable ways. When the digital 

bit of a metasurface is higher, its controlling capability will be 

stronger. However, it is extremely difficult to realize 3-bit and 

higher digital coding metasurfaces since an n-bit digital element 

will require many active devices (e.g. PIN diodes) to achieve 2n 

digital states. Here, we propose to realize arbitrary multi-bit 

programmable phases using 2-bit time-domain digital coding 

metasurface at the central frequency or harmonic frequencies. 

We introduce the method of vector synthesis to design the phase 

coverages, from which 4-bit and arbitrarily higher-bit coding 

phases are synthesized by a physical coding metasurface with only 

2-bit phases, simply by manipulating the time-coding sequences. A 

prototype controlled by a field-programmable gate array is used 

to validate this methodology. Experimental results are in good 

agreement with the theoretical analysis, which demonstrate good 

performance of the proposed method in dynamically realizing 

arbitrary multi-bit programmable phases. This time-varying 

coding strategy provides a new way to design higher-bit 

programmable metasurface and simplify the structural design 

and control system, which will find many potential applications 

such as high-resolution imaging and high-capacity wireless 

communications. 

 
Index Terms—Digital coding metasurface, multi-bit phases, 

programmable, quantization error, time-varying. 

I. INTRODUCTION 

etasurfaces are artificially engineered 2D structures that 

have attracted great attention in both science and 

engineering communities owing to their attractive features, 

including ultrathin thickness, low loss, easy fabrication and 

good integrability [1], [2]. Metasurfaces have been widely used 

to manipulate electromagnetic (EM) waves in unconventional  
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ways, leading to many exotic physical phenomena and 

interesting devices capable of manipulating microwaves [3], 

terahertz waves [4], [5], visible light [6], [7] and acoustic waves 

[8]. As the digital version of metasurface, digital coding and 

programmable metasurfaces have rapidly developed since they 

were proposed by Cui et al. in 2014 [9]. Coding metasurface 

consists of a limited numbers of elements and can control EM 

waves in a discretized and digital manner, which has the 

advantage to simplify design and optimization procedures and 

have many functionalities in programmable ways [10]-[19]. 

For example, for an n-bit digital coding metasurface, each 

element consists of 2𝑛 digital states with the phase interval of 

2π/2𝑛 . The digital representation of coding metasurfaces is 

essentially suitable for integrating active devices, thereby 

leading to programmable metasurfaces [9], [20]-[25]. 

So far, 1-bit and 2-bit programmable metasurfaces have been 

successfully realized by using active devices (e.g. PIN diodes) 

and field programmable gate array (FPGA) [20]-[25]. It is well 

known that higher-bit programmable metasurfaces have lower 

quantization phase error and can control EM waves more 

precisely, and hence have stronger capability to manipulate EM 

waves [26-28]. However, it is very challenging to achieve 

multi-bit programmable phases via the PIN-diode-based 

metasurfaces. For example, a 3-bit digital element requires 

three PIN diodes to achieve the eight digital states 000, 001, 

010, 011, 100, 101, 110, and 111; and an n-bit digital element 

requires n PIN diodes to achieve the 2𝑛 digital states. Thus the 

structural design, biasing circuit, and control system will be 

very complicated for the higher-bit digital coding metasurfaces. 

Another way to realize the higher-bit programmable 

metasurface is to use varactors [29]-[33], but it is typically 

accompanied by higher losses. Moreover, the varactors need 

higher biasing voltages and extra carefully-designed driving 

circuits, in which the switching speed is very limited. More 

recently, some other techniques have been subsequently 

suggested to design programmable metasurfaces, such as 

MEMS [34], graphene [35], liquid crystal [36], and other 

mechanisms [37], [38], but they are further away from practical 

usages. More importantly, all these studies have limited phase 

coverages.  

On the other hand, time-varying metasurfaces have recently 

attracted an increasing interest, owing to their capacity to 

manipulate the time dimension of EM waves by modulating the 

metasurface properties in the time domain [32], [33], [39]-[45]. 
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Time-varying approach has produced new physical phenomena 

and further extended the application range of the metasurface. 

Combined with the space modulation, space-time-modulated 

metamaterials have also been demonstrated that their physical 

properties can be controlled in both space and time domains 

[22], [23], [46]-[58].  

The time-varying and space-time-modulated metamaterials 

and metasurfaces have been widely investigated in recent years, 

which bring many interesting applications, such as breaking 

time-reversal symmetry and Lorentz reciprocity [39]-[41], [46], 

[47], [50], Doppler cloaks [42], [51], harmonics generation [41], 

[52], optical isolators [39], [53], nonreciprocal antennas 

[54]-[56], and full-duplex systems [57], [58]. It is worth noting 

that most of the above time-varying and space-time-modulated 

structures are theoretical and numerical investigations, while 

only few practical realizations are demonstrated for guided 

waves, and experimental realization for space waves remains 

limited. Conversely, some realistic metasurfaces with time- 

varying physical parameters (e.g., reflection or transmission 

coefficient and surface impedance) have been experimentally 

demonstrated [22], [23], [32], [33], [43]-[45]. For example, the 

space-time-modulated coding metasurface has been proposed 

to enable simultaneous manipulations of EM waves in both 

space and frequency domains, such as harmonic beam steering 

[22], scattering-signature control [22], and the programmable 

nonreciprocal effect [23]. Besides, some varactor-based time- 

varying metasurfaces have been developed for new architecture 

of wireless communication [32], harmonics control [33], 

frequency conversion [43], [44], and nonreciprocal wavefront 

engineering [45]. The time-varying approach has brought a new 

degree of freedom in controlling the EM waves, which 

motivates our study here to explore the realization of multi-bit 

programmable phases. 

In this paper, we utilize the previously proposed 2-bit 

programmable metasurface combined with the time-domain 

coding approach, to attain arbitrary multi-bit and even 

quasi-continuous programmable phases by simply designing 

suitable 2-bit time-coding sequences. First, we present a 

theoretical analysis of the time-domain digital coding 

metasurface and introduce the method of vector synthesis to 

further explain the phase coverage. Subsequently, we present 

several examples of beam steering using 4-bit digital coding 

metasurfaces based on the 2-bit time-domain programmable 

metasurface at both central frequency and harmonic 

frequencies to demonstrate the effectiveness of the proposed 

method. Finally, we fabricate and experimentally test a 

prototype. The proposed methodology may find a wide range of 

applications including antenna arrays, imaging, radar systems, 

and wireless communications. 

The paper is organized as follows: Section II presents the 

theory of the proposed multi-bit time-varying coding strategy. 

Section III presents the design and simulations of the 2-bit 

time-domain coding metasurface and its elements. In Section 

IV, the experimental results of proposed method are discussed, 

followed by the detailed analysis of its performance. Finally, 

conclusions are summarized in Section V. 

 

Fig. 1. Dynamic multi-bit programmable metasurface controlled by FPGA. 

 

II. THEORY AND METHODOLOGY 

We consider a reflection-type digital coding programmable 

metasurface composed of a 2D array of PIN-diode-based 2-bit 

digital elements, whose reflection phases are periodically 

switched according to the 2-bit time-coding sequence [22], as 

shown in Fig. 1. By applying different control voltages to the 

PIN diodes, the reflection phases of each element can be 

dynamically controlled with discrete 2-bit states (i.e., 00, 01, 10, 

and 11) in the physical layer. The 2-bit coding metasurface is 

normally illuminated by an incident monochromatic plane 

wave with the time-harmonic form 0( )= cj t

iE t E e


 , and the 

reflected wave can be expressed as  

( ) ( ) ( )r iE t E t t                                   (1) 

where ( )( ) ( ) j tt t e    is the time-varying complex reflection 

coefficient, with ( )t  and ( )t  denoting the amplitude and 

phase in the time domain, respectively; and ( )t  is periodic in 

time and can be defined as 
n=1

( )= ( )
L

n nt U t  , with ( )nU t  

denoting a periodic pulse function under the modulation period 

0T . Therefore, the time-domain coding metasurface can be 

characterized by time-coding sequence with length L , and 
n  

is the reflection coefficient during the nth time interval [22]. 

According to the Fourier transform theory, the reflected 

wave in the frequency domain can be written as 

1
( ) ( )* ( )

2
r iE E  


                                   (2) 

where 0( ) 2 ( )i cE E       represents the incident wave 

in the frequency domain, and ( )  is the Fourier transform of 

( )t . We decompose the periodic function ( )t  into a Fourier 

series 0( )
jm t

m

m

t a e






   , whence 
0( ) 2 ( )m

m

a m    




   , 
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Fig. 2. The vector synthesis method in the complex plane to realize the multi-bit 

programmable phases. 

 

with 0 0= 2 T   denoting the angular modulation frequency. 

The Fourier coefficient ma  is given by [22] 

  (2 1)

1

sinc  = 
m m

nL
j m n L j

m

n

a m L e A e
L

   




         (3) 

which represents the complex reflection coefficient of the 

metasurface in frequency domain at the mth harmonic 

frequency 0c m  , with the equivalent amplitude 
m

A  and 

equivalent phase 
m . Thus, equation (2) can be further 

represented as 

0 0 0( ) ( ) 2 ( )r c m c

m

E E E a m       




          (4) 

The spectrum of the reflected wave ( )rE   is a superposition of 

fields at all harmonic frequencies 0c m   (m=0, ±1, ±2 …). 

To reach arbitrary-bit phase distributions, we can obtain the 

desired frequency component while suppressing other 

unwanted frequency components by suitably designing the 

time-coding sequence. 

In the theoretical modeling, we consider a physical 2-bit 

programmable metasurface that are designed with four standard 

2-bit phases “ 00 ”, “ 01 ”, “ 10 ”, and “ 11 ”, corresponding to 

0°, 90°, 180°, and 270° phase responses, respectively. These 

2-bit programmable phases can be switched in time under the 

control of FPGA. We assume that the reflection amplitudes of 

the 2-bit programmable metasurface are uniform and equal to 1, 

then the complex reflection coefficients of the time-domain 

metasurface at the central frequency c  and the first harmonic 

frequency 0c   can be derived from equation (3), 

 

 

0 0
00 01 10 11

1 1

0

1

(2 1)

1

1

  

sinc

nL
j j j jj n

n

nL
j n L j

n

a A e e e e e
L

a L e A e
L

   

 



 




   


  





， ， ， ，

 （5） 

 

Fig. 3. (a) The optimized sixteen sets of time-coding sequences and (b) their 

corresponding equivalent 4-bit phases at the central frequency 𝜔𝑐. 

 

Fig. 4 (a) The optimized sixteen sets of time-coding sequences and (b) their 

corresponding equivalent 4-bit phases at the first harmonic frequency 𝜔𝑐 +𝜔0. 

 

We first study the phase coverage 
0  at the central 

frequency by introducing the method of vector synthesis. For 

example, if the time-coding sequence is “00-01-01-01” with 

length =4L , then the complex reflection coefficient 0a  in (5) 

is written as 

00 01 01 01

00 01 71.57

0

1 3
= = + 0.79

4 4 4

j j j j
j j je e e e

a e e e
   

   
  （6） 

It can be found that an equivalent phase 71.57° is successfully 

realized with the equivalent amplitude 0.79 at the central 

frequency. This means that when the 2-bit programmable 

metasurface is periodically switched in time according to the 

2-bit phases “0°-90°-90°-90°”, a differently equivalent phase 

71.57° is obtained.  

Moreover, we use the vector operation in the complex plane 

to further explore the phase coverage. Four basic vectors of the 

original 2-bit reflection coefficients 00j
e


, 01j

e


, 10j
e


, and 

11j
e


 are depicted in Fig. 2. In the above example of 

time-coding sequence “00-01-01-01”, the complex reflection 

coefficient 0a  is synthesized by adding two vectors of 00 4
j

e


 

and 013 4
j

e


, where the new vector 
71.570.79 je  with phase 

71.57° is generated. If the time-coding sequence is chosen as 

“10-10-10-10-10-11-11-11” with length =8L , another  
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Fig. 5. The equivalent phase coverage at 𝜔𝑐 with equivalent amplitude greater 

than 0.7. 

 

Fig. 6. The equivalent phase coverage at 𝜔𝑐 + 𝜔0 with equivalent amplitude 

greater than 0.83. 

 

complex reflection coefficient is synthesized by adding two 

vectors of 105 8
j

e
 and 113 8

j
e

 , where the new vector 

1490.73 je 
 with phase -149° is generated. Therefore, new 

vectors ( rnj

rnA e
 ) can always be synthesized by properly 

combining the four basic vectors. That is to say, as long as we 

suitably design the 2-bit time-coding sequence, the new 

equivalent phases can be synthesized into arbitrary values with 

360° phase coverage, as discussed in the next section. 

III. DESIGNS AND SIMULATIONS 

As an example, we consider the 2-bit time-coding sequences 

with length =8L , represented by the color block diagram. 

Sixteen sets of time-coding sequences are illustrated in Fig. 

3(a), which are used to attain the 4-bit digital phases (ideal 16 

states: -180°, -157.5°, -135°, -112.5°, -90°, -67.5°, -45°, -22.5°, 

0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, and 157.5°) at the 

central frequency c . As shown in Fig. 3(b), the equivalent 

4-bit phases are successfully synthesized with the amplitudes 

greater than 0.7 only by using the physical 2-bit phases, which 

are very close to the ideal digital states. Similar case can be 

achieved at the harmonic frequencies. Fig. 4(a) displays 

another sixteen sets of time-coding sequences, which are used 

to generate the equivalent 4-bit phases at the first harmonic 

frequency 0c  , in which all amplitudes are above 0.83 and  

 

Fig. 7. Comparison of 1D scattering patterns pertaining to the original 1-bit, 

2-bit and equivalent 3-bit, 4-bit phases (in Fig. 3) for beam steering at the 

central frequency 𝜔𝑐. 

 

Fig. 8. 1D scattering patterns of equivalent 4-bit phases in Fig. 4 for beam 

steering at the first harmonic frequency 𝜔𝑐 + 𝜔0. 

 

the phases are close to the ideal digital states, as shown in Fig. 

4(b). In this manner, by exploring more different time-coding 

sequences, the phase coverage at the central frequency and the 

first harmonic frequency can reach 360° with high amplitudes 

and more digital-bit phases, as illustrated in Fig. 5 and Fig. 6. 

Hence, the proposed time-varying approach provides a new 

way of realizing programmable quasi-continuous phase 

modulations. It should be mentioned that the criterion for 

selecting those time-coding sequences is to make the equivalent 

phases at the target frequency to exhibit the required multi-bit 

responses with high amplitudes. An in-house code based on 

equation (3) is generated to search for the eligible time-coding 

sequences.  

As far as we know, higher-bit digital phases have lower 

quantization error than lower-bit digital phases [26]-[28]. As an 

illustrative example, we use the time-coding sequences in Fig. 

3(a) and Fig. 4(a) to show the advantages of higher-bit digital 

phases in beam steering. Specifically, we consider a 

programmable coding metasurface consisting of 16×16 

elements with the period of 0.44 c , in which each column has 

the same digital code. First, we address the beam steering in one 

plane at the central frequency c . By sequentially applying the 

sixteen sets of time-coding sequences in Fig. 3(a) to the 

16-column elements, the metasurface has the 4-bit phase  

lavan
Highlight
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Fig. 9. The corresponding 2D and 3D scattering patterns for the beam steering 

in Fig. 7, pertaining to (a) original 1-bit, (b) original 2-bit, (c) equivalent 3-bit 

and (d) equivalent 4-bit phases at 𝜔𝑐, respectively. 

 

distribution at the central frequency. This accurately gradient 

phase distribution (with 16 digital states) will steer the normally 

incident wave to an angle of -8.1°, as displayed in Fig. 7 (the 

red line) and Fig. 9(d). It can be seen that the main beam points 

to the angle of = 8.1  . Moreover, we compare the far-field 

scattering patterns of the equivalent 4-bit phases (see Fig. 3) 

with the original 1-bit phases (“0°-0°-0°-0°-0°-0°-0°-0°-180°- 

180°-180°-180°-180°-180°-180°-180°”), original 2-bit phases 

(“0°-0°-0°-0°-90°-90°-90°-90°-180°-180°-180°-180°-270°-27

0°-270°-270°”), and equivalent 3-bit phases, which could also 

realize the steering angle of -8.1° but will accompany by 

several large side lobes, as shown in Fig. 7. Figs. 9(a)-(c) show 

the corresponding 2D and 3D scattering patterns for the beam 

steering in Fig. 7. It can be seen that the original 1-bit and 2-bit 

phase quantization produces significant quantization lobes, 

which are avoided in the case of equivalent 4-bit phases. 

Another example of the equivalent 4-bit phases for beam 

steering at the first harmonic frequency 0c   is illustrated in 

Fig. 8. We can see that the main beam at the first harmonic  

 

Fig. 10. (a) Geometry of the 2-bit programmable element loaded with two PIN 

diodes. (b) Photograph of the fabricated 2-bit programmable metasurface 

prototype. 

 

Fig. 11. Simulated reflection phases and amplitudes of the 2-bit programmable 

element excited by a normally incident plane wave (with x-polarized electric 

field). 

 

frequency points to the angle of = 8.1  , and the other 

unwanted frequency components are well suppressed. 

Generally, the equivalent 4-bit or higher-bit programmable 

metasurface provides more degrees of freedom in beam 

steering than the 1-bit and 2-bit physical metasurface, and can 

control the EM waves more precisely. Actually, in the 

traditional field of phased-array antennas, digital phase shifters 

have been widely employed to control radiation patterns [59]. 

To reduce quantization side lobes and beam-pointing errors, 

higher-bit phase shifters are also needed but bring very high 

cost and system complexity. Thus the proposed time-varying 

approach provides a new method to design metasurface-based 

phased arrays with high-bit programmable phases, which could 

reduce the quantization error without using the traditional 

digital phase shifters. 
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Fig. 12. Photographs of experimental setups for measuring (a) the reflection 

phases, and (b) the far-field scattering patterns, respectively. 

 

IV. RESULTS AND DISCUSSIONS 

As previously mentioned, 2-bit programmable metasurfaces 

have been recently investigated to control EM waves in real 

time, such as breaking reciprocity [23], realizing dynamic beam 

manipulation [24], and machine-learning imager [25]. Here, we 

utilize the 2-bit programmable metasurface presented in Ref. 

[23] to validate the method and designs in Sections II and III. 

We firstly display the design of the PIN diode-based 2-bit 

programmable element, as illustrated in Fig. 10(a), which 

consists of an irregular hexagonal metal patch and two metal 

strips printed on the grounded F4B substrate ( 2.65r   and 

tan 0.001  ) with the thickness of 1.5mm. Two PIN diodes 

(MADP-000907-14020x from MACOM) are employed to 

connect the hexagonal patch with two strips, which serve as 

biasing lines for each diode. The hexagonal patch and the 

ground are connected through a metal via hole. The detailed 

parameters of the programmable elements are optimized to 

attain a 90° phase difference when two diodes switch among 

“OFF-OFF (00)”, “OFF-ON (01)”, “ON-OFF (10)”, and 

“ON-ON (11)” states. Full-wave simulations are carried out by 

using the commercial software, CST Microwave Studio. In the 

simulations of the element, periodic boundary conditions are 

applied along both x and y directions, and two Floquet ports are 

used along the z  directions. A normally incident plane wave 

illumination (with x-polarized electric field) is assumed to 

calculate the reflection coefficients of the element under 

different coding states. Fig. 11 shows the simulated reflection 

phases and amplitudes in the frequency range of 9.2-10.2 GHz, 

pertaining to the four coding states “00”, “01”, “10”, and “11”, 

respectively. We observe that the phase difference between 

 

Fig. 13. Measured reflection phases of the 2-bit coding metasurface for four 

possible combinations of the diode states.  

 

 
Fig. 14. The measured equivalent phases at different frequencies by using the 

sixteen sets of time-coding sequences in Fig. 3. 

 

adjacent coding states is about 90° around 9.5 GHz, and the 

corresponding amplitudes are above 0.79. 

Based on the design of elements, a prototype of the 

programmable metasurface in Ref. [23] was fabricated by 

low-cost printed circuit board (PCB) technology, as displayed 

in Fig. 10(b). This prototype is composed of two separate 

samples, each of which has eight columns with eight connected 

elements. Here, a single sample with 8 × 8 elements is firstly 

used to measure the reflection phases by a free space method 

under the normal incidence, a plane-wave lens antenna 

connected to a vector network analyzer (Keysight N5230C) is 

used to transmit and receive the signal, as shown in Fig. 12(a). 

Fig. 13 shows the measured reflection phases of the 2-bit 

coding states, in which the phase difference between adjacent 

coding states is not exactly 90° due to the unavoidable design 

imperfections and fabrication tolerances. When the FPGA 

controller provides the sixteen sets of time-coding sequences in 

Fig. 3(a), the equivalent reflection phases are measured at three 

different central frequencies, as shown in Fig. 14. In the view of 

the imperfect 2-bit phases in Fig. 13, there are some deviations 

in the equivalent 4-bit phases between the measured and 

theoretical results. Nevertheless, the equivalent 4-bit phases 

can still cover the range of -180° to 180° at the central 

frequency of 10 GHz.  

Finally, we measure the scattering patterns of the original 

2-bit programmable metasurface and the equivalent 4-bit 

phases of time-domain digital coding metasurface. The far-field 

measurements are carried out in a microwave anechoic 

chamber to obtain the scattering patterns of metasurface, as  
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Fig. 15. Comparison of measured scattering patterns pertaining to the original 

2-bit phases and the equivalent 4-bit phases in Fig. 3 for realizing beam steering 

at the central frequency. 

 

shown in Fig. 12(b). A linearly polarized horn antenna provides 

the plane wave excitation and is connected to a signal generator 

(Keysight E8267D), while another linearly polarized horn 

antenna connected to a spectrum analyzer (Keysight E4447A) 

is used to receive the scattered harmonic signals. Besides, an 

FPGA hardware control board is exploited to provide dynamic 

biasing voltages for the 2-bit programmable metasurface. It can 

be seen that the time-domain coding metasurface with the 

equivalent 4-bit phases has better performance of beam steering 

at 10 GHz, in which the side lobes are much lower than that in 

the original 2-bit case, as shown in Fig. 15. Besides, the 

scattering powers at the harmonic frequencies are well 

suppressed to ensure the efficiency at the central frequency. 

The measured results agree well with the theoretical analyses, 

validating the effectiveness of the proposed time-domain 

coding approach. 

V. CONCLUSION 

We have proposed a time-varying approach based on 2-bit 

time-domain coding metasurface to achieve multi-bit and even 

quasi-continuous phase modulations at the central frequency or 

harmonic frequencies. By introducing the method of vector 

synthesis, we have demonstrated that the equivalent phases can 

be synthesized into arbitrary values with 360° phase coverage, 

as long as the 2-bit time-coding sequences are suitably designed. 

Moreover, sixteen sets of time-coding sequences were applied 

to generate the equivalent 4-bit phases in the beam steering 

application, showing the advantage of reducing the 

quantization lobes. Finally, an FPGA-controlled prototype 

presented in Ref. [23] was utilized to experimentally validate 

the effectiveness of the proposed approach. Overall, our 

proposed time-varying coding strategy provides a simple way 

of designing arbitrary multi-bit programmable meta-devices, 

without the requirement of complicated structural design and 

control system, which may find significant applications to 

high-performance antennas, high-resolution imaging, as well as 

high-capacity wireless communications and radar systems. 

This approach can be extended to the terahertz, optical and 

acoustic regimes by exploring different implementations, and 

can be further generalized to achieve multi-bit transmission 

phases. 
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